
symQV: Automated Symbolic Verification
of Quantum Programs

Fabian Bauer-Marquart1(B) , Stefan Leue1 , and Christian Schilling2

1 University of Konstanz, Konstanz, Germany
fabian@bauer-marquart.com, stefan.leue@uni-konstanz.de

2 Aalborg University, Aalborg, Denmark
christianms@cs.aau.dk

Abstract. We present symQV, a symbolic execution framework for writ-
ing and verifying quantum computations in the quantum circuit model.
symQV can automatically verify that a quantum program complies with a
first-order specification. We formally introduce a symbolic quantum pro-
gram model. This allows to encode the verification problem in an SMT
formula, which can then be checked with a δ-complete decision proce-
dure. We also propose an abstraction technique to speed up the verifi-
cation process. Experimental results show that the abstraction improves
symQV’s scalability by an order of magnitude to quantum programs with
24 qubits (a 224-dimensional state space).

Keywords: Quantum computing · Formal verification · Symbolic
execution · Abstraction

1 Introduction

Quantum computing bears great potential in increasing the scalability of prob-
lem solving in many areas such as optimization [15,25], database search [19],
cryptography [36], quantum dynamics simulation [10], satisfiability problems [8],
and machine learning [23]. Recently, quantum computing has gained momentum
with applications in safety-critical domains such as traffic flow [18], aircraft load
[38], logistics [2], and medical diagnostics [21]. Furthermore, quantum simulation
[1,11,37] and quantum computers in the cloud [22] are now available.

As with classical programs, detecting bugs in quantum programs is a crucial
problem. For classical programs, there exist powerful formal verification tech-
niques to automatically verify that the programs comply with a formal specifi-
cation [12]. State-of-the-art verifiers, e.g., for C programs [6,7,27] perform veri-
fication symbolically : The developer marks specific program inputs as symbolic
so that the verifier knows to use these as the “search space.” The verifier then
proves that all possible inputs to the program comply with the specification.

F. Bauer-Marquart—The work was done while the first author was employed at the
University of Konstanz.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 181–198, 2023.
https://doi.org/10.1007/978-3-031-27481-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27481-7_12&domain=pdf
http://orcid.org/0000-0001-9312-1706
http://orcid.org/0000-0002-4259-624X
http://orcid.org/0000-0003-3658-1065
https://doi.org/10.1007/978-3-031-27481-7_12

182 F. Bauer-Marquart et al.

For quantum programs, this level of automation is not yet available. In this
work, we aim to bridge this gap. Existing approaches to quantum program anal-
ysis can be categorized in three directions:

Interactive Proof Assistants: Several approaches [9,20,29,30,33] propose
using interactive proof assistants to verify quantum programs. These works pro-
vide a large set of deductions but require familiarity with proof assistants such
as Coq [5] or Isabelle/HOL [32], competence in proof-writing, and many hours of
manual programming work to conduct the verification. These techniques are not
fully automatic, which would be crucial for keeping pace with the development
of quantum algorithms [24].

Automated Quantum Compiler Verification: Amy [3] proposes an effi-
cient path-sum framework that performs fully automated equivalence checking
of a quantum program against a simpler version of the same program, as well as
against path-sums that the author uses as specification. The approach is appli-
cable to quantum programs written with quantum gates from the Clifford+T
group. Shi et al. [35] use an SMT (satisfiability modulo theories) solver to verify
a quantum compiler via equivalence checking. These approaches do not handle
general formal specifications.

Quantum Assertion Checking: Li et al. [28] verify assertions during quantum
program run-time via projections. Yu and Palsberg [39] use an abstraction to
verify assertions on quantum programs with up to 300 qubits, but the approach is
restricted to programs where inputs are fixed to a specific value. This is a severe
drawback, as essential quantum algorithms such as teleportation, the quantum
Fourier transform [31], or Grover’s diffusion operator [19] require arbitrarily-
valued inputs.

In summary, despite the significance of ensuring specification compliance in
quantum software engineering, there is still a lack of practical, automated tools
for the purpose of symbolic quantum verification of general formal specifications.
Existing tools either:

– require a high amount of manual programming,
– restrict the type of quantum program, e.g., support only a subset of quantum

gates or only measurement-free quantum programs,
– do not work symbolically, requiring to fix the inputs to the program, or
– do not support the checking of formal specifications written in first-order

logic, which is the standard for classical software verification.

In this paper, we introduce symQV, a framework for writing and verifying
quantum programs in the quantum circuit model. To the best of our knowl-
edge, symQV is the first tool that allows automated “push-button” verification of
quantum programs where the programs are executed symbolically. In symbolic
execution, a program is not executed with a predetermined input value. Instead,
it is executed with the complete range of possible input values. In contrast to
the classical case, where the number of possible input values is bounded by the
RAM architecture, the range of input values to a quantum program is infinite.

symQV: Automated Symbolic Verification of Quantum Programs 183

symQV’s automation and high-level workflow are similar to classical verifica-
tion frameworks such as CPAchecker [6]: quantum developers only need to write
a quantum program (using a Cirq-like [11] syntax) and a first-order logic speci-
fication that expresses the desired program output. Then, compliance with this
specification is automatically verified based on SMT technology. If the quantum
program does not satisfy the specification, the user obtains a counterexample
that aids in locating errors in the program.

A major obstacle in practice is that quantum program simulators require
exponential memory in the number of qubits. This is because simulators run-
ning on classical computers need to utilize a matrix to represent the state of a
quantum mechanical system. This matrix doubles in size with every qubit that
is added to the computation [31], which naturally carries over to verifying quan-
tum programs. We show that in many practical cases this exponential matrix
representation can be avoided. In addition, we propose an abstraction (or over-
approximation) [13] that makes our technique more scalable without harming
verification soundness.

We evaluate our approach symQV on essential quantum algorithms and sub-
routines. These include teleportation, QFT, [31], Grover’s diffusion operator [19],
and quantum phase estimation [36]. We demonstrate that symQV efficiently ver-
ifies quantum programs with up to 24 symbolic input qubits (a 224-dimensional
state space), showing its potential to be used as a general-purpose verifier by
developers of quantum programs. To put this number into perspective: state-of-
the-art quantum computers currently offer one error-corrected qubit [26].

The main contributions of this paper can be summarized as follows. First,
we introduce a symbolic quantum program model to express quantum programs
and safety specifications in our verification framework. Second, we provide an
encoding of the quantum program model in SMT and show that this encod-
ing is sound and complete. We use this encoding to automatically verify formal
specifications written in first-order logic. Third, we introduce a sound abstrac-
tion technique, which improves the verification time by one order of magnitude.
Finally, we evaluate our implementation symQV on several quantum programs
with up to 24 qubits.

2 Background

This section briefly introduces the concepts of quantum computing used in this
paper. For detailed explanations, we refer to Nielsen and Chuang [31].

The qubit is the basic unit of quantum information. A single qubit can be in
the ground state |0〉 (“ket zero”) or in the excited state |1〉 (“ket one”). In general,
however, a qubit is in a superposition of both computational basis states, written
as |q〉 = α |0〉 + β |1〉. The amplitudes α, β ∈ C characterize a qubit, with |α|2
and |β|2 being the probability of the qubit to be in either state. Therefore, their
values are restricted such that |α|2 + |β|2 = 1. Qubits are often written as two-
dimensional vectors:

184 F. Bauer-Marquart et al.

|0〉 ≡
[
1
0

]
, |1〉 ≡

[
0
1

]
, |q〉 ≡

[
α
β

]
.

The qubit states span a two-dimensional Hilbert space H2 = {α |0〉 + β |1〉},
a complete complex vector space where the inner product is defined. When we
combine n qubits, the system’s state vector |ψ〉 spans the tensor product of
Hilbert spaces H2n =

⊗n
i=1 H(i)

2 , and |ψ〉 is a 2n-dimensional vector.
Quantum logic gates are the building blocks of quantum programs and trans-

form a quantum state into a new quantum state. They are characterized by
unitary matrices U that transform quantum state vectors. Common quantum
gates, shown in Fig. 1, include X (Not), Z (phase-flip), H (Hadamard), UCX

(controlled-Not), and UCZ (controlled phase-flip).

Fig. 1. Circuit diagrams and matrices of some common quantum gates. For the con-
trolled gates UCX and UCZ , the dot (•) marks the control qubit.

Fig. 2. A qubit |q〉 visualized on the
Bloch sphere.

The state of a qubit can alternatively be
described with polar coordinates,

|q〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 ,

where φ and θ correspond to angles that
describe a point on the unit sphere, known
as the Bloch sphere (see Fig. 2), with |0〉
being the north pole and |1〉 being the south
pole. For instance, the gates X and Z per-
form a 180◦ rotation around the x and z
axes, respectively, while H maps ground
state |0〉 to |+〉 = 1√

2
(|0〉 + |1〉) at the

equator.

symQV: Automated Symbolic Verification of Quantum Programs 185

2.1 Entanglement

Quantum entanglement is an important concept of quantum mechanics. It occurs
if the state of one qubit cannot be characterized independently of the state of
another qubit, including when the qubits are separated over a large distance.
Two-qubit states with perfect correlation are called the Bell states. An example
for such a state is |φ+〉 = 1√

2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) , where the first and second

qubit are always guaranteed to be either both 0 or both 1 after measurement.

2.2 Quantum Measurement

Measuring a single qubit |ψ〉 = α |0〉 + β |1〉 converts it into a classical bit: 0
with probability |α|2 and 1 with probability |β|2. In circuit notation, a measure-

ment is denoted as (the double stroke indicates a classical wire).
Because there are two statistical outcomes, 0 and 1, there exists one measure-

ment operator (a non-unitary matrix) for each: M0 =
[
1 0
0 0

]
and M1 =

[
0 0
0 1

]
.

The measurement operators irreversibly change the quantum state, which influ-
ences subsequent computations. Because of the statistical nature of quantum
measurement, simulation tools (and also symQV) need to branch out into two
execution paths, with a probability value associated with each of the paths.

2.3 Running Example: Teleportation

Quantum teleportation (TP) is an example of a quantum program with symbolic
inputs; here, Alice wants to send a qubit |ψ〉 to Bob. There exists no quantum
communication channel in this problem setting, but Alice and Bob each have
one qubit of an entangled qubit pair |φ+〉. This is used to send (teleport) Alice’s
qubit to Bob: First, Alice uses a CNOT and H gate to entangle her two qubits
with each other. Then, after measuring both, she sends the measurement results
via a classical communication channel to Bob, who finally retrieves |ψ〉 using
two controlled gates, UCX and UCZ . The circuit diagram is shown in Fig. 3.

This example motivates the importance of symbolic verification: we want to
verify that teleportation is successful for any quantum state and, hence, need to
represent the input state symbolically.

3 The symQV Quantum Program Model

We introduce the quantum program model MQ as an SMT-compatible symbolic
representation of the general quantum circuit model [31]. The quantum program
model, unlike the standard state-vector representation used in simulators, can
represent operations on qubits as direct mappings in SMT instead of matrices.
Only when necessary, for example when qubits become entangled, do we con-
struct the state vector for this specific subset of qubits.

186 F. Bauer-Marquart et al.

Fig. 3. Quantum teleportation circuit, adapted from [31]. The double line indicates a
classical wire. Here, it simulates a communication channel.

The main benefit of the quantum program model is that it allows reasoning
about quantum programs whose inputs are symbolic and therefore not fixed to a
certain value. Thus we can use the model to perform formal verification against
all possible inputs, i.e., the entire infinite Hilbert space. Furthermore, the quan-
tum program model allows us to handle quantum programs with parametrized
gates, which add another (infinite) dimension to the problem.

We give a high-level, bottom-up presentation of the quantum program model.
At the end of the presentation we exemplify the encoding of the quantum tele-
portation program in Sect. 3.1 (the complete SMT formula is shown in Sect. A.4
of the supplementary material [4]). First, we need symbolic encodings for qubits,
computations, and measurements. For convenience, we encode both the ampli-
tudes and the phases into the qubit’s SMT representation, allowing computations
to work on either.

Encoding 1 (Qubit). We encode a complex number as a pair z := (zR, zI)
with zR, zI ∈ R. Using this representation, we encode a qubit as a 4-tuple1

|q〉 := (α, β, φ, θ), α, φ, θ ∈ R, β ∈ C.

We combine both the amplitude and phase representation because we need to
restrict the valuations of the variables using the following constraints:

α = cos
θ

2
∧ βR = cosφ · sin θ

2
∧ βI = sinφ · sin θ

2
, (1)

which constrains the qubit’s degrees of freedom to |α|2 + |β|2 = 1, and

0 ≤ θ ≤ π ∧ 0 ≤ φ < 2π ∧ θ = 0 ⇒ φ = 0 ∧ θ = π ⇒ φ = 0, (2)

which constrains the angles’ values to their respective periods.

Encoding 1 constrains a qubit’s degree of freedom via its phases (Eq. (2)).
This is because directly encoding the sphere equation |α|2+|β|2 = 1 requires two

1 We choose α to be real because the global phase [31] has no observable consequences.

symQV: Automated Symbolic Verification of Quantum Programs 187

nested square operations, which are challenging for state-of-the-art SMT solvers
(we evaluated Z3 [14] and dReal [17]).

The main motivation for our quantum program model is that we are often
not required to build the whole (2n-dimensional) state vector. Standard (unitary)
quantum gates can be conveniently realized by a direct mapping on the SMT
level, which we first define in an abstract way and instantiate later:

Definition 1 (Direct mapping). We encode a unitary gate as a bijection U :
Hk

2 → Hk
2 called direct mapping, where k is the number of modified qubits.

Direct mappings allow us to express the effect of a quantum gate without
explicitly constructing the matrix representation, unlike in standard quantum
simulators. We concretize the notion of the direct mapping (Definition 1) with
the following encodings of the most common quantum logic gates [31]:

Encoding 2.1 (Basic single-qubit gates). The identity, X, Z, and H gates
are encoded as the following mappings:

I

([
α
β

])
:=

[
α
β

]
, X

([
α
β

])
:=

[
β
α

]
, Z

([
α
β

])
:=

[
α

−β

]
, H

([
α
β

])
:=

[
α+β√

2
α−β√

2

]
.

We extend the encoding of the identity gate to take a variable number of
arguments, such that I(|q0〉 , . . . , |qk〉) = (|q0〉 , . . . , |qk〉) for any k.

The gates in Encoding 2.1 are used to modify the amplitudes of a qubit.
The next encoding includes gates that modify a qubit’s phases without directly
affecting its amplitudes.

Encoding 2.2 (Phase gates). The phase gates RX and RZ perform parame-
trized rotations around the x and z axes, respectively. The mappings use the
phase angles:

RX(θ′)(φ, θ) := (φ, θ + θ′), RZ(φ′)(φ, θ) := (φ + φ′, θ).

Encoding 2.3 (SWAP gate). The mapping of the SWAP gate applied to
qubits |q0〉 and |q1〉 is

SWAP(|q0〉, |q1〉) := (|q1〉 , |q0〉).
In cases where it is not possible to express a quantum gate as a unitary map-

ping, such as entangling gates, we resort to the standard matrix representation.
The matrix is then applied to a quantum state vector via matrix multiplication.

Encoding 3 (Gate matrix). We encode a quantum gate as a 2k×2k (complex)
matrix U , where k is the number of modified qubits. We further require that U
is reversible (cf. Sect. 2).

Encoding 4 (Matrix multiplication). For an m × n matrix A and an n × p
matrix B, the result of the matrix multiplication A · B, an m × p matrix C, is
encoded via the identities

∧m
i=1

∧p
j=1 ci,j =

∑n
k=1 ai,kbk,j.

188 F. Bauer-Marquart et al.

There are benefits when encoding a gate via a direct mapping instead of a
matrix, which we now illustrate with an example:

Example 1. Recall that the SWAP gate can be encoded via a direct mapping
(Encoding 2.3), i.e., we can compute

SWAP(|q0〉, |q1〉) = (|q1〉, |q0〉)

in one step. This is not the case for the matrix encoding:

SWAP(|q0〉 ⊗ |q1〉) =

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

[
α0

β0

]
⊗

[
α1

β1

]
=

⎡
⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

α0α1

α0β1

β0α1

β0β1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

α0α1

β0α1

α0β1

β0β1

⎤
⎥⎥⎦

= |q1〉 ⊗ |q0〉 .

Here we observe that the matrix representation is verbose. It needs 4 multiplica-
tions per tensor product and 16 multiplications only for computing the result of
the matrix multiplication. Note that the number of operations increases exponen-
tially with the number of qubits, illustrating the benefit of the direct mapping.
We give a further example of a direct mapping in Sect. A.1 of the supplementary
material [4].

Measurement, the only non-reversible operation in our encodings, assigns 0
or 1 to a qubit with a certain probability. For a state s consisting of a single
qubit |q〉 = α |0〉 + β |1〉, there are two possible subsequent states: s′(0) = |0〉
and s′(1) = |1〉. The probabilities p(x) that state x occurs are

p(0) = |α|2, p(1) = |β|2.

Therefore, for every quantum measurement taking place in MQ, in the case of
non-zero probabilities p(0) and p(1), there are two possible successor states, one
per measurement outcome.

Encoding 5 (Quantum measurement). We encode the measurement opera-
tors by applying the standard measurement matrices (cf. Sect. 2) to Encodings 3
to 4.

For entangled quantum states, qubits can no longer be characterized individ-
ually [31]. Therefore, our encoding cannot use the direct-mapping strategy from
Definition 1 and we fall back to a vector representation of the quantum state.

Definition 2 (Modeling a quantum state). We define a vector data struc-
ture to represent an n-qubit quantum state |ψ〉. This structure holds (cf. Sect. 2)
2n (symbolic) complex numbers

|ψ〉 := (α1, α2, · · · , α2n).

symQV: Automated Symbolic Verification of Quantum Programs 189

Encoding 6 (Tensor product of matrices). For an m × n matrix A and a
p × q matrix B, the tensor product A ⊗ B, an (mp)× (nq) matrix C, is encoded
via equalities

∧m
i=1

∧p
k=1

∧n
j=1

∧q
l=1 cik,jl = ai,j · bk,l.

The following encoding is needed for gate matrices that only apply to a subset
of the qubits in the system. This is achieved by taking a tensor product with the
identity matrix I.

Encoding 7 (Applying gates to a subset of qubits). For a quantum state
|ψ〉 over n + 1 qubits and a quantum gate U over qubits |qi〉 to |qj〉 where 0 ≤
i < j ≤ n, the next state is

|ψ′〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I⊗i−1 ⊗ U ⊗ I⊗n−j |ψ〉 if 0 < i, j < n,

U ⊗ I⊗n−j |ψ〉 if 0 = i, j < n,

I⊗i−1 ⊗ U |ψ〉 if 0 < i, j = n,

U |ψ〉 if 0 = i, j = n.

Having assigned a logic representation to qubits, quantum gates, and quan-
tum measurement, we can combine them to define the quantum program model.

Definition 3 (Quantum program model). A quantum program model is a
5-tuple

MQ := (Q, S,→, Θ, V0) (3)

where

– Q is a set of n (symbolic) qubits {|q0〉 , . . . , |qn−1〉},
– S is a sequence of m (symbolic) states (s0, . . . , sm−1),
– → is a sequence of m − 1 state operations (→1, . . . ,→m−1),
– Θ is a set of (symbolic) parameters, and
– V0 is the qubit initializer sequence.

The qubits of Q are symbolic unless an initial valuation (assignment of a
subset of qubits with concrete values) is provided in V0. The initial state is
s0 = (|q0,0〉 , . . . , |q0,n−1〉) and all following states si ∈ S (0 < i < m) again
consist of symbolic qubits (|qi,0〉 , . . . , |qi,n−1〉). Every state operation →i is either

– a direct mapping (Definition 1); or
– a unitary matrix (Encoding 3); or
– a quantum measurement (Encoding 5).

We define the shorthand

si−1 →i si =

{
→i (si−1) = si →i is a direct mapping,

→i ·⊗n−1
j=0 |q(i−1,j)〉 =

⊗n−1
j=0 |q(i,j)〉 →i is a matrix,

and tie the states and operations together via
∧m−1

i=1 si−1 →i si.

190 F. Bauer-Marquart et al.

A state operation can also be a quantum measurement M . When state si−1 is
measured, two possible subsequent states are created: si(0) and si(1) (Sect. 2.2).
Additionally, we allow measurement of k qubits at the same time for a bit vector
x ∈ {0, 1}k such that Mx is the combined measurement.

The set Θ contains symbolic, real-valued variables that are used to param-
eterize state operations, e.g., rotations. The sequence V0 = (Ψ0, . . . , Ψn−1) con-
tains sets of initial valuations Ψi ⊆ H2 (possibly singleton sets in case of a
concrete valuation). The initial valuations are asserted to the initial qubits via∧n−1

i=0 |qi〉 ∈ Ψi.

Before we give an example, we note that the quantum program model MQ
is equivalent to the traditional presentation of quantum computing.

Theorem 1 (Equivalence). The quantum program model MQ (Definition 3)
and the quantum circuit model [31] are equivalent.

The proof for Theorem 1 is given in Sect. A.4 of the supplementary material
[4].

3.1 Running Example: Quantum Program Model of Teleportation

Now that we have defined the quantum program model, we formalize our running
example, teleportation, as MQ = (Q, S,→, ∅, V0), where

Q = {|q0〉, |q1〉, |q2〉},

S = (s0, s1, s2, s3, s4),
→ = (UCX(|q0〉, |q1〉),H(|q0〉),M(|q0〉, |q1〉), UCX(|q1〉, |q2〉), UCZ(|q0〉, |q2〉),
V0 = (H2, {|φ+〉}).
Note that valuations V0 are symbolic, so each input qubit can assume any

state in the Hilbert space.

Next we provide a high-level encoding of this quantum program model in
SMT. The complete SMT formula is shown in Sect. A of the supplementary
material [4].

We begin by encoding the first state s0, which contains the three input qubits
|q0,0〉, |q0,1〉, |q0,2〉. The first operation s0 →1 s1 is encoded as |q1,0〉 ⊗ |q1,1〉 =
UCX |q0,0〉 ⊗ |q0,1〉, with s1 containing the qubits |q1,0〉, |q1,1〉, |q1,2〉 that encode
the result of this operation. The remaining states and state operations are
encoded as follows (we have omitted identity operations for the sake of brevity),
with all entries connected with a conjunction:

We observe that the measurement step from s2 to s3 results in the creation of
4 possible execution paths, one per measurement outcome (00, 01, 10, 11). Also,
recall that all the symbols and operators used in the encoding above, such as
the tensor product (⊗), gates (H, UCX , UCZ), measurements (M0, M1), and
Hilbert space (H2), carry the meanings we assigned to them in Encodings 1 to
7.

symQV: Automated Symbolic Verification of Quantum Programs 191

State Operation

s2 = (|q2,0〉, |q2,1〉, |q2,2〉) |q2,0〉 = H |q1,0〉
s3(00) = (|q3,0(00)〉, |q3,1(00)〉, |q3,2(00)〉) |q3,0(00)〉 = M0 |q2,0〉, |q3,1(00)〉 = M0 |q2,1〉
s3(01) = (|q3,0(01)〉, |q3,1(01)〉, |q3,2(01)〉) |q3,0(01)〉 = M0 |q2,0〉, |q3,1(01)〉 = M1 |q2,1〉
s3(10) = (|q3,0(10)〉, |q3,1(10)〉, |q3,2(10)〉) |q3,0(10)〉 = M1 |q2,0〉, |q3,1(10)〉 = M0 |q2,1〉
s3(11) = (|q3,0(11)〉, |q3,1(11)〉, |q3,2(11)〉) |q3,0(11)〉 = M1 |q2,0〉, |q3,1(11)〉 = M1 |q2,1〉
s4(x) = (|q4,0(x)〉, |q4,1(x)〉, |q4,2(x)〉) |q4,1(x)〉 ⊗ |q4,2(x)〉 = UCX |q3,1(x)〉 ⊗ |q3,2(x)〉

(x ∈ {00, 01, 10, 11})
s5(x) = (|q5,0(x)〉, |q5,1(x)〉, |q5,2(x)〉) |q5,0(x)〉 ⊗ |q5,2(x)〉 = UCZ |q4,0(x)〉 ⊗ |q4,2(x)〉
Initial valuation |q0,0〉 ∈ H2, |q0,1〉 ⊗ |q0,2〉 ∈ {|φ+〉}

4 The symQV Verification Algorithm

Our symQV algorithm takes as input a quantum program model MQ defined in
Sect. 3 and a formal specification in the form of a first-order formula ϕ. From
that, symQV generates an SMT encoding (which we also write MQ with a slight
abuse of notation) as described in the previous section. Finally, this encoding
together with the negated specification is asserted in a query to an SMT solver.

Theorem 2 (Soundness and completeness of the encoding). Given a
quantum program model with encoding MQ and a specification ϕ, we have that
the program satisfies ϕ if and only if MQ ∧ ¬ϕ is unsatisfiable.

Proof. This follows from the one-to-one correspondence of the quantum program
model MQ and the standard quantum circuit model [31] shown in Theorem 1.
The formula is satisfiable if and only if there is an execution that violates the
specification.

The formula MQ falls into the theory of nonlinear real arithmetic with
trigonometric expressions, for which checking satisfiability is undecidable [34].
Yet, the δ-relaxation of this problem is decidable [16]. That is why we use the
δ-satisfiability framework from [17], which is implemented in dReal2. If the com-
bined formula MQ ∧ ¬ϕ is found to be δ-Sat, either it is indeed satisfiable (i.e.,
a counterexample has been found), or it is unsatisfiable (i.e., the program com-
plies with the specification) but a δ-perturbation on its numerical terms would
satisfy the formula. The parameter δ is user-controllable, and we show in the
evaluation that the δ-Sat case for correct programs does not occur in practice
for reasonable values of δ.

While the δ-relaxation must sacrifice completeness, it preserves soundness: If
the formula is found to be unsatisfiable (Unsat), then the quantum program is
indeed correct with respect to ϕ.

Theorem 3 (Soundness preservation). Let MQ be the encoding of a quan-
tum program model and ϕ be a specification. Assume that a δ-satisfiability solver
returns Unsat for the formula MQ ∧ ¬ϕ. Then the quantum program is correct.
2 Available at https://github.com/dreal/dreal4.

https://github.com/dreal/dreal4

192 F. Bauer-Marquart et al.

Proof. This follows from Theorem 2 and [17].

4.1 Running Example: Verification of Teleportation

Coming up with the right specifications for quantum programs is not trivial.
Conveniently, as symQV maps all building blocks of quantum programs into an
SMT representation, we have access to the full set of logic operators.

We want our specification to express that teleportation has been successful,
i.e., qubit |q0〉 has moved to where qubit |q2〉 was at the beginning (compare the
right-hand side of Fig. 3).

(|q5,2〉 = |q0,0〉)

This, however, is not the full specification. We need to disallow operations cross-
ing the line between the first two qubits and the last one, which only becomes
possible after measurement, where the classical communication channel can be
used (cf. Sect. 2.3). Therefore, we add an additional constraint that forbids state
operations where these qubits appear together:

ϕ = (|q5,2〉 = |q0,0〉) ∧ ¬∃0 ≤ i ≤ 2: →i (|qi,0〉, |qi,2〉) ∨ →i (|qi,1〉, |qi,2〉)

Performing the verification is “push-button,” i.e., only requires writing the
quantum program model and the specification. The corresponding Python code
given in Sect. A.3 of the supplementary material [4] demonstrates that a user
does not have to provide any proof steps as in previous works based on proof
assistants.

4.2 The symQV Over-Approximation

Fig. 4. The over-approximation visu-
alized for a single qubit.

Encoding 1 puts trigonometric functions
into the SMT formula, which are compu-
tationally expensive. This can also be later
seen in the evaluation. Therefore, we intro-
duce an over-approximation of the Hilbert
space to make the verification task more
efficient. This is achieved via relaxing the
qubit’s degrees of freedom from the unit
sphere to the unit box, visualized in Fig. 4.

Encoding 8 (Over-approximation). We remove the constraints in Eq. (2)
from Encoding 1 and add the following constraint over the qubit’s degrees of
freedom:

−1 ≤ α ≤ 1 ∧ −1 ≤ βR ≤ 1 ∧ −1 ≤ βI ≤ 1. (4)

symQV: Automated Symbolic Verification of Quantum Programs 193

Table 1. Benchmark quantum programs for evaluating our verification procedure.
“Input” describes the input space to the quantum programs and “Parametrized”
expresses whether there are parametrized gates in the quantum program.

Program Description Depth Input Parametrized

Toffoli Toffoli Gate 5 Bit vector No
TP Quantum Teleportation Circuit 6 Infinite No
ADD-8 8-bit Quantum Adder 48 Bit vector No
QFT-n n-Qubit Quantum Fourier Transform O(n2) Bit vector No
QPE-n n-Bit Quantum Phase Estimation O(n2) Concrete Yes
GDO-n n-Qubit Grover Diffusion Operator O(n) Infinite No

5 Evaluation

This section presents our experimental evaluation, demonstrating symQV’s effec-
tiveness in verifying several (correct) quantum programs that have symbolic
inputs or symbolically parametrized quantum gates.

5.1 Implementation

symQV3 is implemented as a Python library interfacing with dReal [17] using
about 5000 lines of code. The symQV Python API allows users to specify the
quantum program using a syntax inspired by Cirq [11]. The specification can be
written using one of two formats:

– State vector: One can specify assertions on any of the 2n vector entries.
– Qubits: One can specify assertions on any of the n qubits.

The logic assertions use an SMT-LIB2-compatible Python API and support
specifications expressing relationships between program inputs and outputs as
well as intermediate states.

5.2 Benchmark Problems and Setup

An overview of the benchmark problems is given in Table 1. Further descriptions,
including the specifications, are given in Sect. A.3 of the supplementary material
[4].

We compare our tool (“symQV”) against quantum simulation (“Simulation”),
basic SMT solving based on linear algebra (“Basic SMT”), and symQV without
over-approximation (“symQV (exact)”).

– Simulation is implemented in Qiskit [1]. The technique enumerates all possible
inputs to the quantum program and then compares the outputs with the

3 Available for download at https://doi.org/10.5281/zenodo.7400321.

https://doi.org/10.5281/zenodo.7400321

194 F. Bauer-Marquart et al.

specification. We can only use this technique for a finite input space, i.e., for
concrete and bit-vector inputs, but neither for symbolic qubits with the entire
Hilbert space H2 as input space, nor for parametrized gates.

– Basic SMT is basic SMT solving using vectors and matrices, but not using
direct mappings (Definition 1).

– symQV (exact) is a modification of symQV where all over-approximation capa-
bilities are removed, ending up with a technique that performs exact model-
ing, even when unnecessary (see Sect. 4.2).

We do not compare against the proof-assistant approaches [9,20,29,30,33]
(cf. Sect. 1) because a comparison of run-times between an automated method,
as implemented in symQV, and a semi-automated method relying on manual
input is not meaningful. We also do not compare against [3] because it neither
supports the full gate set nor formal logic specifications.

The experiments use the value δ = 10−4. We also compare the run-time of
symQV for different precision levels δ.

All experiments are carried out on a workstation with an AMD Ryzen
ThreadRipper 3960X @ 3.8GHz × 24 cores processor and 256GB RAM. The
machine runs Ubuntu 20.04.3 LTS and each result is the average of 10 runs.

5.3 Results

We summarize our results in Table 2. symQV (exact) is best for quantum pro-
grams with concrete inputs or a small qubit count (TP and ADD-8); the over-
approximation of symQV yields no speed-up for these instances. Simulation per-
forms best for verifying combinatorial problems, i.e., for the quantum Fourier
transform (QFT). Here, it can still feasibly enumerate a 12-qubit state space.
Interestingly, Basic SMT scales best among the SMT-based procedures here;
this is explained by the high amount of controlled operations, for which the
mapping-based approach of symQV is inferior.

symQV offers a dramatic performance increase for quantum programs with
symbolic inputs, i.e., quantum phase estimation (QPE) and Grover’s diffusion
operator (GDO). This highlights the advantage of over-approximation for this
family of quantum programs. Recall that simulation is not possible for both QPE
and GDO, as that would require enumerating infinitely many inputs.

The precision value δ = 10−4 was sufficient for all benchmarks in our eval-
uation. To investigate scalability in this parameter, Table 3 compares the run-
times for different values for GDO with 12, 15, and 18 qubits, respectively. For
the higher qubit counts, the run-time increases significantly when we lower δ to
10−6, but then remains relatively stable when further tightening precision.

Overall, symQV is the strongest for quantum programs with infinite input
space, i.e., programs where the (symbolic) input qubits can span the complete
Hilbert space. Likewise, for programs that use parametrized quantum gates
dependent on a symbolic parameter, symQV is the most effective.

symQV: Automated Symbolic Verification of Quantum Programs 195

Table 2. Runtime comparison results for the benchmark problems described in Table 1.
“Simulation” stands for simulation and enumeration of all cases. “Basic SMT” is SMT
solving with full state and matrix construction. “symQV (exact)” is symQV where
over-approximations have been removed. “symQV” (this work) utilizes a sound over-
approximation. “N/A” instances cannot be solved by simulation due to infinite state
space. “out of memory” cases exceeded the available memory, and “timeout” cases
exceed the 12-h time limit.

Benchmark Simulation Basic SMT symQV (exact) symQV

Toffoli 0.02 s 11.1 s 1.3 s 0.4 s
TP N/A 44.8 s 21.6 s 31.0 s
ADD-8 6.1 h out of memory 7.6 s 7.8 s
QFT-3 0.005 s 12.8 s 5.8 s 1.0 s
QFT-5 0.03 s 17.6 min 2.6 min 26.4 s
QFT-10 1.5 s 1.2 h 10.9 h 1.6 h
QFT-12 14.0 s 4.0 h timeout 7.4 h
QPE-3 N/A 19.2 s 34.0 s 8.7 s
QPE-5 N/A 18.2 min 42.3 min 3.9 min
GDO-5 N/A timeout 9.2 s 1.3 s
GDO-10 N/A timeout 3.2 min 17.0 s
GDO-12 N/A timeout 14.2 min 20.2 s
GDO-15 N/A timeout 2.9 h 1.0 min
GDO-18 N/A timeout timeout 4.9 min
GDO-20 N/A timeout timeout 17.1 min
GDO-22 N/A timeout timeout 1.1 h
GDO-24 N/A timeout timeout 4.2 h

6 Discussion

Symbolic execution and formal verification scale exponentially for the quantum
case, as is the case for classical software. That is to be expected: firstly, the simu-
lation of quantum programs on classical hardware already takes exponential time
and space due to the matrix representation of quantum mechanics, and secondly
because the state space grows with every input variable added to the program.
Nonetheless, we have shown how to keep this exponential blow-up under control
by introducing mappings and over-approximations. In our evaluation, we sym-
bolically executed quantum programs with up to 24 qubits. In comparison, even
(concrete) quantum simulation for concrete inputs stops being feasible at around
30 qubits, requiring petabytes of main memory. In conclusion, symQV is most
effective for unknown inputs to the quantum programs or unknown parameters
of quantum gates that therefore cannot be tested.

196 F. Bauer-Marquart et al.

Table 3. symQV run-time results for different precision values δ.

Delta GDO-12 GDO-15 GDO-18

10−4 20.2 s 1.0 min 4.9 min
10−6 20.5 s 28.0 min 33.1 min
10−8 20.8 s 49.4 min 58.7 min
10−10 21.1 s 52.3 min 1.2 h

7 Conclusion

We introduced symQV, a symbolic verification technique that leverages over-
approximation to make automated verification of quantum programs feasible.
We formalized quantum program semantics in SMT and proposed a sound over-
approximation that allows scaling to realistic program sizes. Thanks to the
symbolic nature of our approach, we can analyze quantum programs with infi-
nite input space, which is beyond the capabilities of quantum simulation. We
demonstrate these achievements by formally verifying multiple quantum pro-
grams against their specifications within a modest time frame.

In this paper, we focused on formalizing the mathematical foundations to
model quantum programs, define specifications, and prove their specification
compliance. We intend this to be the first step in a larger, fully automated quan-
tum verification framework, including counterexample-guided refinement. In the
future, we will investigate strategies that allow us to verify hybrid programs that
perform classical and quantum computations.

Acknowledgments. This research was partly supported by DIREC - Digital Research
Centre Denmark and the Villum Investigator Grant S4OS.

References

1. Abraham, F.N., et al.: Qiskit: an open-source framework for quantum computing
(2017). https://github.com/Qiskit

2. Ajagekar, A., Humble, T., You, F.: Quantum computing based hybrid solu-
tion strategies for large-scale discrete-continuous optimization problems. Comput.
Chem. Eng. 132 (2020). https://doi.org/10.1016/j.compchemeng.2019.106630

3. Amy, M.: Towards large-scale functional verification of universal quantum circuits.
In: QPL. EPTCS, vol. 287, pp. 1–21 (2018). https://doi.org/10.4204/EPTCS.287.1

4. Bauer-Marquart, F., Leue, S., Schilling, C.: symQV: automated symbolic verifi-
cation of quantum programs. CoRR, abs/2212.02267 (2022). https://doi.org/10.
48550/arXiv.2212.02267

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. TTCS. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-662-07964-5

6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.

https://github.com/Qiskit
https://doi.org/10.1016/j.compchemeng.2019.106630
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.48550/arXiv.2212.02267
https://doi.org/10.48550/arXiv.2212.02267
https://doi.org/10.1007/978-3-662-07964-5

symQV: Automated Symbolic Verification of Quantum Programs 197

184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_16

7. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: OSDI, vol. 8,
pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/osdi08/
tech/full_papers/cadar/cadar.pdf

8. Centrone, F., Kumar, N., Diamanti, E., Kerenidis, I.: Experimental demonstration
of quantum advantage for NP verification with limited information. Nat. Commun.
12(1), 850 (2021). https://doi.org/10.1038/s41467-021-21119-1

9. Chareton, C., Bardin, S., Bobot, F., Perrelle, V., Valiron, B.: An automated deduc-
tive verification framework for circuit-building quantum programs. In: Yoshida, N.
(ed.) ESOP 2021. LNCS, vol. 12648, pp. 148–177. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-72019-3_6

10. Childs, A.M., Maslov, D., Nam, Y.S., Ross, N.J., Su, Y.: Toward the first quantum
simulation with quantum speedup. Proc. Natl. Acad. Sci. U.S.A. 115(38), 9456–
9461 (2018). https://doi.org/10.1073/pnas.1801723115

11. Cirq Developers. Cirq (2021). See full list of authors on Github: https://github.
com/quantumlib/Cirq/graphs/contributors

12. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-10575-8

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977). https://doi.org/10.1145/512950.512973

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

15. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv preprint (2014). https://doi.org/10.48550/arXiv.1411.4028

16. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3_23

17. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_14

18. Goddard, P., Mniszewski, S., Neukart, F., Pakin, S., Reinhardt, S.: How will
early quantum computing benefit computational methods? In: Proceedings of
the SIAM Annual Meeting (2017). https://sinews.siam.org/Details-Page/how-
will-early-quantum-computing-benefit-computational-methods

19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC,
pp. 212–219. ACM (1996). https://doi.org/10.1145/237814.237866

20. Hietala, K., Rand, R., Hung, S., Li, L., Hicks, M.: Proving quantum programs cor-
rect. In: ITP, Dagstuhl, Germany. LIPIcs, vol. 193, pp. 21:1–21:19. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ITP.
2021.21

21. Houssein, E.H., Abohashima, Z., Elhoseny, M., Mohamed, W.M.: Hybrid quantum
convolutional neural networks model for COVID-19 prediction using chest X-ray
images. CoRR (2021). https://arxiv.org/abs/2102.06535

22. IBM. IBM’s roadmap for scaling quantum technology (2020). https://research.ibm.
com/blog/ibm-quantum-roadmap

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1038/s41467-021-21119-1
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1007/978-3-030-72019-3_6
https://doi.org/10.1073/pnas.1801723115
https://github.com/quantumlib/Cirq/graphs/contributors
https://github.com/quantumlib/Cirq/graphs/contributors
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.48550/arXiv.1411.4028
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-38574-2_14
https://sinews.siam.org/Details-Page/how-will-early-quantum-computing-benefit-computational-methods
https://sinews.siam.org/Details-Page/how-will-early-quantum-computing-benefit-computational-methods
https://doi.org/10.1145/237814.237866
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://arxiv.org/abs/2102.06535
https://research.ibm.com/blog/ibm-quantum-roadmap
https://research.ibm.com/blog/ibm-quantum-roadmap

198 F. Bauer-Marquart et al.

23. Jerbi, S., Fiderer, L.J., Nautrup, H.P., Kübler, J.M., Briegel, H.J., Dunjko, V.:
Quantum machine learning beyond kernel methods. CoRR (2021). https://arxiv.
org/abs/2110.13162

24. Jordan, S.: Quantum algorithm zoo (2021). https://quantumalgorithmzoo.org
25. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model.

Phys. Rev. E 58(5) (1998). https://doi.org/10.1103/PhysRevE.58.5355
26. Krinner, S., et al.: Realizing repeated quantum error correction in a distance-three

surface code. Nature 605(7911), 669–674 (2022). https://doi.org/10.1038/s41586-
022-04566-8

27. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

28. Li, G., Zhou, L., Yu, N., Ding, Y., Ying, M., Xie, Y.: Projection-based runtime
assertions for testing and debugging quantum programs. Proc. ACM Program.
Lang. 4(OOPSLA), 150:1–150:29 (2020). https://doi.org/10.1145/3428218

29. Liu, J., et al.: Formal verification of quantum algorithms using quantum Hoare
logic. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 187–207.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_12

30. Liu, S., et al.: Q|SI〉: a quantum programming environment. In: Jones, C., Wang,
J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid Systems. LNCS, vol.
11180, pp. 133–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01461-2_8

31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press (2016). https://doi.org/
10.1017/CBO9780511976667. ISBN 978-1-10-700217-3

32. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

33. Rand, R., Paykin, J., Zdancewic, S.: QWIRE practice: formal verification of quan-
tum circuits in Coq. In: QPL. EPTCS, vol. 266, pp. 119–132 (2017). https://doi.
org/10.4204/EPTCS.266.8

34. Richardson, D.: Some undecidable problems involving elementary functions of
a real variable. J. Symb. Log. 33(4), 514–520 (1968). https://doi.org/10.2307/
2271358

35. Shi, Y., et al.: CertiQ: a mostly-automated verification of a realistic quantum
compiler. arXiv preprint (2019). https://doi.org/10.48550/arXiv.1908.08963

36. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

37. Svore, K.M., et al.: Q#: enabling scalable quantum computing and development
with a high-level DSL. In: RWDSL, pp. 7:1–7:10. ACM (2018). https://doi.org/10.
1145/3183895.3183901

38. Traversa, F.L.: Aircraft loading optimization: MemComputing the 5th Airbus prob-
lem. CoRR, abs/1903.08189 (2019). http://arxiv.org/abs/1903.08189

39. Yu, N., Palsberg, J.: Quantum abstract interpretation. In: PLDI, pp. 542–558.
ACM (2021). https://doi.org/10.1145/3453483.3454061

https://arxiv.org/abs/2110.13162
https://arxiv.org/abs/2110.13162
https://quantumalgorithmzoo.org
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3428218
https://doi.org/10.1007/978-3-030-25543-5_12
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.2307/2271358
https://doi.org/10.2307/2271358
https://doi.org/10.48550/arXiv.1908.08963
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.1145/3183895.3183901
http://arxiv.org/abs/1903.08189
https://doi.org/10.1145/3453483.3454061

	symQV: Automated Symbolic Verification of Quantum Programs
	1 Introduction
	2 Background
	2.1 Entanglement
	2.2 Quantum Measurement
	2.3 Running Example: Teleportation

	3 The symQV Quantum Program Model
	3.1 Running Example: Quantum Program Model of Teleportation

	4 The symQV Verification Algorithm
	4.1 Running Example: Verification of Teleportation
	4.2 The symQV Over-Approximation

	5 Evaluation
	5.1 Implementation
	5.2 Benchmark Problems and Setup
	5.3 Results

	6 Discussion
	7 Conclusion
	References

