Bachelor & Master Projects and Thesis

Prof. Dr. Stefan Leue

Software and Systems Engineering

http://sen.uni-konstanz.de/

Summer Term 2021
Members

- Prof. Dr. Stefan Leue {SL}
 - Email: Stefan.Leue@uni.kn.de, Room: PZ 902
- Dr. Georgiana Caltais {GC}
 - Email: Georgiana.Caltais@uni.kn.de, Room: PZ 913
- Martin Kölbl {MK}
 - Email: Martin.Koelbl@uni.kn.de, Room: PZ 912
- Fabian Marquart {FM}
 - Email: Fabian.Marquart@uni.kn.de, Room: PZ 912
Projects at our Chair

- Safety Analysis, Fault Localization and Causality
 - causality checking, Functional Safety of Automotive Systems

- Analysis and Automated Repair of Timed Traces
 - synthesis of repairs using SMT technology

- QuantUM and QuantUM+
 - Model Based System Engineering, implementation of Causality Checking

- Architectures for Automotive Systems
 - HW/SW Architectures for Autonomous Driving

- Formal Verification for Machine Learning
 - quality assurance for ML-based systems

- Formal Verification for Quantum Computing
 - Automated quantum program correctness proofs

- Computational Methods in Systems Biology
 - formal explanatory modeling of collective behavior

- Legal Tech
 - logical modeling and analysis of legal artefacts
Projects and Theses at the Chair

♦ Our Objectives
 ‣ projects and theses close to ongoing research projects
 ‣ links to practical and relevant applications
 ‣ completion of project and theses within defined time limits (examination regulations / Prüfungsordnung)

♦ What we offer
 ‣ close and individual supervision
 ‣ regular meetings and guidance
 ‣ if possible and applicable, supervision in collaboration with industrial partners
Projects and Theses at the Chair

Our Expectations

- **project** is typically a literature survey, problem statement or similar
 - leads to definition of thesis topic (not mandatory, but recommended)
 - project report: approx. 10-20 p.

- **thesis**
 - requires some own contribution
 - Bachelor: problem solution idea, critical literature survey, innovative case study, ...
 - Master: own problem solution concept, evolving an existing approach, algorithmic concept and implementation, revealing comparison with other approaches, ...
Scope and Duration of Projects/Theses

- **Project (Bachelor and Master)**
 - 1 semester
 - 9 ECTS (270h work)

- **Thesis (Bachelor)**
 - 3 months (1/2 Semester)
 - 12 ECTS (Thesis) + 3 ECTS (Colloquium) = 15 ECTS (450h work)

- **Thesis (Master)**
 - 6 Months (1 Semester)
 - 30 (Thesis + Colloquium) ECTS (900h work)
Typical Generic Structure:

1. **Introduction**
 - motivation of work, state of the art, related work, contributions

2. **Preliminaries**
 - which facts / concepts / definitions / algorithms / approaches / methods does this work rely on (“standing on the shoulders of giants”)
 - i.e., any technical information that is needed but not developed in the course of this report / thesis

3. **Approach**
 - technical contribution of the thesis (concepts / definitions / algorithms / approaches / methods etc.)

4. **Implementation**
 - software that has been implemented

5. **Evaluation**
 - case studies, experiments, quantitative and qualitative assessment, etc.

6. **Conclusion**
 - what has been accomplished
 - future research directions

7. **Bibliography**
Formal Requirements

♦ Before you start your work
 ‣ submit written proposal (≈ 1-2 pages) to sen@uni-konstanz.de containing
 – the topic you want to choose
 – how well you match the prerequisites
 – schedule for the project / thesis
 • what will be achieved at which point in time
 * requires a careful break-down of the project / thesis topic into subgoals
 • when will the project / thesis be officially registered
 (proposal for this term ideally submitted by April 25, 2020)

♦ During your preparation of the project work / thesis
 ‣ regular consultation with your supervisor
 – approx. every 4 weeks
Deliverables

- project report to the supervisor
- thesis
 - must be submitted to the examination office
 - in parallel: electronic copy (pdf) to supervisor
- any models / code / data / binaries you created for the project
 - include in DVD attached to the thesis
 - in parallel: electronic copy to supervisor
Projects and Theses
System Safety and Analysis
Problem Statement

- Causality Checking in QuantUM relies on trace computation
 - bottleneck: memory
- LTSmin / PINS is interface to symbolic model checking engine
 - hope: more memory efficient

Project Tasks

- integrate QuantUM/Causality Checking into LTSmin / PINS
- **direct logic encoding** of causality checking in symbolic BDD data structures [MP/MT]

Prerequisites

- programming, discrete structures
- for [MP/MT]: (symbolic) model checking an advantage
Causality Checking for Programs [MP/MT] {SL}

¬ Programs
¬ the assignment of certain values to variables can cause a program to crash
¬ which variable assignments and which values are causal for a program failure?

¬ Tasks
¬ selection of a program analysis framework (other than testing)
 ¬ for instance, symbolic execution, static analysis
¬ development of a causality notion for program executions
¬ prototype implementation and case study

¬ Prerequisites
¬ good understanding of logic, program semantics, foundations of computing
Causality Checking in HyperLTL [MP/MT] {SL}

Motivation
- Causality Checking currently defined based on Event Order Logic
- HyperLTL is a logic that allows for quantification over traces
 - applications in security
- how can the definition of Causality Checking benefit from a definition using HyperLTL

Tasks
- definition of Causality Checking using Hyper LTL
- use of this definition for
 - use of HyperLTL model checking for detecting causalities
 - repair synthesis using HyperLTL synthesis

Prerequisites
- background in model checking and temporal logic, or willingness to acquire this
- general interest in logics and their algorithmic mechanization

HyperLTL
HyperLTL is a temporal logic for specifying hyperproperties. It extends LTL by quantification over trace variables \(\pi \) and a method to link atomic propositions to specific traces. The set of trace variables is \(V \). Formulas in HyperLTL are given by the grammar

\[
\psi ::= \forall \pi. \psi \mid \exists \pi. \psi \mid \psi_1 \land \psi_2 \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \bigcirc \psi \mid \psi_1 \psi_2.
\]

where \(a \in AP \) and \(\pi \in V \). The alphabet of a HyperLTL formula is \(2^{AP} \). We allow the standard boolean connectives \(\land, \lor, \leftrightarrow \) as well as the derived LTL operators release \(\psi \mathcal{R} \psi = \neg (\psi \mathcal{U} \neg \psi) \), eventually \(\bigodot \psi = \psi \mathcal{U} \top \), globally \(\square \psi = \neg \bigodot \neg \psi \) and weak until \(\psi \mathcal{W} \psi = \square \psi \lor (\psi \mathcal{U} \psi) \).

Bachelor / Master Projects and Theses, Summer 2021
sen.uni-konstanz.de
Formal Modeling and Analysis
Robustness in Timed Systems [MP/MT] {MK, SL}

♦ Motivation
 ‣ clocks in realistic systems deviate from ideal clocks
 – what is the robustness of a timed system?

♦ Compute Possible Deviation (ε)
 ‣ what kinds of deviation exist?
 – limited, additive, multiplier
 ‣ encode timed system
 ‣ find (semi-decidable) algorithm to compute ε

♦ Related Work
 ‣ timed causes (→ paper)
 ‣ robustness in real-time systems

♦ Requirements
 ‣ real-time model checking
 ‣ advantageous: course on SMT solving
Motivation

- hybrid systems have continuous and discrete dynamic behavior
 - e.g. physical law
- causes in hybrid systems are not single-events but continuous effects
 - e.g. accident since a car broke too short, not hard enough or both?

Apply Causality on Hybrid Systems

- formally define causality for hybrid systems
- aim: an algorithm to compute causes

Related Work

- causality in timed systems
- hybrid systems models

Prerequisites

- advantage: advances model checking
Repair for Parametric Timed Automata [BP/BT] [MP/MT]

♦ Parametric Timed Automata
 ‣ literature survey
 – starting points
 • Minimal-Time Synthesis for Parametric Timed Automata, É. André et al., 2019
 • What’s decidable about parametric timed automata? É. André, 2015
 – tools? case studies?
 ‣ relationship to repair analysis
 – based on SMT solving
 – tool TarTar @UniKN
 – paper

♦ Prerequisites
 ‣ ideally, Advanced Model Checking, but not mandatory...
Model Transformation to LTSmin / PINS

- SysML models edited in Papyrus Real Time (EMF) or Modelio
- understand semantics of state machine diagrams, inter-object communication and meta-models
- define transformation rules in ATL model transformation framework
- implementation and case studies

Benefits

- exposure to practically very relevant model based design language

Prerequisites

- Software Engineering
- interest in semantics and model transformation
Run-Time Causality Checking [MP/MT] {SL}

- **Runtime Verification**
 - observe and assess running system
 - often: monitoring

- **Run-Time Causality Checking**
 - observe system behavior
 - detect occurrence of events at run-time as causal for undesired system behavior
 - learn for the future

- **Tasks**
 - study various run-time verification approaches, in particular run-time model checking
 - analyze, what causality can mean in this context
 - adapt causality checking

- **Preerequisites**
 - one model checking course
 - advantageous: machine learning, data mining
Causality Checking Concurrent Code [MP / MT] {SL}

- **CHESS**
 - tool for finding and producing bugs in concurrent programs (C,C++,C#)

- **Task**
 - transfer the idea of Causality Checking to testing / code analysis
 - apply it to the CHESS tool / environment
 - implement prototype
 - perform case studies
Formal Verification of Machine Learning
Motivation

- Does the network perform robustly (i.e. is the classification the same for similar images?)

Develop a measurement technique for evaluating a neural network’s robustness based on SHGO.

- Come up with a method on how to modify DeepOpt’s specification parameter.
- Use the MNIST dataset and the pre-trained networks from the DeepPoly paper as input to your algorithm.
- First, determine general robustness concerning different epsilon environments, and consequently, robustness concerning perturbed input.
- For both experiments, give accurate percentages of robustness for the different values of epsilon.

Prerequisites

- Machine learning models and training algorithms
- Interest in verification

<table>
<thead>
<tr>
<th>Attack</th>
<th>Original</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_∞</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>Rotation</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Singh, 2018
Motivation

Can errors in a neural network be explained?

When a specification is written that a neural network has to conform to, it is important to know which samples in the training data are responsible if such a specification is violated.

- Develop an algorithm that uses DeepOpt’s output which is a set of counterexamples to detect their cause in the training data
- By removing the points close to the counterexamples from the training data and training a new network, determine if the error persists by checking the new network with DeepOpt and DeepPoly.

Prerequisites

- Machine learning models and training algorithms
- Interest in verification

Ranjan, 2019
Motivation

Neural networks lack the ability to recognize or react to new circumstances they have not been specifically programmed or trained for.

In interpretable machine learning, counterfactual explanations can be used to explain predictions of individual instances.

What is the causality of prediction outcomes?

For an unexpected prediction, identify and explain the causality for this prediction.

Define causality explanation in terms of:

- Network structure
- Input data
- Training data

Prerequisites

- Machine learning models and training algorithms
- Interest in verification
Formal Verification of Quantum Computing
SMT-Based Verification of Quantum Computing [MP / MT] {FBM, SL}

♦ Motivation
 ‣ Quantum algorithms follow a different paradigm than classical algorithms
 ‣ Therefore, it is more difficult to debug them or prove their correctness

♦ Make our specification verification technique more scalable
 ‣ Quantum computing and qubits are mathematically grounded in linear algebra
 ‣ A quantum algorithm is encoded as an SMT-formula using vector, matrix and tensor logic
 – The state space of a qubit is infinite
 – State vectors grow exponentially with the number of qubits
 ‣ Goal: Design a more abstract encoding that uses tensor logic only

♦ Prerequisites
 ‣ Interest in quantum computing
 ‣ Interest in verification
Applications
Objective

- assess the suitability of formal description techniques to model emergent behavior of biological collectives
 - look at stochastic model checking
 - look at spatio-temporal logics
- context
 - cluster Center for the Advanced Study of Collective Behavior
- perform concrete case study
 - cooperate with the Jordan Lab @ Uni KN (biology / Max-Planck)
 - behavior of schools of fish
 - select method and tool

Prerequisites

- willingness to perform inter-disciplinary research
- readiness to familiarize oneself with formal modeling and analysis techniques / tools
- model checking courses are an advantage, but not a must...
Safety of the Intended Function

- ISO PAS 21448 SOTIF
- how to ensure safety of an autonomous vehicle in the presence of malfunctioning machine learning components

Objective

- analysis, where semi-formal and formal modeling and analysis can be used in SOTIF
- approaches to be considered – e.g., probabilistic contracts

Prerequisites

- interest in machine learning
- ideally combined with seminar “Machine Learning and Formal Verification"
Logical Analysis of Sales Contracts [MP/MT]

Joint work with Prof. Rüdiger Wilhelmi, Dept. of Law, Univ. KN

◆ Motivation
 ‣ sale contracts for companies need to be self-consistent
 ‣ vulnerable to inconsistencies because of references and dependencies
 ‣ aim: find inconsistencies automatically

◆ Approach (LegalTech)
 ‣ transform contract to a logical model
 ‣ check for semantic and syntactic inconsistencies using logic reasoning tools

◆ Requirements
 ‣ basic logic
 ‣ good command of German language

A. Object of Agreement
Person A sells Person B the company Bakery GmbH.

B. Sale Conditions
§1 Purchase Price
Person B pays 50,000€ within 4 weeks after the sale date.

...§5 Warranties
Person A ensures the company has a capacity to bake 10,000 pretzels a day.

§6 Claims
In case the company has not the capacity ensured in §5, Person B has to send a written claim within 2 weeks after the sale date.

§7 Legal Consequences
Person A has to remove any claim within 4 weeks else the price defined in §1 is reduced.
Explaining Faults with Machine Learning [BP/BT][MP/MT] {SL, FBM}

- Explaining Faults with Machine Learning
 - **Model Checking:** thousands of counterexamples with hundreds of events
 - **Use Machine Learning (ML) to learn & explain counterexamples**
 - Learn compact representation of counterexamples
 - Extract patterns

- Goals
 - Tool to explain a set of counterexamples of Model Checker (SPIN)
 - Implementation in Python
 - Decision Tree Learning (scikit learn)
 - Case study on selected Promela Models

- Requirements
 - Strong programming skills (e.g. C++, Java, Python)
 - Ability to work independently
 - Basic Machine Learning knowledge
Important

♦ Own Ideas Welcome!

‡ if you have own ideas
 – topics not included in our catalog
 – modifications of proposed topics

please talk to us!
 • topic finding is an iterative, deliberative process!
... either one of us at any time!

- Prof. Dr. Stefan Leue
 - Email: Stefan.Leue@uni.kn
- Martin Kölbl
 - Email: Martin.Koelbl@uni.kn
- Fabian Bauer-Marquart
 - Email: Fabian.Marquart@uni.kn.de

or: sen@uni-konstanz.de
Questions