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Abstract. In precursory work we have developed causality checking, a
fault localization method for concurrent system models relying on the
Halpern and Pearl counterfactual model of causation that identifies or-
dered occurrences of system events as being causal for the violation of
non-reachability properties. Our first implementation of causality check-
ing relies on explicit-state model checking. In this paper we propose a
symbolic implementation of causality checking based on bounded model
checking (BMC) and SAT solving. We show that this BMC-based imple-
mentation is efficient for large and complex system models. The technique
is evaluated on industrial size models and experimentally compared to
the existing explicit state causality checking implementation. BMC-based
causality checking turns out to be superior to the explicit state variant in
terms of runtime and memory consumption for very large system models.

1 Introduction

In precursory work we have defined a fault localization and debugging technique
for concurrent system models called causality checking [18,16]. Causality check-
ing relies on counterfactual reasoning à la Lewis [21], i.e., an event is considered
a cause for some effect in case a) whenever the event presumed be be a cause
occurs, the effect occurs as well, and b) when the presumed cause does not oc-
cur, the effect will not occur either (counterfactual argument). This simple form
of counterfactual reasoning is inadequate to represent logically complex causal
structures. In their seminal work [12], Halpern and Pearl have defined a model for
causation, based on counterfactual reasoning, that encompasses logically com-
plex relationships amongst events. In our precursory work we have adopted their
model and a) related it to models of concurrent computation, in particular tran-
sition systems and traces, b) extended it to accommodate the order of events
occurring as a causal factor, and c) included the non-occurrence of events as a
potential causal factor. The key ingredients of our causality checking algorithm
are a complete enumeration of all traces leading into a property violating state,
as well as an enumeration of all traces not leading into such a state, in order to
establish the counterfactual argument.

An application of causality checking is fault localization within system mod-
els. While a model checker will return a simple counterexample for a
(non-) reachability property, causality checking will return a temporal logic for-
mula representing the events that are considered to be causal, as well as their



order of occurrence in case the order is determined to be causal. The causalities
computed by causality checking are much more succinct than counterexamples
produced by model checkers and contain more precise error location information
than single counterexamples.

We have implemented causality checking up to the work described in this
paper most efficiently in the SpinCause tool [20] that relies on explicit state
model checking and is based on SpinJa [14], a Java re-implementation of the
explicit state model checker SPIN [13]. We have embedded causality checking in
our QuantUM tool as the core analysis engine. QuantUM reads system archi-
tecture models given in UML or SysML directly out of industrial design tools,
such as IBM Rational Rhapsody, performs a reachability analysis for undesired
system states using the causality checking components, and outputs the com-
puted causalities as temporal logic fomulae and fault trees [17]. An application of
QuantUM is the support of safety cases in the analysis of safety-critical system
and software architectures [16,4].

We have applied SpinCause inside the QuantUM context to various industrial
sized case studies. At the upper end of the size scale of those case studies the
memory consumption of SpinCause starts to be a limiting factor. It is the objec-
tive of this paper to propose an implementation of causality checking using an
alternative model checking technology, in particular one that relies on bounded
model checking (BMC) [6], a symbolic representation of the state space and
SAT-solving as a verification engine, in order to evaluate whether this gives us a
causality checking implementation which is superior to the explicit state variant
in terms of memory consumption.

To this end we define an iterative BMC-based causality checking algorithm.
As argued above, in the explicit state causality checking implementation all
traces through a system need to be generated. The BMC-based causality check-
ing algorithm presented in this paper uses the underlying SAT-solver invoked by
the bounded model checker in order to generate the causal event combinations in
an iterative manner. In the course of an iteration only those error traces are gen-
erated that contain new information regarding the cause to be computed whereas
traces that do not provide new information are automatically excluded from fur-
ther consideration by constraining the SAT-solver with what is already known
about the causal relationships amongst events. With this approach a large num-
ber of error traces that would otherwise need to be considered and stored in the
explicit state approach can remain unconsidered, which contributes to the mem-
ory efficiency of this BMC-based causality checking implementation. We have
implemented our algorithm as an addition to the NuSMV2 model checker [9],
which encompasses a BMC component, and evaluate its performance using var-
ious case studies from various domains and of different sizes. It turns out that
for the largest models analyzed the BMC-based implementation requires up to
two orders of magnitude less memory than the explicit state implementation.
As a consequence, causality checking now scales to a class of significantly more
complex models that could previously not be analyzed.

Structure of the Paper. In Section 2 we will present the technical foundations of
our work. In Section 3 we describe the proposed iterative BMC-based approach
to causality checking. In Section 4 we experimentally evaluate the BMC-based



causality checking approach by comparing its performance to the explicit-state
causality checking implementation. Related work will be discussed in Section 5
before we conclude in Section 6.

2 Preliminaries

2.1 Running Example

We will illustrate the formal framework that we present in this paper using the
running example of a simple railroad crossing system. In this system, a train
can approach the crossing (Ta), enter the crossing (Tc), and finally leave the
crossing (Tl). Whenever a train is approaching, the gate shall close (Gc) and
will open again when the train has left the crossing (Go). It might also be the
case that the gate fails (Gf). The car approaches the crossing (Ca) and crosses
the crossing if the gate is open (Cc) and finally leaves the crossing (Cl). We are
interested in finding those events that are causal for the hazard that the car and
the train are in the crossing at the same time.

2.2 System Model

The model of concurrent computation that we use in this paper is that of a
transition system:

Definition 1 (Transition System [2]). A transition system M is a tuple (S,
A, →, I, AP, L) where S is a finite set of states, A is a finite set of actions/events,
→⊆ S ×A × S is a transition relation, I ⊆ S is the set of initial states, AP is the
set of atomic propositions, and L∶S→ 2AP is a labeling function.

Definition 2 (Execution Trace [2]). An execution trace π in M is defined
as an alternating sequence of states s ∈ S and actions a ∈ A ending with a state.

π = s0 α1 s1 α2 s2 ... αn sn, s.t. si
αi+1ÐÐ→ si+1 for all 0 ≤ i < n.

An execution sequence which ends in a property violation is called an error

trace or a counterexample. In the railroad crossing example, s0
TaÐ→ s1

GfÐ→ s2
TcÐ→

s3
CaÐ→ s4

CcÐ→ s5 is a counterexample, because the train and the car are inside
the crossing at the same time.

2.3 Linear Temporal Logic

Linear Temporal Logic (LTL) [22] is a propositional modal logic based on a linear
system execution model. An LTL formula can be used to express properties of
infinite paths in a given system model.

Definition 3 (Syntax of Linear Temporal Logic). An LTL formula ϕ over
a set of atomic propositions AP is defined according to the following grammar:

ϕ ∶∶= TRUE ∣ a ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ¬ϕ ∣ ◯ϕ ∣ ◻ϕ
∣ ◇ϕ ∣ ϕ1 U ϕ2

where a ∈ AP.



The operators ◯, ◻, ◇ and U are used to express temporal behavior, such as
“in the next state sth. happens”(◯), “eventually sth. happens”(◇) and “sth. is
always true”(◻). The U-operator denotes the case that “ϕ1 has to be true until
ϕ2 holds”. We use M ⊧l ϕ to express that an LTL formula ϕ holds on a system
model M and π ⊧l ϕ for a execution trace in M .

The properties that are expressible in LTL can be separated into two classes,
safety and liveness properties. Safety properties can be violated by a finite prefix
of an infinite path, while liveness properties can only be violated by an infinite
path. For now, causality checking has only been defined for safety properties,
namely the non-reachability of an undesired state, which can be characterized
using an LTL formula. For instance, the non-reachability property that we want
to express in the railroad crossing example is that the train and the car shall
never be in the crossing at the same time: ◻¬(Tc ∧Cc).

2.4 Event Order Logic

Event Order Logic (EOL) is a linear time temporal logic that is used in causal-
ity checking to specify the ordered event occurrences that are computed to be
causal. Every EOL formula can be translated into an equivalent standard LTL
formula [3].

Definition 4 (Syntax of the Event Order Logic). Simple event order logic
formulae are defined over the set A of event variables:

φ ∶∶= a ∣ φ1 ∧ φ1 ∣ φ1 ∨ φ2 ∣ ¬φ

where a ∈ A and φ, φ1 and φ2 are simple EOL formulae. Complex EOL formulae
are formed according to the following grammar:

ψ ∶∶= φ ∣ ψ1 ∧ ψ1 ∣ ψ1 ∨ ψ2 ∣ ψ1 . ψ2 ∣ ψ1 .[ φ
∣ ψ1 .] φ ∣ ψ1 .< φ .> ψ2

where φ is a simple EOL formula and ψ, ψ1 and ψ2 are complex EOL formulae.

We define that a transition system M satisfies the EOL formula ψ, written as
M ⊧e ψ, iff ∃π ∈ M . π ⊧e ψ. The informal semantics of the operators can be
given as follows.

– ψ1 . ψ2: ψ1 has to happen before ψ2.

– ψ1 .[ φ: ψ1 has to happen at some point and afterwards φ holds forever.

– φ .] ψ1: φ has to hold until ψ1 holds.

– ψ1 .< φ .> ψ2: ψ1 has to happen before ψ2, and φ has to hold all the time
between ψ1 and ψ2.

For example, the formula Gc . Tc states that the gate has to close before the
train enters the crossing. The full formal semantics definition for EOL is given
in [19].



2.5 Event Order Normal Form

In order to enable the processing of EOL formulas and counterexamples in the
BMC-based causality checking algorithm it is necessary to define a normal form
for EOL formulas that we refer to as the event order normal form (EONF) [16,3].
EONF permits the unordered and- (∧) and or-operator (∨) only to appear in a
formula if they are not sub formulas in any ordered operator or if they are sub
formulas of the between operators .< and .>.

Definition 5. Event Order Normal Form (EONF) [16,3] The set of EOL for-
mulas over a set A of event variables in event order normal form (EONF) is
given by:

φ ∶∶= a ∣ ¬φ φ∧ ∶∶= φ ∣ ¬φ∧ ∣ φ∧1 ∧ φ∧2

ψ ∶∶= φ ∣ φ1 . φ2 ∣ φ1 .[ φ2 ∣ φ1 .] φ2 ∣ φ1 .< φ2 .> φ3
ψ∧ ∶∶= ψ ∣ φ∧ ∣ ψ∧1 ∧ ψ∧2 ∣ ψ∧1 ∨ ψ∧2

where a ∈ A and φ are simple EOL formulas only containing single events and φ∧,
φ∧1 , φ∧2 and φ∧3 are EOL formulas only containing the ∧-operator, ψ is a EOL
formula containing the ordered operator, and ψ∧, ψ∧1 and ψ∧2 are EOL formulas
containing the ∧-operator and / or the ∨-operator which can be combined with
formulas in EONF containing ordered operators.

Every EOL formula can be transformed into an equivalent EOL formula in EONF
by rewriting using the equivalence rules defined in [16,3]. For instance, the EOL
formula Ta .Gc .Tc can be expressed in EONF as ψEONF = (Ta .Gc) ∧ (Gc .
Tc) ∧ (Ta .Tc).

2.6 Causality Reasoning

Our goal is to identify events that cause a system to reach a property violating
state. We hence need to define the notion of causality that we will base our
approach on. The notion of causality that we use, as proposed in [15], is based
on counterfactual reasoning and the notion of actual cause defined by Halpern
and Pearl in [12]. It not only considers the occurrence of events to potentially be
causal, but also the order in which they occur as well as their non-occurrence.
For example, an event a may always occur before an event b for an error to
happen, but if b occurs first and a afterwards there is no error. In this case,
a occurring before b is considered to be causal for the error to happen. Work
described in [19] defines when, according to this extended causality notion, an
EOL formula ψ describes a causal process for the violation of a non-reachability
property, specified using an LTL formula. The causal process [12] consists of the
events causing the violation and all events mediating between the causal events
and the property violation. Notice that in case there are multiple instances of
event occurrences belonging to the same event type in the model, the multiple
instances are discriminated. For instance, if along a trace to events of type Gc
can be observed, we refer to them as Gc1 and Gc2. Otherwise it would not be
possible to distinguish between two separate occurrences of the same type of
event using standard LTL semantics, which EOL is based on.



Definition 6 (Cause for a property violation [12,18]). Let π,π′ and π′′ be
paths in a transition system M . The set of event variables is partitioned into sets
Z and W . The variables in Z are involved in the causal event chain for a property
violation while the variables in W are not. The valuations of the variables along
a path π are represented by valz(π) and valw(π), respectively. ψ∧ denotes the
rewriting of an EOL formula ψ where the ordering operator . is replaced by
the normal EOL operator ∧, all other EOL operators are left unchanged. An
EOL formula ψ consisting of event variables X ⊆ Z is considered to be a cause
for an effect represented by the violation of an LTL property ϕ, if the following
conditions hold:

– AC 1: There exists an execution π for which both π ⊧e ψ and π /⊧l ϕ
– AC 2.1: ∃π′ s.t. π′ /⊧e ψ∧(valx(π) /=valx(π′)∨valw(π) /=valw(π′)) and π′ ⊧l ϕ.

In other words, there exists an execution π′ where the order and occurrence
of events is different from execution π and ϕ is not violated on π′.

– AC 2.2: ∀π′′ with π′′ ⊧e ψ ∧ (valx(π) =valx(π′′)∧valw(π) /=valw(π′′)) it holds
that π′′ /⊧l ϕ for all subsets of W . In words, for all executions where the
events in X have the value defined by valx(π) and the order defined by ψ,
the value and order of an arbitrary subset of events on W has no effect on
the violation of ϕ.

– AC 3: The set of variables X ⊆ Z is minimal: no subset of X satisfies condi-
tions AC 1 and AC 2.

– OC 1: The order of events X ⊆ Z represented by the EOL formula ψ is not
causal if the following holds: π ⊧e ψ and π′ /⊧e ψ and π′ /⊧e ψ∧

The EOL formula Gf∧((Ta∧(Ca.Cc)).<¬Cl.>Tc) is a cause for the occurrence
of the hazard in the railroad crossing example since it fulfills all of the above
defined conditions (AC 1-3, OC 1) for the corresponding system model that we
defined.

2.7 Bounded Model Checking

The basic idea of Bounded Model Checking (BMC) [6] is to find error traces,
also called counterexamples, in executions of a given system model where the
length of the traces that are analyzed are bounded by some integer k. If no
counterexample is found for traces of some length l ≤ k, then l is increased until
either a counterexample is found, or l = k. The BMC problem is translated into
a propositional satisfiability problem and can be solved using propositional SAT
solvers. Modern SAT solvers can handle satisfiability problems in the order of
106 variables.

Given a transition system M , an LTL formula f and a bound k, the proposi-
tional formula of the system is represented by [[M,f]]k. Let s0, ..., sk be a finite
sequence of states on a path π. Each si represents a state at time step i and con-
sists of an assignment of truth values to the set of state variables. The formula
[[M,f]]k encodes a constraint on s0, ..., sk such that [[M,f]]k is satisfiable iff π
is a witness for f . The propositional formula [[M,f]]k is generated by unrolling
the transition relation of the original model M and integrating the LTL property
in every step si of the unrolling. The generated formula [[M,f]]k of the whole



system is passed to a propositional SAT solver. The SAT solver tries to solve
[[M,f]]k. If a solution exists, this solution is considered to be a counterexample
of the encoded LTL property.

3 BMC-based Causality Checking

3.1 EOL Matrix

For the BMC-based causality computation with bound k we consider sequences

of event occurrences πe = e1e2e3 . . . ek derived from paths of type π = s0
e1Ð→

s1
e2Ð→ s2 . . .. We use a matrix in order to represent the fact that certain events

occur as well as the ordering of the event occurrences along a trace. This matrix
is called EOL matrix.

Definition 7 (EOL matrix). Let E = {e1, e2, e3, . . . , ek} an event occurrence
set and πe = e1e2e3 . . . ek a trace over event occurrences. For integers i /= j a
function o is then defined as follows:

o(ei, ej) = {{TRUE} if ei . ej
∅ otherwise

The EOL matrix ME is constructed from o as follows:

ME =
⎛
⎜⎜⎜
⎝

∅ o(e1, e2) ⋯ o(e1, ek)
o(e2, e1) ∅ ⋯ o(e2, ek)

⋮ ⋮ ⋱ ⋮
o(ek, e1) o(ek, e2) ⋯ ∅

⎞
⎟⎟⎟
⎠

where the generated entries in the matrix are either sets of event occurrences or
the constant set {TRUE}. The empty set ∅ is also permitted which means no
relation for the corresponding event occurrences was found.

Definition 8 (Union of EOL Matrices). Let ME ,ME1 ,ME2 be EOL Matri-
ces with all identical dimensions. The EOL matrix ME is the union of ME1 and
ME2 according to the following rule:

ME(i,j) =ME1(i,j) ∪ME2(i,j) (1)

for every entry (i, j) in the matrices.

The union of two EOL matrices represents the component-wise disjunction of
two matrices. The EOL matrix ME for an example event sequence in the railroad
crossing π = Ca Cc Gf and a refinement EOL Matrix M′

E = ME ∪MEπ′ using the
sequence π′ = Gf Ca Cc is created as follows:

e1 = Ca
e2 = Cc
e3 = Gf

ME =
⎛
⎜
⎝

∅ {TRUE} {TRUE}
∅ ∅ {TRUE}
∅ ∅ ∅

⎞
⎟
⎠

M′

E =
⎛
⎜
⎝

∅ {TRUE} {TRUE}
∅ ∅ {TRUE}

{TRUE} {TRUE} ∅

⎞
⎟
⎠

(2)



3.2 EOL Matrix to Propositional Logic Translation

In order to use the information stored in the EOL Matrix in the BMC-based
causality checking algorithm a translation from the matrix into propositional
logic is needed. First the Matrix is translated into an EOL formula in EONF
and afterwards the EOL formula is translated into propositional logic.

Definition 9 (Translation from EOL matrix to EOL formula). Let ME

a EOL matrix which contains the EOL formula ψE and the event set E. ME(i,j)

is the set of events in the entry (i, j) in ME and e(i,j) ∈ME(i,j). ei and ej denote
the ordered events, respectively. Then ψE is defined as follows:

ψE =
i=k

⋀
i=0

j=k

⋀
j=0

{ ei ∧ ej if e(i,j) = {TRUE} and e(j,i) = {TRUE} and i /= j
ei . ej if e(i,j) = {TRUE} and e(j,i) /= {TRUE} and i /= j

Lemma 1. An EOL formula ψE obtained via Definition 9 from an EOL matrix
ME is always in Event Order Normal Form (EONF).

Proof. Sketch: A proof can easily be given using an inductive argument over the
rules for the construction of the EOL matrix (Definition 7) and the construction
of formula ψE (Definition 9).

Using this translation the EOL Matrix from Equation 2 is translated into
the following EOL formula in EONF: ψEONF = (Ca.Cc)∧ (Gf∧Ca)∧ (Gf∧Cc).
The generated EOL formula can be efficiently translated into an equivalent LTL
formula as it was shown in [3].

As mentioned in Section 2.3, only safety properties are considered for the
BMC-based causality checking approach. Since safety properties can only be
violated by finite prefixes of system executions, it is necessary to adapt the
definition of a bounded semantics for LTL as defined in [6] for our purposes:

Definition 10 (Bounded Semantics for LTL). Let k ≥ 0, and let π be a
prefix of an infinite path and πe = e0e1e2 . . . the sequence of events of π. Let
ψLTL an LTL formula obtained by translating an EOL formula ψ into LTL.
ψLTL is valid along π up to bound k, represented by π ⊧0k ψLTL, if the following
holds:

π ⊧ik p iff p = ei
π ⊧ik ¬p iff p /= ei
π ⊧ik f ∧ g iff π ⊧ik f and π ⊧ik g
π ⊧ik f ∨ g iff π ⊧ik f or π ⊧ik g
π ⊧ik ◻f iff ∀j, i ≤ j ≤ k. π ⊧jk f
π ⊧ik ◇f iff ∃j, i ≤ j ≤ k. π ⊧jk f
π ⊧ik ◯f iff i < k and π ⊧i+1k f

π ⊧ik fUg iff ∃j, i ≤ j ≤ k. π ⊧jk g and ∀n, i ≤ n ≤ k. π ⊧nk f
The standard translation scheme for translating LTL into propositional logic

for a given bound k as described in [6] is used in order to convert the LTL
formula ψLTL into a propositional logic formula.



3.3 The BMC-based Causality Checking Algorithm

According to condition AC 1 it is necessary to know that there exists a coun-
terexample trace which leads to the violation of the considered non-reachability
property. In addition, in order to satisfy condition AC 2, however, there need to
exist other traces with other events and orderings that do not lead into a violat-
ing state. As a consequence, all combinations of events have to be known. In the
explicit state causality checking approach [18] all paths through a system need
to be computed in order to find all causal events and orderings for a property
violation. In order to avoid the explicit computation of all possible paths in the
state graph we propose the use of an iterative scheme involving BMC and sym-
bolic constraints on the underlying SAT solver. The symbolic constraint is used
in order to find only those paths that contain new information on event orderings
and occurrences. This new information is used to strengthen the constraints on
the SAT Solver.

Fig. 1. The iteration schema of the BMC-based causality checking algorithm

Figure 1 presents the informal iteration scheme of the proposed algorithm.
The inputs are the model M , the property φ and an upper bound kmax for the
maximum length of the considered paths. The algorithm starts at level k = 0:

Step 1: Generation of Traces. The model M together with the LTL property
φ and the bound k is converted into a propositional logic formula [[M,¬φ]]k.
[[M,¬φ]]k is inserted into a SAT solver. The SAT solver tries to find a path that
fulfills the given formula. If such a path is found, the algorithm has discovered
a counterexample and continues at step 2. Otherwise, the bound k is increased
until the first counterexample is found or the maximum bound kmax is reached.

Step 2: Matching of EOL Matrices. When a new path π is discovered the
set of events E1 occurring on this trace is compared to the already known EOL
matrices, if any. If there is an EOL matrix ME2 covering a set of events E2

and if E1 = E2, then the newly discovered orderings of events in E1 is used to



refine the EOL matrix E2 according to the operation E2 ∶= E2 ∪ E1 as defined
in Definition 8. If there is no matching matrix, a new EOL matrix is created
representing a new class of causes [18] containing the ordering of events in π.

Step 3: Combination of new constraints. All EOL matrices MEi are trans-
lated into EOL formulas ψMEi

according to Definition 9. The translated EOL
formulas ψMEi

are combined disjunctively. In order to exclude the already found
orderings from being found again in the next iteration, the result is negated
which results in ϕ′ = ¬(ψME1

∨ ψME2
∨ . . . ∨ ψMEn

) with n the number of EOL
matrices that have been computed so far.

Step 4: Constraining the SAT Solver. The formula ϕ′ is translated into
a propositional logic formula [[ϕ′]]k for a given bound k. [[ϕ′]]k is then used
as an additional constraint for the SAT Solver (Definition 10). Afterwards, the
algorithm iterates and continues with Step 1.

When the algorithm terminates, the result is stored in the EOL matrices
MEi ,0 ≤ i ≤ n where n is the number of EOL matrices found during the search.

3.4 Soundness and Completeness

We show that the results generated with the described algorithm are sound up to
the pre-defined maximum bound k. Afterwards we will discuss the completeness
of the BMC-based causality algorithm.

We first introduce the concept of a candidate set which is a collection of
all counterexamples to the considered non-reachability property that have been
computed. The elements occurring along the elements of this set are candidates
for being causal for the considered property violation.

Definition 11 (Candidate Set (adapted from [19])). Let n the number
of EOL matrices MEi ,0 ≤ i ≤ n available at some point during the causality
computation, ¬φ the negation of an LTL reachability property, and ∑C the set
of all counterexamples to the validity of ¬φ available in the considered system
model. The disjunction of all EOL formulas ψ = ⋁ni=0 ψMEi

generated from the
matrices MEi , is a compact description of all computed counterexamples. The
candidate set CS(¬φ) = {π ∈ ∑C ∣ ∀π′ ∈ ∑C .π′ ⊆ π ⇒ π′ = π} contains the
minimal set of counterexamples through the system that satisfy ψ.

Notice that the candidate set is minimal in the sense that removing an event
from some trace in the candidate set means that the resulting trace no longer is
a counterexample.

Theorem 1. The candidate set satisfies the conditions AC 1, AC 2.1, AC3 and
OC specified in Definition 6.

Proof. Soundness w.r.t. AC 1: Let ¬φ the negated LTL property and ψ the EOL
formula representing the candidate set CS(¬φ). According to Definition 11, all
counterexamples π ∈ CS(¬φ) are traces satisfying π ⊧l ¬φ. π ⊧e ψ holds by
the definition of the creation of the EOL Matrices. Therefore AC1 holds for all
π ∈ CS(¬φ).

The proofs for the conditions AC 2.1, AC 3 and OC 1 can be constructed in
a similar way as shown in [19]. ⊓⊔



What remains to be shown is the soundness with respect to condition AC 2.2,
which we shall address next.

Event Non-Occurrence Detection. According to the AC 2.2 test the occur-
rence of events that are not considered as causal must not prevent the effect from
happening. In other words, the non-occurrence of an event can be causal for a
property violation. Therefore, we have to search such events and include their
non-occurrence in the EOL formulas. In Figure 2 an example is presented which
explains this procedure for an EOL formula ψ = Ca . Cc . Ta .Gc . Tc. Trace

Fig. 2. Three example traces for the EOL-formula ψ = Ca.Cc.Ta.Gc.Tc. Trace 1
is the minimal trace. While trace 2 (non-minimal) ends in a property violation, trace
3 does not.

1 is the minimal trace ending in a property violation. Trace 2 is non-minimal
and also ends in a property violation with the events Ca, Cc, Ta, Gc, Gf, Tc.
In trace 3 a new event Cl appears between Cc and Ta and no property vio-
lation is detected. This means that the appearance of the event has prevented
the property violation. In order to transform this appearance into a cause for
the hazard, the occurrence is negated and introduced into the EOL formula
ψ = . . .Cc .< ¬Cl .> Ta . . . The new clause states that “if between ’the car is on
the crossing’ and ’the train is approaching the crossing’, ’the car does NOT leave
the crossing’, the hazard does happen”. In other words: The non-occurrence of
Cl is causal for the property violation.

A second pass of the algorithm needs to be performed in order to find these
non-occurrences. For this second pass the input parameters have to be altered
compared to the first pass. The EOL Matrix definition also needs to be extended
in order to account for the the possible non-occurrence of events.

Definition 12 (Extended EOL matrix). Let E = {e1, e2, e3, . . . , ek} an event
set and πe = e1e2e3 . . . ek the corresponding sequence. The function o is defined
for entries where i /= j and the function d is defined for entries where i = j:

o(ei, ej) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{TRUE} if ei . ej
φ if ei .< φ .> ej
∅ otherwise

d(ei) = {φ if φ .] ei
∅ otherwise

The EOL matrix ME is created as follows:

ME =
⎛
⎜⎜⎜
⎝

d(e1) o(e1, e2) ⋯ o(e1, ek)
o(e2, e1) d(e2) ⋯ o(e2, ek)

⋮ ⋮ ⋱ ⋮
o(ek, e1) o(ek, e2) ⋯ d(ek)

⎞
⎟⎟⎟
⎠

where the generated entries in the matrix are sets of events or the constant set
{TRUE}. The empty set ∅ indicates that no relation for the corresponding event
configuration was found.



The function o returns true if e1 occurs before e2 and returns φ if e1 occurs
before e2 and φ is true between e1 and e2. The function d returns φ if φ is
always occurring before ei. According to the extended EOL Matrix definition
it is possible to insert EOL formulas of the form ei .< φ .> ej and φ .] ei into
the matrix. This can be used to insert conditions such as ψ = Cc .< ¬Cl .> Ta.
The special case e.[ φ is not considered here because this will never occur when
analyzing safety properties, which is what we focus on in this paper. If a hazard
state is reached no future occurrence of any event can prevent the hazard. The
formula e .[ φ would encode such a behavior.

Definition 13 (Extended Translation for AC 2.2). Let ME an EOL matrix
which contains the EOL formula ψE and the event set E. ME(i,j) is the set of
events in the entry (i, j) in ME and e(i,j) ∈ME(i,j). ei and ej denote the ordered
events, respectively. Then ψE is defined as follows:

ψE =
i=k

⋀
i=0

j=k

⋀
j=0

⋀
∀e(i,j)
∈ME(i,j)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ei ∧ ej if e(i,j) = TRUE and e(j,i) = TRUE and i /= j
ei . ej if e(i,j) = TRUE and e(j,i) /= TRUE and i /= j
ei .< φ .> ej if φ = e(i,j) and i /= j
φ .] ei if e(i,j) = φ and i = j

The translation from EOL formulas into LTL and further into propositional logic
is done according to Definition 10.

Input parameters to the non-occurrence detection. In the second pass of the
algorithm, the input parameters for the SAT solver have to be changed. Now
the algorithm searches for paths in the system that do not end in a property
violation, while fulfilling the EOL formulas that have been found so far. For
instance, in Figure 2 trace 3 also fulfills the displayed EOL formula. In order to
find those paths the inputs to the SAT solver are the original LTL property φ, the
original EOL formulas ψMEi

, the model and the bound k. The paths obtained
with this method contain the events that prevent the property violation. These
events are inserted into a matching EOL matrix. Since the EOL matrices are
used to search for the new paths there is always a matching matrix available to
the algorithm. The matching of EOL matrices for the AC2.2 condition is defined
as follows.

Definition 14 (Matching of paths to EOL Matrix for AC2.2.). Let π be
a path discovered by the second pass, Eπ the set of events occurring on π and Ei
the event sets of all n EOL matrices. Then the matching EOL matrix is defined
according to the following function:

match(π) = {MEi ∣∃i,0 ≤ i ≤ n. ∀j,0 ≤ j ≤ n, mi =max (∣Ej ∩Eπ ∣)}
The match function returns the EOL matrix MEi whose event set Ei has the
largest number of common events with the event set Eπ. Note that there is
always a unique maximum for this number: From the definition of the matching
of EOL matrices in the first and the second pass of the algorithm two paths
containing the same events are merged into one EOL matrix. This means all
EOL matrices contain a unique set of events.

The refinement of the matching EOL matrix is conducted according to Def-
inition 8 and 12.



Data: φ the property, S the model, kmax the maximum depth of the search
Result: The causal events for a property violation stored in Mlist

1 k := 0;
2 ψ := FALSE; /*EOL formula*/

3 Mlist := empty List of EOL matrices;
4 while k < kmax do
5 π := solve(¬φ, S, ¬ψ, k); /* invoke SAT solver */

6 while π is not empty do
7 m := getMatchingMatrix(Mlist, π); /*Definition 8*/

8 refineEOLMatrix(m, π); /*Definition 7*/

9 ψ := getEOLformula(Mlist); /*Definition 9,10*/

10 π := solve(¬φ, S, ¬ψ, k);

11 end
12 π := solve(φ, M , ψ); /* invoke SAT solver, second pass */

13 while π is not empty do
14 m := getMatchingMatrixAC2 2(Mlist, π); /*Definition 14*/

15 refineEOLMatrixAC2 2(m, π); /*Definition 12*/

16 ψ := getEOLformulaAC2 2(Mlist); /*Definition 13,10*/

17 π := solve(¬φ, S, ¬ψ, k);

18 end
19 k =∶ k + 1;

20 end
Algorithm 1: BMC-based causality checking algorithm

Theorem 2 (Soundness w.r.t. AC2.2). For every EOL matrix ME with the
number of events i = ∣E∣ the condition AC 2.2 is fulfilled for a maximum number
of events x that prevent the property violation from happening and x = kmax − i.

Proof. Sketch: Let π ∈ CS(¬φ) be a path of length i in the candidate set of the
property violation and kmax the upper bound on the search depth. If i = kmax−1
and there exists a single event that prevents the hazard from happening, the
algorithm finds exactly those traces containing this single event and all orderings
when processing level kmax. If i = kmax − x, the same argument applies, and up
to x events are found that can prevent the error from happening. ⊓⊔

Completeness. With BMC-based causality checking we can only find event
combinations and their orderings up to a predefined bound kmax.

Theorem 3. All EOL matrices discovered with the BMC-based algorithm are
complete in terms of conditions AC1,AC2.1, AC2.2, AC3 and OC1 up to the bound
kmax.

Proof. Sketch: A proof can be built via structural induction over the generation
of the EOL matrices using the minimality argument of the discovered counterex-
amples.

The completeness of condition AC2.2 is linked to the soundness of this con-
dition and can be proven up to a certain number of events that prevent the
property violation from happening. The completeness depends on the number of



events in all EOL matrices and the upper bound kmax. For example, in Figure 2
trace 3 is at least one step longer than the path resulting in a property violation.
This means that if, for example, the maximum bound for the algorithm is set to
5, trace 1 violating the property is found, but trace 3 is not found.

The Algorithm. The pseudo code for the BMC-based causality checking al-
gorithm is presented in Algorithm 1. The function solve (Line 5, 10, 12 and
17) converts the input parameters into propositional logic formulas and runs
the SAT solver. The result of solve is a path of length k satisfying the given
constraints.

4 Evaluation

In order to evaluate the proposed approach, we have implemented the BMC-
based causality checking algorithm within the symbolic model checker NuSMV2 [9]
which also implements BMC. Our CauSeMV extension of NuSMV2 computes
the causality relationships for a given NuSMV2 model and an LTL property. The
models that we analyze are the Railroad example from Section 2.1, an Airbag
Control Unit [1], an Airport Surveillance Radar System (ASR) [4] and a au-
tomotive Electronic Control Unit (AECU) that we developed together with an
industrial partner. The NuSMV models used in the experiments were automati-
cally synthesized from higher-level design models using the QuantUM tool [17].
The ASR model consists of 3 variants. In the first variant there is only one com-
putation channel for the radar screen (ASR1). In the second and third variant
models there are two identical computation channel to raise the availability of
the system. In the first two channel variant model the availability of a second
channel is modeled by a counter counting component errors (ASR2a), while in
the second variant the second channel is a complete copy of the first channel
(ASR2b).

All experiments were performed on a PC with an Intel Xeon Processor with 8
Cores (3.60 Ghz) and 144GBs of RAM. We compare our results with the results
for the explicit state causality checking approach presented in [18], which were
performed on the same computer. For all case studies, a maximum bound of
k = 20 is chosen. For the considered case studies this value of k is sufficient to
compute all relevant causalities. The explicit approach is prallelized using all 8
cores, while the BMC-based approach only uses one core.

In Table 1 the sizes of the different analyzed models are shown. Additionally
we compare the number of paths that have to be stored for the explicit causality
computation to the iterations needed in the BMC-based setting. For the AECU
and the ASR2b the number of traces in the explicit case could not be computed,
because the experiments run out of memory.

Figure 3 lists the eol formulas that were computed by the BMC-based causal-
ity checking approach. The cause for the occurrence of the considered hazard (a
system state in which Tc and Cc hold) is the disjunction of cause 1 and cause 2.
Cause 1 represents the case where both the car and the train are approaching
the crossing, the car stays on the crossing until the gate closes, and finally the
train enters the crossing. Cause 2 represents the case where the gate fails at an



states transitions paths (explicit) iterations (BMC-based)

Railroad 133 237 47 6

Airbag 155,464 697,081 20,300 24

ASR1 1 ⋅ 106 7 ⋅ 106 1 ⋅ 106 27

ASR2a 4,6 ⋅ 107 3,3 ⋅ 108 1.5 ⋅ 107 32

AECU 7.5 ⋅ 107 8.6 ⋅ 108 - 70

ASR2b 1 ⋅ 1012 1 ⋅ 1013 - 208

Table 1. Model sizes in the explicit case and iterations needed for the BMC-based
approach.

Cause 1:
(Ca .Cc) ∧ (Ca ∧Ta)∧
(Ca .< ¬Tl .> Ta) ∧ (Ca .Gc)∧
(Ca .Tc) ∧ (Cc ∧Ta)∧
(Cc .< ¬Cl .> Gc) ∧ (Cc .Gc)∧
(Ta .Tc) ∧ (Gc .Tc)∧
(Gc .< ¬Cl .> Tc) ∧ (Cc .Tc)∧
(Tc .< ¬Tl .> Ca) ∧ (Ta .Gc)

Cause 2:
(Ca ∧Gf) ∧ (Ca ∧Ta)∧
(Ca .< ¬Tl .> Cc)∧
(Ca ∧Tc) ∧ (Ca .Cc)∧
(Gf ∧Ta) ∧ (Gf .Tc)∧
(Gf ∧Cc) ∧ (Ta .Tc)∧
(Tc .< ¬Tl .> Ca)∧
(Tc ∧Cc) ∧ (Cc .< ¬Tl .> tc)

Fig. 3. Causalities computed for the Railroad Crossing case study.

arbitrary point in time and the car and the train approach and enter the crossing
in any possible order. Both causes are consistent with the results obtained by
the explicit state causality checking implementation [18] for the same model.

RT (sec.) Mem. (MB)

Railroad explicit 0.73 17.9

BMC-b. 17.16 121.55

Airbag explicit 1.61 18.53

BMC-b. 34.55 192.36

ASR1 explicit 9.24 50.97

BMC-b. 50.97 303.34

RT (sec.) Mem. (MB)

ASR2a explicit 91.22 826.73

BMC-b. 186.48 300.54

AECU explicit 238.13 10,900.00

BMC-b. 63.0 183.7

ASR2b explicit OOM OOM

BMC-b. 2,924.74 1,452.45

Table 2. Experimental results comparing the explicit state approach to the BMC-
based approach for kmax = 20. OOM: experiment ran out of available memory.

Discussion Table 2 presents a comparison of the computational resources
needed to perform the explicit and the BMC-based causality checking approaches.
In order to make the values comparable we limit the search depth for the explicit
approach to kmax = 20 as we have done for the BMC-based approach.

The results illustrate that for the comparatively small railroad crossing model,
the airbag model as well as the ASR1 model the explicit state causality checking
outperforms the BMC-based approach both in terms of time and memory. For
the ASR2 and the AECU models the BMC-based approach uses less memory
and finishes the computation faster than in the explicit case. These results reflect
a frequently encountered observation when comparing explicit state and sym-



bolic BMC techniques: For small models explicit state model checking is faster
and uses less memory since the bounded model checker faces a lot of memory
overhead due to the translation of the system into propositional logic. On the
other hand, for large models such as ASR2 and AECU the explicit techniques
need a lot of memory in order to explicitly store all paths needed to compute
the causality classes while the SAT/BMC-based symbolic approach represents
whole sets of paths symbolically using propositional logic formulas.

Threats to Validity. The current prototypical tool implementation of the
BMC-based causality checking approach, which was used to carry out the ex-
periments described above, is in a somewhat preliminary state. As we argued
earlier in the paper, we need to discriminate repeated occurrences of some event
type. This requires modifications to the code of the NuSMV, in particular to rou-
tines that accomplish the unrolling of the transition relation. The NuSMV code
is not designed to be easily modifiable, which is why the proper unrolling ac-
counting for discernible event occurrences of the same type has not yet been fully
implemented. As a consequence, the current implementation computes incorrect
results for those models for which there are execution paths with repeated occur-
rences of some event type. However, we believe that this qualitative problem has
no significant impact on the quantitative results regarding memory consumption,
which are our main concern in this paper. In any event, out of the considered
case studies, only the AECU case study contains such events, in all other models
this does not happen and the computed causalities are hence correct.

5 Related Work

In [5,10,11] a notion of causality was used to explain the violations of properties
in different scenarios. While [5,11] use symbolic techniques for the counterexam-
ple computation, they focus on explaining the causal relationships for a single
counterexample and thus only give partial information on the causes for a prop-
erty violation. All of the aforementioned techniques rely on the generation of the
counterexamples prior to the causality analysis while our approach computes
the necessary counterexamples on-the-fly. Also, our approach is the first and, as
far as we know, currently only one that relates the Halpern and Pearl model of
causation to the model of transition system and which considers the ordering of
events to be potentially causal. In [8] and [7], a symbolic approach to generate
Fault Trees [23] is presented. In this approach all single component failures have
to be known in advance while in our approach these failures are computed as a
result of the algorithm. They do not use an explicitly defined notion of causality,
contrary to what we do. The ordering and the non-occurrence of events can not
be detected in this approach as being causal for a property violation.

6 Conclusion and Future Work

We have discussed how causal relationships in a system according to the causal-
ity checking approach that we previously developed can be established using
symbolic system and cause representations together with bounded model check-
ing. The BMC-based causality checking approach presented in this paper was



evaluated on six case studies, four of them industrially sized, and compared to
the explicit state causality checking approach. It was observed that BMC-based
causality checking outperforms explicit state causality checking on large models
both in terms of computation time and memory consumption.

In future work the influence of different SAT solving strategies on the speed of
discovering new event orderings in the system have to be evaluated. Furthermore,
we plan to transform the EOL formulas in EONF into a compact representation
in order to enable an automatic Fault Tree generation.
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