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Abstract. In recent years, several approaches to generate probabilistic
counterexamples have been proposed. The interpretation of probabilistic
counterexamples, however, continues to be problematic since they have to
be represented as sets of paths, and the number of paths in this set may
be very large. Fault trees (FTs) are a well-established industrial tech-
nique to represent causalities for possible system hazards resulting from
system or system component failures. In this paper we extend the struc-
tural equation approach by Pearl and Halpern, which is based on Lewis
counterfactuals, so that it can be applied to reason about causalities in
a state-action trace model induced by a probabilistic counterexample.
The causality relationships derived by the extended structural equation
model are then mapped onto fault trees. We demonstrate the usefulness
of our approach by applying it to a selection of case studies known from
literature.

1 Introduction

In recent joint work [1] with our industrial partner TRW Automotive GmbH we
have proven the applicability of probabilistic formal analysis techniques to safety
analysis in an industrial setting. In [1] we showed that counterexamples are a
very helpful means to understand how certain error states representing hazards
can be reached by the system. While the visualization of the graph structure
of a probabilistic counterexample [2] helps to analyze the counterexamples, it
is still difficult to compare the thousands of paths in the counterexample with
each other, and to discern causal factors during fault analysis. In safety analysis,
fault tree analysis (FTA) [3] is a well-established industrial method and graphi-
cal notation to break down the hazards occurring in complex, technical systems
into a combination of what is referred to as basic events, which represent system
component failures. The main drawback of fault tree analysis is that it relies
on the ability of the engineer to manually identify all possible component fail-
ures that might cause a certain hazard. In this paper we present a method that
automatically generates a fault tree from a probabilistic counterexample. Our
method provides a compact and concise representation of the system failures
using a graphical notation that is well known to safety engineers. At the same



time the derived fault tree constitutes an abstraction of the probabilistic coun-
terexample since it focuses on representing the implied causalities rather than
enumerating all possible execution sequences leading to a hazard. Our interpre-
tation of the causality expressed by a fault tree is based on the counterfactual
notion of causality [4], which is a widely accepted interpretation of causality in
the realm of technical systems. Our approach can be described by identifying
the following steps:

– Our fault tree computation method uses a system model given in the input
language of the PRISM probabilistic model checker [5].

– For this model we compute counterexamples for probabilistic properties of
interest, representing system hazards, using the DiPro [6] counterexample
generation tool that extends PRISM. The counterexamples consist of poten-
tially large numbers of system execution paths and their related probability
mass information.

– In order to compute fault trees from these counterexamples we compute
what is commonly referred to as basic events. Those are events that cause
a certain hazard. The fault tree derivation is implemented in a tool called
CX2FT.

– The justification for the fault tree computation is derived from a counter-
factual model of causality due to Halpern and Pearl [7] that we modify and
extend to be applicable to our setting.

– The path probabilities computed by the probabilistic model checker are then
mapped on the computed fault tree.

– Finally, the obtained fault tree is represented graphically by an adapted
version of the FaultCAT tool1.

All analysis steps are fully automated and do not require user intervention.
This paper extends and refines precursory work presented in [8] in the fol-

lowing ways:

– We present a theoretical extension of our precursory work where the pre-
viously informally described causality computation is now formally defined
and correctness proofs are given.

– The definition of the syntax and semantics of the proposed event order logic
are revised an extended.

– An additional test to handle causal non-occurrence of events is proposed.
– We demonstrate the applicability of the approach using two additional case

studies.

Structure of the Paper In Section 2 we briefly introduce the concepts of coun-
terexamples in probabilistic model checking and fault trees, and present a run-
ning example that we will use later in the paper to illustrate the introduced
concepts and definitions. In Section 3 we describe the model of causality that we
use, discuss how causality relationships can be formally established from coun-
terexamples and show how these causality relationships can be mapped to fault

1 http://www.iu.hio.no/FaultCat/



trees. In Section 4 we demonstrate our approach on case studies known from the
literature. A discussion of related work follows in Section 5. Finally, Section 6
concludes the paper.

2 Preliminaries

2.1 Counterexamples in Probabilistic Model Checking

In probabilistic model checking, the property that is to be verified is specified
using a variant of temporal logic. The temporal logic used in this paper is Con-
tinuous Stochastic Logic (CSL) [9]. Given an appropriate system model and a
CSL property, probabilistic model checking tools such as PRISM [5] can ver-
ify automatically whether the model satisfies the property. Probabilistic model
checkers do not automatically provide counterexamples, but the computation of
counterexamples has recently been addressed in, amongst others, [10, 11].

Notion of Counterexamples For the purpose of this paper it suffices to
consider only upper bounded probabilistic timed reachability properties. They
require that the probability of reaching a certain state, often corresponding to
an undesired system state, does not exceed a certain upper probability bound
p. In CSL such properties can be expressed by formulas of the form P≤p(ϕ),
where ϕ is path formula specifying undesired behavior of the the system. A
counterexample for an upper bounded property is a set ΣC of paths leading from
the initial state to a state satisfying ϕ such that the accumulated probability of
ΣC violates the probability constraint ≤ p. If the CSL formula P=? (ϕ) is used, the
probability of the path formula ϕ to hold is computed and the counterexample
contains all paths fulfilling ϕ. If a path σ fulfills the CSL formula ϕ we denote
this by σ ⊧CSL ϕ. The probability of the counterexample is computed using a
probabilistic model checker, in our case PRISM. Notice that in the setting of
this paper the counterexample is computed completely, i.e., all paths leading
into the undesired system state are enumerated in the counterexample.

2.2 Fault Trees and Fault Tree Analysis

Fault trees (FTs) [3] are being used extensively in industrial practice, in par-
ticular in fault prediction and analysis, to illustrate graphically under which
conditions systems can fail, or have failed. In our context, we need the following
elements of FTs:

1. Basic event: represents an atomic event.
2. AND-gate: represents a failure, if all of its input elements fail.
3. OR-gate: represents a failure, if at least one of its input elements fails.
4. Priority-AND (PAND): represents a failure, if all of its input elements fail in

the specified order. The required input failure order is usually read from left
to right or specified by an order constraint connected to the PAND-gate.



5. Intermediate Event: failure events that are caused by their child nodes. The
probability of the intermediate event to occur is denoted by the number
in the lower right corner. A top level event (TLE) is a special case of an
intermediate event, representing the system hazard.

The graphical representation of these elements can be found in Fig. 1. The AND,
OR and PAND gates are used to express that their top events are caused by
their input events. For an in-depth discussion of fault trees we refer the reader
to [3].

Fig. 1. Fault Tree Elements

2.3 Running Example

In the running example of a railroad crossing system that we will use in this
paper, a train can approach the crossing (Ta), cross the crossing (Tc) and finally
leave the crossing (Tl). Whenever a train is approaching, the gate should close
(Gc) and will open when the train has left the crossing (Go). It might also be
the case that the gate fails (Gf). The car approaches the crossing (Ca) and
crosses the crossing (Cc) if the gate is open and finally leaves the crossing (Cl).
We are interested in finding those events that lead to a hazard state in which
both the car and the train are in the crossing at the same time. This hazard
can be characterized by the CSL formula P=?(ϕ) with ϕ = true U(car crossing∧
train crossing).

3 Computing Fault Trees from Counterexamples

In this section we discuss how fault trees can be computed from probabilistic
counterexamples. In Section 3.1 we discuss how causality relationships can be
inferred in general. The causality model that we present in Section 3.2 allows
for causality computation on probabilistic counterexamples and takes the possi-
ble causality of event orders into account. How this causality model is used to
generate fault trees from probabilistic counterexamples is shown in Section 3.3.
Finally, we discuss the scalability and complexity of the proposed approach in
Section 3.4.



3.1 Inferring Causality

Fault Trees express causality, in particular they characterize basic events as be-
ing causal factors in the occurrence of the top-level event in some Fault Tree. The
counterexamples that we use to synthesize these causal relationships, however,
merely represent possible executions of the system model, and not explicitly
causality amongst event occurrences. Each path in the counterexample is a lin-
early ordered, interleaved sequence of concurrent events. The question is hence
how, and with which justification, we can infer causality from the sets of linearly
ordered event sequences that we obtain in the course of the counterexample
computation.

We use the actual cause conditions as proposed by Halpern and Pearl [7] to
determine the causality of sequences of events. Their definitions are based on
counterfactual reasoning and the related alternative world semantics of Lewis [4,
12]. The counterfactual argument is widely used as the foundation for identifying
faults in program debugging [13] and also underlies the formal fault tree seman-
tics proposed in [14]. The ”naive” counterfactual causality criterion according to
Lewis is as follows: event A is causal for the occurrence of event B if and only if,
were A not to happen, B would not occur. The testing of this condition hinges
upon the availability of alternative worlds. A causality can be inferred if there
is a world in which A and B occur, whereas in an alternative world neither A
nor B occurs.

The naive interpretation of the Lewis counterfactual test, however, leads to
a number of inadequate or even fallacious inferences of causes, in particular if
causes are given by logical conditions on the combinations of multiple events.
The problematic issues include common or hidden causes, the disjunction and
conjunction of causal events, the non-occurrence of events, and the preemption
of failure causes due to, e.g., repair mechanisms. A detailed discussion of these
issues is beyond the scope of this paper, and we refer to the critical literature on
counterfactual reasoning, e.g., [12]. Since we are considering concurrent systems
in which particular event interleavings such as race conditions may be the cause
of errors, the order of occurrence of events is a potential causal factor that
cannot be disregarded. Consider the railroad crossing example introduced in
Section 2.3. A naive counterfactual test will fail to show that the event sequence
”Cc,Gc, Tc, T l,Go” is a potential cause of a hazard, whereas ”Gc,Tc, T l,Go,Cc”
is not. For the counterfactual argument to be applicable the constraint that
whenever the causal events occur the hazard occurs as well has to hold. But on
the above traces the same events occur, but the hazard occurs only on one trace.

In addition, the naive counterfactual test may determine irrelevant causal
events. For instance, the fact that the train engineer union has decided not to
call for a strike is not to be considered a cause for the occurrence of an accident
at the railroad crossing.

Halpern and Pearl extend the Lewis counterfactual model in [7] to what they
refer to as structural equation model (SEM). It encompasses the notion of actual
causes being logical combinations of events as well as a distinction of relevant



and irrelevant causes. However, the structural equation model does not account
for event orderings, which is a major concern of this paper.

We now sketch an actual cause definition adopted from [7] for the purpose
of our paper. An actual cause is a cause from which irrelevant events have been
removed. A causal formula is a boolean conjunction ψ of variables representing
the occurrence of events. We only consider boolean variables, and the variable
associated with an event is true in case that event has occurred2.

The set of all variables is partitioned into the set U of exogenous variables
and the set V of endogenous variables. Exogenous variables represent facts that
we do not consider to be causal factors for the effect that we analyze, even though
we need to have a formal representation for them so as to encode the “context”
( [7]) in which we perform causal analysis. An example for an exogenous variable
is the train engineer union’s decision in the above railroad crossing example.

Endogenous variables represent all events that we consider to have a mean-
ingful, potentially causal effect. The set X ⊆ V contains all events that we expect
jointly to be a candidate cause, and the boolean conjunction of these variables
forms a causal formula ψ. Omitting a complete formalization, we assume that
there is an actual world and an alternate world. In the actual world, there is a
function valV1 that assigns values to all variables in V . In the alternate world,
there is a function valV2 assigning potentially different values to the variables in
V . The causal process comprises all variables that mediate between X and the
effect ϕ. Those variables are not root causes, but they contribute to rippling the
causal effect through the system until reaching the final effect.

In the SEM, a formula ψ is an actual cause for an event represented by the
formula ϕ, if the following conditions are met:

AC1: Both ψ and ϕ are true in the actual world, assuming the context defined
by the variables in U , and given a valuation valV1 .

AC2: The set of endogenous events V is partitioned into sets Z and W , where
the events in Z are involved in the causal process and the events in W are
not involved in the causal process. It is assumed that X ⊆ Z and that there
are valuations valX2 and valW2 assigning values to the variables in X and
W , respectively, such that:

1. Changing the values of the variables in X and W from valX1 and valW1

to valX2 and valW2 changes ϕ from true to false.

2. Setting the values of the variables in W from valW1 to valW2 should have
no effect on ϕ as long as the values of the variables in X are kept at the
values defined by valX1 , even if all the variables in an arbitrary subset
of Z ∖X are set to their value according to valZ1 .

AC3: The set of variables X is minimal: no subset of X satisfies conditions AC1
and AC2.

2 Notice that the use of this operational form of event semantics makes the use of
structural equations to define events as in [7] dispensable. In other words, we inherit
from the SEM in [7] the general ideas of the actual cause definitions, but not the
structural equation based event semantics.



AC2(1) corresponds to the Lewis counterfactual test. However, as [7] argue,
AC2(1) is too permissive, and AC2(2) constrains what is admitted as cause by
AC2(1). Minimality in AC3 ensures that only those elements of the conjunction
that are essential for changing ϕ in AC2(1) are considered part of the cause;
inessential elements are pruned.

3.2 Inferring Causality from Probabilistic Counterexamples

To logically reason about the causality of events in our setting we need to al-
low for the description of conjunctive and disjunctive occurrence of events and
represent, at the same time, the order in which the events occur.

In the common description of the structural equation model, the occurrence
of events is encoded as boolean formulas, referred to as structural equations.
In these formulas, boolean variables represent the occurrence of an event (true
= event occurred, false = event did not occur). These variables are connected
via the boolean and- or or-operators to express conjunctive or disjunctive con-
straints on their occurrence. Note that this representation does not yet allow for
expressing logical constraints on the order in which events need to occur.

We first define a mathematical model that allows us to logically reason about
the occurrence of events in sets of execution sequences forming counterexamples
in probabilistic model checking. Technical systems evolve in discrete computation
steps. A system state s is defining a valuation of the system state variables. A
computation step is characterized by an instantaneous transition which takes
the system from some state s to a successor state s′. The transition from s to
s′ will be triggered by an action a, corresponding to the occurrence of an event.
Since we wish to derive causality information from sets of finite computations,
which we obtain by observing a finite number of computation steps, our main
interest will be in sets of state-action sequences. We define the following model
as a basis for our later formalization of the logical connection between events.

Definition 1. State-Action Trace Model. Let S denote a set of states, AP a
finite set of atomic state propositions, and Act a finite set of action names.

– A finite sequence s0, α1, s1, α2, . . . αn, sn with, for all i, si ∈ S and ai ∈ Act,
is called a state-action trace over (S,Act).

– A State-Action Trace Model (SATM) is a tuple M = (S,Act,AP, L,Σ) where
Σ = {σ1, . . . σk} such that each σi is a state-action trace over (S,Act), and

L ∶ S → 2AP is a function assigning each state the set of atomic propositions
that are true in that state.

We assume that for a given SATM M , Act contains the events that we wish
to reason about. We also assume that there exists a set A of event variables
that contains a boolean variable for each action α ∈ Act. For a given state-action
trace σ, L(si) contains the event variable aαi corresponding to the event αi.
The event variables are needed to formally express the occurrence of events in
event order logic formulas. Notice that we consider event instances, not types.



In other words, the i-th occurrence of some action of type α will be represented
by a distinct boolean variable from the i+1st occurrence of this event type. We
denote the variable that is representing the event αi ∈ Act by aαi .

Definition 2. Event Types, Occurrence of Events, and Event Variables. Let
M = (S,Act,AP, L,Σ) a SATM and σ = s0, α1, s1, α2, . . . αn, sn a state-action
trace of M. We define the following:

– Each α ∈ Act defines an event type α.
– αi of σ is the i-th occurrence of an event of the event type α.
– The variable representing the occurrence of event αi is denoted by aαi .
– The set A = {aα1 , ..., aαn} contains a boolean variable for each occurrence of

an event.

We next define an event order logic allowing us to reason about boolean
conditions on the occurrence of events. The event order logic allows to connect
event variables from A with the boolean connectives ∧, ∨ and ¬. To express the
ordering of events we introduce the ordered conjunction operator .. The formula
a. b with a, b ∈ A is satisfied if and only if events a and b occur in a trace and a
occurs before b. In addition to the . operator we introduce the interval operators
.[, .], and .< φ .>, which define an interval in which an event has to hold in all
states.

Definition 3. Syntax of Event Order Logic. Simple event order logic formulas
over the set A of event variables are formed according to the following grammar
given in BNF like syntax rules:

φ ∶∶= a ∣ φ1 ∧ φ2 ∣ ¬φ ∣ φ1 ∨ φ2

where a ∈ A and φ, φ1 and φ2 are simple event order logic formulas. Complex
event order logic formulas are formed according to the following grammar given
in BNF like syntax rules:

ψ ∶∶= φ ∣ ψ1 ∧ ψ2 ∣ ψ1 ∨ ψ2 ∣ ψ1 . ψ2 ∣ ψ .[ φ ∣ φ .] ψ ∣ ψ1 .< φ .> ψ2

where φ is a simple event order logic formula.

The formal semantics of this logic is defined on SATMs. Notice that the .,
.[, .], and .< φ .> operators are temporal logic operators and that the SATMs
model is akin to a linearly ordered Kripke structure.

Definition 4. Semantics of Event Order Logic. Let M = (S,Act,AP, L,Σ) a
SATM, and φ, φ1, φ2 simple event order logic formulas and ψ, ψ1, ψ2 complex
event order logic formulas, and let A a set of event variables, with aαi ∈ A, over
which φ, φ1, φ2 are built. Let σ = s0, a1, s1, a2, . . . an, sn a state-action trace over
(S,Act) and let σ[i..r] = si, ai+1, si+1, . . . ar, sr a partial state-action trace. We
define that an event order logic formula is satisfied in a state si of σ, written
si ⊧ ψ, as follows:



– sj ⊧ aαj iff aαj ∈ L(sj)
– sj ⊧ ¬φ iff not sj ⊧ φ
– σ[i..r] ⊧ φ iff ∃j ∶ i ≤ j ≤ r . sj ⊧ φ
– σ ⊧ ψ iff σ[0..n] ⊧ ψ, where n is the length of σ.
– σ[i..r] ⊧ φ1 ∧ φ2 iff σ[i..r] ⊧ φ1 and σ[i..r] ⊧ φ2
– σ[i..r] ⊧ φ1 ∨ φ2 iff σ[i..r] ⊧ φ1 or σ[i..r] ⊧ φ2
– σ[i..r] ⊧ ψ1 ∧ ψ2 iff σ[i..r] ⊧ ψ1 and σ[i..r] ⊧ ψ2

– σ[i..r] ⊧ ψ1 ∨ ψ2 iff σ[i..r] ⊧ ψ1 or σ[i..r] ⊧ ψ2

– σ[i..r] ⊧ ψ1 . ψ2 iff ∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧ ψ1 and σ[k..r] ⊧ ψ2

– σ[i..r] ⊧ ψ.[φ iff (∃j ∶ i ≤ j ≤ r . σ[i..j] ⊧ ψ and (∀k ∶ j ≤ k ≤ r . σ[k..k] ⊧ φ))
– σ[i..r] ⊧ φ .] ψ iff (∃j ∶ i ≤ j ≤ r . σ[j..r] ⊧ ψ and (∀k ∶ 0 ≤ k ≤ j . σ[k..k] ⊧
φ))

– σ[i..r] ⊧ ψ1 .< φ .> ψ2 iff (∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧ ψ1 and σ[k..r] ⊧
ψ2 and (∀l ∶ j ≤ l ≤ k . σ[l..l] ⊧ φ))

We define that the state-action trace model M satisfies the formula ψ, written
as M ⊧ ψ, iff ∃σ ∈M . σ ⊧ ψ.

Each state-action trace σ specifies an assignment of the boolean values true
and false to the variables in the set A. If an event αi occurs on σ its value is set
to true. If the event does not occur on σ its value is set to false, respectively. We
define a function valA(σ) that represents the valuation of all variables in A for
a given σ.

Definition 5. Valuation of a Set of Event Variables. Let M = (S,Act, AP, L,Σ)

a SATM, σ a state-action trace of M and A the set of event variables then we
define the function valA(σ) as follows:

valA(σ) = (aα1 , ..., aαn) ∣ aαi = {
true if σ ⊧ aαi

false, else
.

Further we define valA(σ) = valA(σ
′
) if for all aαi ∈ A the values assigned

by valA(σ) and valA(σ
′
) are equal and valA(σ) ≠ valA(σ

′
) else.

We partition the set of event variables A into sets Z and W . The events
represented by the variables in Z are those events that are considered to be part
of the causal process.

We can use an event order logic formula ψ over the variables in Z to define
the order and occurrence of events on a causal process.

Definition 6. Event Order Logic over State-Action Traces. Let M = (S,Act,
AP, L,Σ) a SATM, σ a state-action trace of M. The event order logic over the
state-action trace σ denoted by ψσ is defined as follows: We partition the set of
event variables A into sets Z and W in such a way that Z contains all event
variables of the events that occur on σ and W contains all event variables of the
events that do not occur on σ. ψσ is the event order logic formula containing all
events in Z in the order they occur on σ (e.g. ψσ = aα1 . aα2 . ... . aαn).



In Section 3.1 we already described that a causal process comprises all vari-
ables that mediate between the root causes and the effect or hazard.

We now present an adaption of the SEM that can be used to decide whether
a given ψ describes the causal process of a hazard in a state-action trace model.
If ψ describes the causal process of a hazard described by the CSL formula ϕ we
also say ψ is causal for the hazard.

Definition 7. Cause for a Hazard. Let M = (S,Act,AP, L,Σ) a SATM, and
σ, σ′ and σ′′ state-action traces of M. Let ϕ a CSL formula and σ ⊧CSL ϕ is
true if ϕ is satisfied by σ. We partition the set of event variables A into sets Z
and W . An event order logic formula ψ consisting of the event variables in Z is
considered a cause for a hazard described by the CSL formula ϕ, if the following
conditions are satisfied:

AC1: There exists a state-action trace σ, for which both σ ⊧ ψ and σ ⊧CSL ϕ
hold.

AC2 (1): ∃σ′ s.t. σ′ /⊧ ψ ∧ (valZ(σ) ≠ valZ(σ
′
) ∨ valW (σ) ≠ valW (σ′)) and

σ′ /⊧CSL ϕ. In words, there exists a state-action trace σ′ where the order and
occurrence of events is different from the state-action trace σ and the hazard
described by ϕ does not occur on σ′.

AC2 (2): ∀σ′′ with σ′′ ⊧ ψ ∧ (valZ(σ) = valZ(σ
′′
) ∧ valW (σ) ≠ valW (σ′′)) it

holds that σ′′ ⊧CSL ϕ for all subsets of W . In words, for all state-action
traces where the events in Z have the value defined by valZ(σ) and the order
defined by ψ, the value and order of an arbitrary subset of the events in W
have no effect on the occurrence ϕ.

AC3: The event order logic formula ψ is minimal: no subset of ψ satisfies con-
ditions AC1 and AC2.

If AC1 and AC2(1) are fulfilled but AC2(2) fails for a event order logic for-
mula ψσ representing the events occurring on a state-action trace σ this means
that at least one event α occurs on σ′′ which did not occur on σ and the oc-
currence of α prevents the hazard. Hence, we need to reflect the causality of
the non-occurrence of α in ψσ. For the models that we analyze there are three
possibilities for such a preventing event α to occur, namely at the beginning
of the state-action trace, at the end of the state-action trace, or between two
other events α1 and α2. It is possible that the hazard is prevented by more than
one event, hence we need to find the minimal set of events that are needed to
prevent the hazard. This is achieved by finding the minimal sub-set Q ⊆ W of
event variables that need to be changed in order to prevent the hazard.

Definition 8. Causal Non-Occurrence of Events. Let M = (S,Act,AP, L,Σ) a
SATM, and σ and σ′′ state-action traces of M. We partition the set of event
variables A into sets Z and W . Let ψ a event order logic formula consisting of
the event variables in Z. The non-occurrence of the events which are represented
by the event variables aα ∈ Q with Q ⊆ W on trace σ is causal for the hazard
described by the CSL formula ϕ if the following is satisfied: ψ satisfies AC1
and AC2(1) but violates AC2(2) and Q is minimal, which means that there



is no true subset of Q for which σ′′ ⊧ ψ ∧ valZ(σ) = valZ(σ
′′
) ∧ valQ(σ) ≠

valQ(σ′′) ∧ valW∖Q(σ) = valW∖Q(σ′′) and σ′′ ⊧CSL ϕ holds.

For each event variable aα ∈ Q we determine the location of the event in ψ′′ and
prohibit the occurrence of α in the same location in ψ. We add ¬aα.] at the
beginning of ψ if the event occurred at the beginning of σ′′ and .[¬aα at the end
of ψ if the event occurred at the end of σ′′. If α occurred between the two events
α1 and α2 we insert .<¬aα.> between the two event variables aα1 and aα2 in ψ.
Additionally, each event variable in Q is added to Z. After ψ was modified the
conditions AC1, AC2(1), AC2(2) and AC3 are checked for the modified ψ.

If a formula ψ meets conditions AC1 through AC3, the occurrence of the
events included in ψ is causal for the hazard described by ϕ. However, condition
AC2 does not imply that the order of the occurring events is causal. If the order
of the events is not causal, then there has to exist a state-action trace for each
ordering of the events that is possible in the system, and the hazard occurs on
all these state-action traces.

Definition 9. Order Condition (OC1). Let M = (S,Act,AP, L,Σ) a SATM,
and σ, σ′ state-action traces of M. Let ψ an event order logic formula over
Z that holds for σ and let ψ∧ the event order logic formula that is created by
replacing all .-operators in ψ by ∧-operators. The .[, .], and .< φ .> are not
replaced in ψ∧.

OC1: The order of a sub-set of events Y ⊆ Z represented by the event order
logic formula χ is not causal if the following holds: σ ⊧ χ ∧ (∃σ′ ∈ ΣB ∶ σ′ /⊧

χ ∧ σ ⊧ χ∧).

We will now demonstrate the above given definitions on the running example
introduced in Section 2.3. In the following we will use short-hand notation σ =

”aα1 ,aα2 , ..., aαn” for a state-action trace σ = s0, α1, s1, α2, ..., αn, sn. Suppose we
want to check whether the events on the state-action trace σ = ”Ta, Ca, Gf, Cc,
Tc” are causal for the hazard described by ϕ. We partition the set A of event
variables in the set Z containing all the event variables of the events that occur
on σ and the set W containing all the event variables of the events that do not
occur on σ. The resulting event order logic formula over Z, that we want to show
is causal, is ψσ = Ta.Ca.Gf.Cc.Tc. Now we need to show that AC1, AC2(1),
AC2(2) and AC3 are fulfilled for ψσ.

– AC1 is fulfilled, since there exists a state-action trace σ = ”Ta, Ca, Gf, Cc,
Tc” for which σ ⊧ ψσ, and both the train and the car are in the crossing at
the same time.

– AC2(1) is fulfilled since there exists a state-action trace σ′ = ”Ta, Ca, Gc,
Tc” for which σ′ /⊧ ψσ ∧ (valZ(σ) ≠ valZ(σ

′
) ∧ valW (σ) ≠ valW (σ′)) holds

and the hazard does not occur on σ′.
– Now we need to check the condition AC2(2). For the state-action trace
σ′′ =”Ta, Ca, Gf, Cc, Cl, Tc” and the partition Z,W ⊆ A σ′′ ⊧ ψσ and
valZ(σ) = valZ(σ

′′
) ∧ valW (σ) ≠ valW (σ′′) holds. Since the car leaves the

crossing (Cl) before the train enters the crossing (Tc) the hazard does



not occur. Hence AC2(2) is not fulfilled by ψσ. Cl is the only event that
can prevent the property violation on σ and occurs between the events
Cc and Tc. Consequently ¬Cl is added to Z and ψσ, we hence get ψσ =

Ta .Ca .Gf .Cc .< ¬Cl .> Tc.
– In our model there does not exist an event order logic formula that is a

subset of ψ and satisfies conditions AC1 and AC2. As a consequence, AC3
is fulfilled.

Finally we need to check whether the order of events is causal with OC1.
In our example, the order of the events Gf, Cc, ¬Cl, Tc is causal since only if

the gate fails before the car and the train are entering the crossing, and the car
does not leave the crossing before the train is entering the crossing an accident
happens. Consequently after OC1 we obtain the EOL formula ψ = Gf ∧ ((Ta ∧
(Ca .Cc)) .< ¬Cl .> Tc).

The following section demonstrates how the definitions from above can be
used to generate a fault tree from a probabilistic counterexample.

3.3 Fault Tree Generation

In order to automatically synthesize a fault tree from a probabilistic counterex-
ample, the combinations of basic events causing the top level event in the fault
tree have to be identified. Using a probabilistic model checker we compute a
counterexample which contains all paths leading to a state corresponding to the
occurrence of some top level event ϕ. This is achieved by computing the coun-
terexample for the CSL formula P=?(true U ϕ). We interpret counterexamples
in the context of an SATM M = (S,Act,AP, L,Σ). We assume that Σ, the set
of all good and bad traces of the model, is partitioned in disjoint sets ΣG and
ΣC . The set ΣC contains all traces belonging to the counterexample, and the
set ΣG contains all system traces that do not belong to the counterexample.

Definition 10. Good and Bad Traces. Let Σ the set of all good and bad traces of
the model and ϕ the hazard. ΣG = {σ ∈ Σ ∣ σ /⊧CSL ϕ}, ΣC = {σ ∈ Σ ∣ σ ⊧CSL ϕ},
and ΣG ∪ΣB = Σ and ΣG ∩ΣB = ∅.

The disjointness of ΣC and ΣG implies that M is deterministic with respect
to the causality of ϕ. Furthermore, we define MC = (S,Act,AP, L,ΣC) as the
restriction of M to only the counterexample traces, and refer to it as a counterex-
ample model. Without loss of generality we assume that for every trace σ ∈MC

the last state sn ⊧CSL ϕ, which implies that Mc ⊧CSL ϕ. In our interpretation
of the SEM, actual world models will be derived from ΣC , whereas alternate
world models are part of ΣG. Notice that in order to compute the full model
probability of reaching the stater where ϕ holds it is necessary to perform a
complete state space exploration of the model that we analyze. We hence obtain
MG at no additional cost.

The key idea of the proposed algorithm is that the conditions AC1, AC2(1),
AC2(2), and AC3 defined in Definition 7 can be mapped to computing sub-



and super-set relationships. In the following we also use the terms sub-trace and
super-trace to refer to sub- or super-set relationships between different traces.
In order to establish sub- and super-set relationships between traces we define a
number of trace comparison operators.

Definition 11. Trace Comparison Operators. Let M = (S,Act, AP, L,Σ) a
SATM, and σ1, σ2 state-action traces of M.

=: σ1 = σ2 iff ∀a ∈ A . σ1 ⊧ a ≡ σ2 ⊧ a.
≐: σ1 ≐ σ2 iff ∀a1, a2 ∈ A . σ1 ⊧ a1 . a2 ≡ σ2 ⊧ a1 . a2.
⊆: σ1 ⊆ σ2 iff ∀a ∈ A . σ1 ⊧ a⇒ σ2 ⊧ a.
⊂: σ1 ⊂ σ2 iff σ1 ⊆ σ2 and not σ1 = σ2.
⊆̇: σ1⊆̇σ2 iff ∀a1, a2 ∈ A . σ1 ⊧ a1 . a2 ⇒ σ2 ⊧ a1 . a2.
⊂̇: σ1⊂̇σ2 iff σ1⊆̇σ2 and not σ1 ≐ σ2.

We next define the candidate set of traces that we consider to be causal for
ϕ. We define this set in such a way that it includes all minimal traces. Traces
are minimal if they do not contain a sub-trace according to the ⊆ operator that
is also a member of the candidate set.

Definition 12 (Candidate Set). Let MC = (S,Act,AP, L,ΣC) a counterex-
ample model, and ϕ a top level event in MC . We define the candidate set of
traces belonging to the fault tree of ϕ as CFT(ϕ): CFT (ϕ) = {σ ∈ ΣC ∣∀σ′ ∈
ΣC . σ

′
⊆ σ⇒ σ′ = σ}.

Notice that the candidate set is minimal in the sense that removing an event
from some trace in the candidate set means that the resulting trace is no longer
in the counterexample ΣC . Given a counterexample model MC , we state the
following observations regarding the traces included in ΣC : Each σ ∈ ΣC can be
represented by an event order logic formula ψσ (c.f. Def. 6). And on each σ ∈ ΣC ,
there has to be at least one event causing the top level event. If that was not the
case, the top level event would not have occurred on that trace and as a result
the trace would not be in the counterexample.

The algorithm that we propose to compute fault trees is an over-approx-
imation of the computation of the causal events X since computing the set X.
Instead of computing the set X of events that are causal for some ϕ, we compute
the set Z of events, which consists of all events that are part of the causal process
of ϕ. Z will then be represented by ψ. Since X is a subset of Z we can assure
that no event that is causal is omitted from the fault tree. It is, however, possible
that due to our over-approximation events that are not in X are added to the
fault tree. This applies in particular to those events that are part of the causal
process but not root causes, and hence mediate between X and ϕ. However, as
we show in Section 4, adding such events can be helpful to illustrate how the
root cause is indirectly propagating by non-causal events to finally cause the top
level event.

We do not account for exogenous variables, since we believe them to be
less relevant in the analysis of models of computational systems since the facts
represented in those models all seem to be endogenous facts of the system.



However, should one wish to consider exogenous variables, those can easily be
retrofitted.

We now show that AC1 is fulfilled by all ψσ with σ ∈ CFT (ϕ).

Theorem 1. AC1 holds for all ψσ with σ ∈ CFT (ϕ).

Proof. According to Definition 12 all traces σ ∈ CFT (ϕ) are traces in ΣC con-
sequently σ ⊧CSL ϕ holds for all σ ∈ CFT (ϕ). And σ ⊧ ψσ holds by definition
of ψσ. Therefore AC1 holds for all ψσ with σ ∈ CFT (ϕ).

In order to show that AC2(1) holds for all ψσ with σ ∈ CFT (ϕ) we first
demonstrate that AC2(1) is fulfilled for a σ if we can find a σ′ ∈ ΣG with σ′ ⊂ σ.

Theorem 2. AC2(1) holds for ψσ if there is a trace σ′ ∈ ΣG with σ′ ⊂ σ.

Proof. To show AC2(1) for a trace σ we need to show that there exists a trace
σ′ for which σ′ /⊧ ψ ∧ (valZ(σ) ≠ valZ(σ

′
)∨ valW (σ) ≠ valW (σ′)) and σ′ /⊧CSL ϕ

holds. For each σ′ ∈ ΣG with σ′ ⊂ σ there is at least one event on σ that does not
occur on σ′. Because that missing event is part of ψσ and Z it follows σ′ /⊧ ψσ
and (valZ(σ) ≠ valZ(σ

′
) ∨ valW (σ) ≠ valW (σ′)) follows, since the value of the

event variable representing the missing event assigned by valZ(σ) is true and
the value assigned by valZ(σ

′
) is false. Therefore, we can show AC2(1) for ψσ

by finding a trace σ′ ∈ ΣG for which σ′ ⊂ σ holds.

We are now ready to show that AC2(1) holds for all ψσ with σ ∈ CFT (ϕ).

Theorem 3. AC2(1) holds for all ψσ with σ ∈ CFT (ϕ).

Proof. According to Theorem 2 AC2(1) holds for ψσ if there is a trace σ′ ∈ ΣG
with σ′ ⊂ σ. Recall that all traces in CFT (ϕ) are minimal bad traces, that is
all sub-traces of the traces in CFT (ϕ) are good traces. Consequently, AC2(1) is
fulfilled by all ψσ with σ ∈ CFT (ϕ).

We now need to test AC2(2) for σ. AC2(2) requires that ∀σ′′ with σ′′ ⊧
ψσ∧(valZ(σ) = valZ(σ

′′
)∧valW (σ) ≠ valW (σ′′)) holds σ′′ /⊧CSL ϕ for all subsets

of W . Suppose there exists a σ′′ for which σ⊂̇σ′′ holds. For a σ′′ to satisfy the
condition σ′′ ⊧ ψ ∧ valZ(σ) = valZ(σ

′′
) all events that occur on σ have to occur

in the same order on σ′′ which is the case if σ⊆̇σ′′ holds. The set W contains the
event variables of the events that did not occur on σ and valW (σ) assigns false
to all event variables in W . For valW (σ′′) to be different from valW (σ) there
has to be at least one event variable that is set to true by valW (σ′′). This is
only the case if an event that does not occur on σ occurs on σ′′. Consequently,
σ′′ consists of all events that did occur on σ and at least one event that did not
occur on σ which is true if σ⊂̇σ′′ holds. σ′′ /⊧CSL ϕ holds if σ′′ ∈ ΣB and is false if
σ′′ ∈ ΣG. Hence, AC2(2) holds for σ if there is no σ′′ ∈ ΣG for which σ⊂̇σ′′ holds.
If σ⊂̇σ′′ holds for some σ′′ we need to modify ψσ as specified by Definition 8.

We will now show that AC3 is fulfilled by all traces in the candidate set
CFT (ϕ).



Theorem 4. AC3 holds for all ψσ with σ ∈ CFT (ϕ).

Proof. AC(3) requires that no subset of the event order logic formula ψ satisfies
AC1, AC2(1) and AC2(2). Suppose there exists a σ′′′ ∈ ΣC with σ′′′ ⊂ σ. We can
partition A in Zσ′′′ and Wσ′′′ such that Zσ′′′ consists of the variables of the events
that occur on σ′′′ and ψσ′′′ consists of the variables in Zσ′′′ . For σ we partition A
in Zσ and Wσ such that Zσ consists of the variables of the events that occur on
σ and ψσ consists of the variables in Zσ. Consequently, Zσ′′′ ⊂ Zσ and ψσ′′′ ⊂ ψσ.
If ψσ′′′ satisfies AC1, AC2(1), AC2(2), then AC3 would be violated. But if such
a σ′′ would exist the minimality condition of the candidate set would be violated
for σ and σ would not be part of the candidate set. Consequently, AC3 is fulfilled
for all ψσ with σ ∈ CFT (ϕ).

It remains to decide with OC1 whether the order of the events of the traces
σ ∈ CFT(ϕ) is relevant to cause ϕ. For each trace σ ∈ CFT(ϕ), we check whether
the order of the events to occur is important or not. If the order of events in σ
is not important, then there has to be at least one trace σ′ ∈ CFT(ϕ) for which
σ = σ′ and not σ =̇ σ′. For each event ei in σ we check for all other events ej
with i < j whether σ′ ⊧ ei . ej for all σ′ ∈ CFT(ϕ). If σ′ ⊧ ei . ej for all σ′ ∈
CFT(ϕ), we mark this pair of events as having an order which is important for
causality. If we can not find such a σ′, we mark the whole trace σ as having an
order which is important for causality.

Adding Probabilities In order to properly compute the probability mass that
is to be attributed to the TLE ϕ in the fault tree it is necessary to account
for all traces that can cause ϕ. If there are two traces σ1, σ2 ∈ ΣC which, when
combined, deliver a trace σ12 ∈ ΣC , then the probability mass of all three traces
needs to be taken into account when calculating the probability for reaching ϕ.

To illustrate this point, consider an extension of the railroad example in-
troduced above. We add a traffic light indicating to the car driver that a train
is approaching. Event Lr indicates that the traffic light on the crossing is red,
while the red light being off is denoted by the event Lo. The traffic light is red
whenever a train is approaching and off when the train has left the crossing and
no other train is approaching the crossing. It is possible that the traffic light
fails (Lf) and in this case remains off although a train is approaching. A car
will stop in front of the crossing if the gate is closed and the traffic light is red.
Assume that the above described tests would identify the following event order
logic formulas to be causal: Gf.Tc.Cc and Lf.Tc.Cc. Due to the minimality
property of the candidate set CFT(ϕ) the trace represented by the event order
logic formula Gf.Lf.Tc.Cc would not be considered as being causal. We would
hence lose the probability mass associated with the corresponding trace in the
counterexample, as well as the qualitative information that the simultaneous
failure of the red light and the gate also leads to a hazardous state. To account
for this situation we introduce the combination condition CC1.

Definition 13. Combination Condition (CC1). Let M = (S,Act,AP, L,Σ) a
state-action trace model, and σ1 and σ2 state-action traces of M.



CC1: Let σ1, σ2, ...σk ∈ CFT(ϕ) traces and ψσ1 , ψσ2 , ..., ψσk
the event order logic

formulas representing them. A trace σ is added to CFT(ϕ) if for k ≥ 2
traces in CFT(ϕ) it holds that (σ ⊧ ψσ1) ∧ (σ ⊧ ψσ2) ∧ ... ∧ (σ ⊧ ψσk

) and
Zσ = Zσ1 ∩Zσ2 ∩ ... ∩Zσk

.

We can now assign each trace in the candidate set the sum of the probability
masses of the traces that it represents. This is done as follows: The probability
of a trace σ1 in CFT(ϕ) is the probability sum of all traces σ′ ∈ ΣC for which
σ1 is the only subset in in CFT(ϕ). The last condition is necessary in order to
correctly assign the probabilities to traces which where added to the fault tree
by test CC1.

Mapping to Fault Tree All traces in the candidate set are part of the fault
tree and have now to be included in the fault tree representation. The fault trees
generated by our approach all have a normal form, that is they start with an
intermediate event representing the top level event, that is connected to an OR-
gate. The traces in the candidate set CFT(ϕ) will then be added as child nodes to
the OR-gate as follows: A trace with a length of one and hence consisting of only
one basic event is represented by the respective basic event. A trace with length
greater than one that has no subset of labels marked as ordered is represented by
an AND-gate. This AND-gate connects the basic events belonging to that trace.
If a (subset of a) trace is marked as ordered it is represented by a PAND-gate
that connects the basic events in addition with an Order Condition connected to
the PAND-gate constraining the order of the elements. The probability values
of the (P)AND-gates are the corresponding probabilities of all traces which they
represent. In order to display the probabilities in the graphical representation of
the fault tree, we add an intermediate event as parent node for each (P)AND-
gate. The resulting intermediate events are then connected by an OR-gate that
leads to the top event, representing the hazard. Since the trace probabilities
are calculated for a trace starting from an initial state to the hazard state, the
probability of the OR-gate is the sum of the probability of all child elements.

Figure 2 shows the fault tree of the railroad crossing running example. For
better readability we have omitted the order constraints of the PAND-gates.
The top level event is represented by the intermediate event connected to the
OR-gate. The OR-gate connects two intermediate events which are connected
to the PAND-gates representing the event order logic formulas ψ1 and ψ2. The
formula ψ1 = Gf∧((Ta∧(Ca.Cc)).<¬Cl.>Tc) is represented by the PAND-gate
on the left side, and ψ2 = (Ta∧(Ca.Cc)).<¬Cl.> (Gc∧Tc) by the PAND-gate
on the right side.

3.4 Scalability and Complexity

[15] contains a careful analysis of the complexity of computing causality in
the SEM. Most notable is the result that even for an SEM with only binary
variables, in the general case computing causal relationships between variables



Fig. 2. Fault Tree of the Railroad Crossing Running Example

is NP-complete. Results in [16] show that causality can be computed in poly-
nomial time if the causal graph over the variables which represent the events
forms a directed causal tree. A directed causal tree consists of directed paths,
containing the variables representing the events, leading to the root node repre-
senting the hazard or effect. Each trace in the counterexample is a directed path
containing the variables representing the events leading to the hazard or effect.
Consequently, a set of counterexamples resembles a directed causal tree and our
algorithm can compute the causal process in polynomial time.

As we show in detail in [17], the complexity of our algorithm is cubic in the
size of the counterexample. The case studies presented in Section 4 show that
the fault tree computation finishes in several seconds, while the computation
of the counterexample took several minutes. Hence, the limiting factor of our
approach is the time needed for the computation of the counterexample.

4 Case Studies

In the following we present three case studies. The first two are taken from the
literature while the third is an industrial case study. Notice that we assume the
PRISM models in practical usage scenarios to be automatically synthesized from
higher-level design models, such as for instance by our QuantUM tool [18]. How-
ever, the case studies presented in this paper were directly modeled in the PRISM
language. A comprehensive example how our causality computation method can
be applied in a model-based setting can be found in [19]. We computed the coun-
terexamples using our counterexample generation tool DiPro [6], which in turn



uses the PRISM model checker. All Experiments where performed on a PC with
an Intel Core 2 Duo processor with 3.06 Ghz and 8 GBs of RAM.

4.1 Embedded Control System

This case study models an embedded control system based on the one presented
in [20]3. The system consists of a main processor (M), an input processor (I),
an output processor (O), 3 sensors and two actuators. The input processor I
reads data from the sensors and forwards it to M. Based on this data, M sends
instructions to the output processor O which controls both actuators according
to the received instructions. Various failure modes, such as the failure of I, M
or O, or sensor or actuator failures, can lead to a shutdown of the system. We
are interested in generating the fault tree for the top level event ”System shut
down within one hour”. One hour corresponds to 3,600 time units as we take
one second as the basic time unit in our model. In CSL, this property reads
as P=?(true U

≤t∗3,600 down). We applied the XBF algorithm of DiPro in or-
der to generate counterexamples for the property P=? (true U≤t∗3,600 down).
We computed the probability for the mission times t=10, t=100, and t=1000
hours. The resulting counterexample consists of 2024 paths. Figure 3 shows
the fault tree generated by CX2FTA. The fault tree consists of 6 paths. The
fault tree illustrates that the top level event down can be caused by a failure
in the main processor (MainProcFail), a failure in the input/output processor
(Input/OutputProcFail), a transient failure in the input processor (InputPtoc-
TransFail) or the failing of sensors / actuators (SensorFailure and SensorFailure
(1) / ActuatorFailure and ActuatorFailure (1)). Figure 4 shows the memory

Fig. 3. Fault Tree of the Embedded Control System

and run time consumption of the counterexample and fault tree computation.

3 The PRISM model of the embedded control system is part of the PRISM benchmark
suite which can be obtained at http://www.prismmodelchecker.org/benchmarks/.



Run time (sec. (min.)) Memory (MB) Number of Paths
t (h) CX Comp. FT Comp. CX Comp. FT Comp. CX FT

1 1 703 (≈ 28.38) 1.4 16 25 2024 6

10 2 327 (≈ 39) 1.3 16 25 2024 6

100 3 399 (≈ 56.60) 1.3 16 26 2024 6

Fig. 4. Experiment results of the embedded control system case study.

The computational effort is dominated by the counterexample computation. In-
creasing the parameter t (mission time) in the process model has only a marginal
influence on the computational effort needed. The difference between memory
used by the counterexample computation and the fault tree generation is caused
by the fact that the counterexample generation tool stores the paths in a graph
whereas the fault tree computation tool stores them individually.

4.2 Train Odometer Controller

This case study of a train odometer system is taken from [21]. The train odome-
ter system consists of two independent sensors used to measure the speed and
position of a train. A wheel sensor is mounted to an unpowered wheel of the
train to count the number of revolutions. A radar sensor determines the current
speed by evaluating the Doppler shift of the reflected radar signal. We consider
transient faults for both sensors. For example water on or beside the track could
interfere with the detection of the reflected signal and thus cause a transient
fault in the measurement of the radar sensor. Similarly, skidding of the wheel
affects the wheel sensor. Due to the sensor redundancy the system is robust
against faults of a single sensor. However, it needs to be detectable by other
components in the train, when one of the sensors provides invalid data. For
this purpose a monitor continuously checks the status of both sensors. When-
ever either the wheel sensor or the radar sensor are failed, this is detected by
the monitor and the corresponding status variable (wsensor or rsensor) is set
to false. This information can be used by other train components that have to
disregard temporary erroneous sensor data. Due to the robustness against single
faults and since both sensor faults are transient the system even can recover
completely from such a situation. If both sensors fail the monitor initiates an
emergency brake maneuver, and the system is brought into a safe state. Only if
the monitor fails, any subsequent faults in the sensors will no longer be detected.
Since now the train may be guided by invalid speed and position information
such situations are safety critical. We generated the counterexample for the CSL
formula P=?[(true)U<=t

(unsafe)] where unsafe represents the above described unsafe state of the sys-
tem and t represents the mission time. We applied the XBF algorithm of DiPro
in order to generate counterexamples for the property with the mission times
t=10, t=100, and t=1000. Figure 5 shows the fault tree generated from the coun-
terexample for the formula P=?[(true)U<=t

(unsafe)]. While the counterexample
consists of 108 paths, the fault tree comprises only 5 paths. In the fault tree it



is easy to see that all paths contain the basic event WAIT MON FAIL and a
number of basic events representing a failure of the wheel sensor, or of the radar
sensor, or of both sensors. Again, if our fault tree method would not be used,
the same conclusion would require to compare all 108 paths manually. Figure

Fig. 5. Fault tree of the Train Odometer for T = 10

Run time (sec. (min.)) Memory (MB) Number of Paths
t CX Comp. FT Comp. CX Comp. FT Comp. CX FT

10 433 (≈ 7.21) 7.9 78 122 108 5

100 582 (≈ 9.70) 8.0 78 116 108 5

1000 1 298 (≈ 21.63) 8.1 78 134 108 5

Fig. 6. Experiment results of the train odometer case study.

6 shows that the computational effort is dominated by the computation of the
counterexample. The computational effort is dominated by the counterexample
computation. Increasing the parameter t (mission time) in the process model
has only a marginal influence on the computational effort needed. The differ-
ence between memory used by the counterexample computation and the fault
tree generation is caused by the fact that the counterexample generation tool
stores the paths in a graph whereas the fault tree computation tool stores them
individually. The compared with the other case studies high amount of memory
needed for counterexample and fault tree generation, as well as the high run
time of the fault tree computation algorithm is caused by the high number of
paths (10 347) in ΣG.



4.3 Airbag System

This case study is taken from [1] and models an industrial size airbag system. The
airbag system architecture that we consider consists of two acceleration sensors
whose task it is to detect front or rear crashes, one microcontroller to perform
the crash evaluation, and an actuator that controls the deployment of the airbag.
Although airbags save lives in crash situations, they may cause fatal behavior if
they are inadvertently deployed. This is because the driver may loose control of
the car when this deployment occurs. It is therefore a pivotal safety requirement
that an airbag is never deployed if there is no crash situation. We are interested
in generating the fault tree for an inadvertent ignition of the airbag. In CSL, this
property can be expressed using the formula P=?(noCrash U≤t AirbagIgnited).
We applied the XBF algorithm of DiPro in order to generate counterexamples
for the property with the mission times t=10, t=100, and t=1000. Figure 7 shows

Fig. 7. Fault Tree of the Airbag System

the fault tree generated by CX2FTA. For better readability we have omitted the
order constraints of the PAND-gates. While the counterexample consists of 738
paths, the fault tree comprises only 5 paths. It is easy to see by which basic
events, and with which probabilities, an inadvertent deployment of the airbag is
caused. For instance, there is only one single fault that can lead to an inadvertent
deployment, namely FASICShortage. It is also easy to see that the combination
of the basic events FETStuckHigh and FASICStuckHigh only lead to an inad-
vertent deployment of the airbag if the basic event FETStuckHigh occurs prior
to the basic event FASICStuckHigh. The case study shows that the fault tree
is a compact and concise visualization of the counterexample which allows for
an easy identification of the basic events that cause the inadvertent deployment
of the airbag, along with the corresponding probabilities. If the order of the



events is important, this can be seen in the fault tree by the PAND-gate. In
the counterexample computed by DiPro one would have to manually compare
the order of the events in all 738 paths, which is a tedious and time consuming
task. Figure 8 shows the memory and run time consumption of the counterex-
ample and fault tree computation. The computational effort is dominated by the
counterexample computation. Increasing the parameter t (mission time) in the
process model has only a marginal influence on the computational effort needed.
The difference between memory used by the counterexample computation and
the fault tree generation is caused by the fact that the counterexample gener-
ation tool stores the paths in a graph whereas the fault tree computation tool
stores them individually.

Run time (sec. (min.)) Memory (MB) Number of Paths
t CX Comp. FT Comp. CX Comp. FT Comp. CX FT

10 1 147 (≈ 19.12) 1.3 29 27 738 5

100 1 148 (≈ 19.13) 1.3 29 27 738 5

1000 1 263 (≈ 21.05) 1.8 29 27 738 5

Fig. 8. Experiment results for the airbag case study.

5 Related Work

Work described in [14,22] interprets fault trees in terms of temporal logic. This
is the opposite direction of what we aim to accomplish, namely to derive fault
trees from system execution models. Various approaches to derive fault trees
semi-automatically or automatically from various semi-formal or formal models
have been proposed, e.g. [23–25]. Contrary to our method, none of these methods
uses sets of system execution sequences as the basis of the fault tree derivation,
or provides an automatic probabilistic assessment of the synthesized fault tree
nodes. These approaches also lack a justification of the causality model used. Our
work extends and improves on the approach of [21] in the following ways: We
use a single set of system modeling and specification languages, namely PRISM
and CSL. Whereas in the approach of [21] only minimal cut-sets are generated,
we generate complete fault trees. Contrary to [21], we support PAND-gates and
provide a justification for the causality model used. Work documented in [26]
uses the Halpern and Pearl approach to explain counterexamples in functional
CTL model checking by determining causality. However, this approach considers
only functional counterexamples that consist of single execution sequences. Fur-
thermore, it focuses on the causality of variable value-changes for the violation
of CTL sub-formulas, whereas our approach identifies the events that lead to
the variable value-changes. If for instance the CTL formula consists of only one
boolean variable (e.g. AirbagIgnited), it is obvious that changing the value of
the variable is causal for the property violation. The approach in [26] merely



identifies the variable value-change (e.g. setting AirbagIgnited to true) as cause,
whereas our approach identifies the events that caused the value-change (e.g.
FETStuckHigh and FASICStuckHigh). In [27] a formal framework for reasoning
about contract violations is presented. In order to derive causality the notion
of precedence established by Lamport clocks [28] is used. While this captures
a partial order of the observed contract violations there is no evidence whether
this partial order has an impact on causality or not. Work described in [29]
establishes causality based on Lewis counterfactual reasoning by computing dis-
tance metrics between execution traces. The delta between the counterexample
and the most similar good execution is identified as causal for the bad behavior.
Due to the usage of Lewis counterfactual reasoning the approach is subject to
the same limitations as the Lewis counterfactual reasoning. As an alternative
to the event order logic that we defined we also investigated the usage of the
interval logics [30] and [31]. We felt that in light of the relatively simple ordering
constraints that we need to describe those logics are overtly expressive, and we
hence decided to define our own tailored, relatively simple event order logic.

6 Conclusion

We presented a method and tool that automatically generates a fault tree from
a probabilistic counterexample. We demonstrated that our approach improves
and facilitates the analysis of safety critical systems. The resulting fault trees
were significantly smaller and hence easier to understand than the correspond-
ing probabilistic counterexample, but still contain all information to discern the
causes for the occurrence of a hazard. The justification for the causalities de-
termined by our method are based on an adoption of the Structural Equation
Model of Halpern and Pearl. We illustrated how to use this model in the analysis
of computing systems and extended it to account for event orderings as causal
factors. We presented an over-approximating implementation of the causality
tests derived from this model. To the best of our knowledge this is the first
attempt at using the structural equation model in this fashion.

In future work, we plan to further extend our approach, in particular to
support the generation of dynamic fault-trees [32]. We are also interested in
incorporating causality analysis directly into model checking algorithms. First
results are presented in [33].
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