
Automated Consistency Analysis
for Legal Contracts

Alan Khoja1, Martin Kölbl2, Stefan Leue2, and Rüdiger Wilhelmi1

1 Dept. of Law, University of Konstanz, Germany
2 Dept. of Computer Science, University of Konstanz, Germany

Abstract. Contracts in business life, and in particular company pur-
chase agreements, often comprise a large number of provisions and are
correspondingly long and complex. In practice, it is therefore a great
challenge to keep track of their regulatory context and to identify and
avoid inconsistencies in such contracts. Against this background, we pro-
pose a semi-formal as well as a formal logical modeling of this type of
contracts, using decidable first-order theories. We also present the tool
ContractCheck, which performs fully automated inconsistency analyses
on the considered contracts using Satisfiability Modulo Theories (SMT)
solving.

1 Introduction

Contracts are indispensable in business. They enable the contracting parties to
arrange their legal relationships by giving legal effect to their common will and
establishing mutual claims. A prominent example is the purchase of a company
in a share purchase agreement (SPA). Like any purchase contract, an SPA must
specify at least the indispensable essentialia negotii : the purchaser and the seller,
as well as the purchase object and the purchase price to be transferred. In prac-
tice, SPAs regulate all relevant legal issues in the contract and exclude references
to statutory law as far as possible. As a consequence, SPAs have a very local
semantics that is almost entirely based on the contractual duties agreed upon in
the SPA.

Contracts, and especially SPAs, are often very long and complex. This is
due, in particular, to the large number and complexity of the issues to be regu-
lated. In addition, a large number of persons are often involved in the drafting.
Moreover, the negotiations and the drafting may take long and comprise a large
number of amendments of the draft. Length, complexity and frequent changes
make a contract prone to errors and inconsistencies, such as references being
wrong, missing essentials or unfulfillable claims. Inconsistencies in the form of
missing essentials can be found by a simple syntactic analysis. It is significantly
more complex to find inconsistencies in the dynamics of several claims. Claims
should not contradict each other and be performable in the context of legal facts
described in the contract. Also, the combination of several due dates can be
unexpectedly restricted by a statute of limitations. For instance, assume an SPA

contains a warranty claim that must be asserted within 14 days after the clos-
ing on day 28, then subsequent performance must be made within 28 days, and
otherwise damages must be paid within another 14 days. Further assume, that
the contract contains a provision that warranty claims are limited to 42 days af-
ter closing. In this example, the warranty clause provides that performance can
continue until day 84, while the limitation period ends on day 70. The timing in
the SPA is inconsistent.

In this paper we propose a concept to model and automatically analyze a
textual SPA. As its main contributions, we present a meta-model for the en-
tities of an SPA using a class diagram from the Unified Modeling Language
(UML) [Obj17] in Section 3, give the modeling a semantics in decidable frag-
ments of first-order logic in Section 4 and automatically analyze the SPA for
inconsistencies using Satisfiability Modulo Theory (SMT) technology in Sec-
tion 5. The aim is a red-flag system to highlight errors that we compute in a
two-step analysis:

– First, our syntactic analysis checks whether the fundamental elements are
part of the SPA and every referenced claim does also exist.

– Second, we provide a dynamic analysis to check whether every claim can be
performed and whether a feasible execution of the SPA exists.

We have implemented the analyses in a tool called ContractCheck, and demon-
strate its ability to detect and explain inconsistencies using a case study in Sec-
tion 6. In this paper, we develop the concept and the tool using an SPA under
German law, but this does not preclude adaptation to contracts with a different
subject matter or under other jurisdictions, as they might be more complex but
basically have a comparable structure with similar elements.

When considering examples of SPAs, it can be observed that they often
consist of very similar blocks of text that only vary in certain parameters, for
instance the agreed price. In the case of international company purchases, it is
estimated that about half of the text of the provisions is changed little or not
at all [HS16]. In order to obtain a formal logical representation of the SPA, as
part of our approach and tool we provide a library of parameterized structured
English text blocks that can be freely combined and used to compose the contract
textually. These blocks allow greater flexibility than conventional approaches, in
which the creation of contracts is dialog-driven and based on decision trees.
Each of these blocks has a formal semantics expressed using formulae from a
decidable fragment of first-order logic. The conjunction of these conditions then
constitutes the logical representation of the contract. The analysis method that
we describe in this paper generalizes to the class of all concrete contracts that
can be formulated by composing and parameterizing the provided text blocks.

Related Work. We review works addressing the logical modeling and analysis
of legal artefacts. We consider the verification of smart contracts [BK19, PF19]
which are, in effect, described by executable program code, outside the scope of
this paper, since their analysis has more similarity with program analysis.

2

Several meta-models of various legal domains describing legal entities and
their relations have been proposed. A first work representing contracts with UML
has been proposed in [EGB+01]. A multi-level hierarchical ontology to model a
contract is described in [KJ03], which is expressed using UML class diagrams. A
modeling of contracts as business processes has been suggested in [Kab05,WS05].
In [DNS08], a business process is translated into state machines to check whether
it is always beneficial for the contracting parties to fulfill their claims while the
contract is being executed. LegalRuleML [PGR+11, OAS21, Gru18] is a spe-
cialization of the general language RuleML [BPS10] designed to express rela-
tionships between legal entities by rules. We are not aware of any extension
of LegalRuleML towards the analysis of contract executions for inconsistencies.
The Contract Specification Language (CSL) is a modeling language that repre-
sents claims as actions in a contract. In [HKZ12], an execution of a given CSL
expression is computed as a sequence of actions, which is then analyzed to de-
termine whether any specified commitments are met. In [HLM20], a contract is
interpreted and analyzed as a composition of commitments. In [MKK14], the
natural language sentences of an e-contract are translated into a dependency
graph in order to check whether individual regulations contradict each other.

Deontic logic [VW51] is a family of modal logics designed to express the se-
mantics of claims with operators for obligation, permission, and prohibition. De-
ontic logic is translated into propositional logic in [CM07] and analyzed for incon-
sistencies using a tableau calculus in [CM08]. Further analyses using tableau con-
structions are proposed in [BBB09]. These analyses find contradictions inside of a
contract but do not compute potential contract executions. The Contract Lanu-
gage CL [PS07,PS12] encompasses Deontic logic. In [PPS07], a contract given in
CL is translated into a transition system, which is then analyzed by the model
checker NuSMV for inconsistencies. In [CS17], a C-O diagram [MDCS10], which
is a graphical extension of CL, is expressed by state machines and analyzed using
the real-time model checker UPPAAL. The analyses find syntactic inconsisten-
cies and prove a dynamic inconsistency by one execution but needs an expert to
encode a contract as a C-O diagram. An extension of CL to RCL in [MB15,BM21]
allows to reason about the persons between whom claims exist using the tool RE-
CALL. A further system supporting a Deontic logic based approach is the Linear
Time Temporal Logic (LTL) based language FL [GMS10,GMS11] together with
the model checker FormaLex [GMS11,FMS+17]. In the above cited approaches,
claims can only be logically connected, so that a prioritization of primary and
secondary duties, which are central concepts in SPAs, is impossible.

Comparison to Related Work. The approach that we propose in this paper fo-
cuses on the use of SAT and SMT technology in discovering inconsistencies in
SPAs. While many of the approaches cited above do have the ability to detect
inconsistencies, they do not have the ability to produce models revealing reasons
for inconsistencies that lie in data rather than in the execution of actions, which
is one of the aspects that we will focus on. Also, only finite executions are of
interest in an SPA which is why LTL-style model checking capabilities of infinite
behaviors are not required. In comparison to the approaches relying on Deontic

3

logics, while we do consider claims, they are only one of the many logical facets
of contracts that we are interested in. SAT- and SMT-based modeling and anal-
ysis turns out to be very flexible in allowing us to directly represent claims in
the formalization of SPAs without requiring the overhead of model checking or
tableau constructions required to analyze deontic logic fomulae.

Contributions. This paper presents the following main contributions:

1. We propose an ontology for SPAs using the UML.
2. We provide a logical formalization of SPAs using a decidable fragment of first

order logic. By this we contribute to the extensive research area addressing
the use of formal logics in the representation of legal artefacts.

3. We define a number of consistency analyses that are applicable to SPAs.
4. We describe a tool that uses a collection of parameterized natural language

building blocks from which textual SPAs can be composed.
5. We present the prototypical tool ContractCheck that uses SAT, SMT and

satisfiability core technology to perform the consistency analyses and which
produces diagnostic information explaining identified inconsistencies.

6. We illustrate the application of this approach to an example SPA.

2 Preliminaries

We describe the modeling of an SPA using class diagrams from the UML and
encode both the consistency requirements as well as the consistency analyses in
decidable theories of first-order logic.

Modeling. The entities of an SPA are depicted as classes in a class diagram of
UML [Obj17]. A class contains attributes and operations. An attribute describes
a property of an object and has a name and a type. A class diagram graphically
represents classes by rectangles and their associations to each other by lines.
The relationship between different classes are described by associations between
the classes. An association generalization describes the relationship between an
abstract class and a more specific class. The generalization is graphically repre-
sented by an arrow with a triangle, pointing to the abstract class. The association
aggregation represents an affiliation and is marked using a diamond symbol at-
tached to the associated object. A set relation can be annotated by an integer
value range indicating how many objects of one class are related to how many
objects of the other class.

Formalization in Logic. We formalize an SPA and the analyses in decidable frag-
ments of first-order logic. The formalization uses the logic of linear real arith-
metic, equality, integers and uninterpreted functions [KS16]. For these fragments,
efficient SMT solvers [KS16] exist that automatically decide whether a logical
formula from the fragment is satisfiable. In case of satisfiability, they return a sat-
isfying assignment which is also called a model, and otherwise, they return unsat.
For example, an SMT solver calculates that the formula (x > 0) ∧ (x + y < 0)
is satisfiable and returns, for instance, the variable assignment x = 0.9 and
y = −2.0 as a possible model.

4

Fig. 1. Class Diagram of a Sales Purchase Agreement (SPA)

3 Contract Modeling

We propose the use of UML class diagrams in the ontological modeling of an
abstract view on an SPA. An instance of a class diagram describes an legal
contract and will be the basis for the analyses encoding in the next sections. We
concretize this modeling approach by applying it to the modeling of a concrete
SPA for the purchase of a pretzel bakery.

3.1 Modeling of an SPA

For modeling purposes, it is necessary to determine the typical provisions in
an SPA. These can be found in numerous legal template books [GS22, MSJ22,
Sei18a, WAB20, WK22]. For the present project, we analyzed a wide variety of
these books (regarding German law) [vH20a,vH20b,MS22a,MS22b,Pfi22,Sei18b,
Sei18c,Sei18d,Sei18e]. We have identified the following provisions as typical for
an SPA: contracting parties, purchase object, purchase price provisions, condi-
tions and execution, warranties and indemnities, liability, final provisions. Based
on this, an SPA was developed that contains the typical provisions. In this pa-
per, we are primarily concerned with the provisions on warranties, indemnities
and liability3, supplemented by the indispensable provisions on the contracting
parties (purchaser and seller), the purchase object and the purchase price.

From these provisions, we derive an ontology that is given as a UML class
diagram, depicted in Figure 1. It represents the typical provisions of an SPA in
the form of classes. Notice that this ontology can be extended to other types of

3 We set legal terms in italics and terms referring to UML diagrams in teletype font.

5

contracts. In this paper, we restrict ourselves to considering SPAs since, com-
pared to other types of contracts, they rely much less on implicit legal facts
implied by legal dogmatics, which are typically waived in SPAs.

As a purchase contract, an SPA consists of at least one person, the Seller,
who has to transfer an Object, in particular the Shares of a company, as a
purchase object to a second person, the Purchaser. In return, the Purchaser

has to transfer another object, an Amount of money, as PurchasePrice. An
SPA becomes effective on the date of Signing, on which the purchase contract
is signed. The Shares and the Purchase Price have to be transferred when
due on date DueDate, that is usually identical to the date of Closing.

In the SPA, the purchaser and the seller promise each other to perform certain
claims. The content of a Claim, the promised Performance, is described as an
attribute in the claim. For each claim, either the purchaser or the seller is the
debtor, who owes the performance, and the other one is the creditor, respectively.
The Purchaser is Creditor of the claim to transfer the company shares and
the Seller is a Debtor of the same. Vice versa, the Seller is Creditor of
the claim to transfer the PurchasePrice and the Purchaser is Debtor of the
same. A claim arises on date Arise. The creditor can assert that the debtor
does perform the claim in rendering the Performance. S/he can assert the
claim from the DueDate until the Limitation date. Any claim expires on the
day of Limitation. In order to fulfill these claims, we also need to model the
property rights. The seller can perform the claim, when s/he is the Owner of the
PropertyRight on the Shares and transfers this right to the purchaser.

The claims to transfer the shares and purchase price are PrimaryClaims. A
primary claim is a claim in a contract that has to be performed from the outset
by the due date. In this, it differs from a SecondaryClaim, that only arises with
the breach of another claim or of separately listed circumstances. A secondary
claim refers to another claim by a Trigger, and we model its circumstances by an
attribute Content. We call a secondary claim without a Trigger an independent
claim.

Within secondary claims in an SPA, a distinction is made between a war-
ranty claim and an indemnity claim [Wil22]. A WarrantyClaim refers to an
unknown risk due to a breach of a primary claim, or of listed circumstances
that are not expected but considered likely enough to require regulation. A
warranty consists of the warranty content as the prerequisite and one or more
warranty claims as consequence of a breach of warranty. The warranty content

includes the existence or non-existence of certain circumstances, which usually
concern the purchase object and especially its properties. The warranty claims
are usually claims of the purchaser for compensation in money, irrespective
of fault. It is also possible to agree on a claim for subsequent performance
(PeformanceClaim) or a right of Withdrawal that in case of a notice of with-
drawal (noticeWithdraw) terminates the contract and can give the purchaser a
claim for restitution of the purchase price and the seller a claim for restitution
of the shares (RestitutionClaims). A CompensationClaim is often limited in
the way that the amount of Compensation must reach a minimum value Min

6

and may not exceed a maximum value Max. The limitation may apply only to
individual claims or to all claims under the contract. If the purchaser has a
claim for compensation, this can be offset against the purchase price claim, so
that the total amount of money to be paid is reduced accordingly. An indemnity
refers to a known risk due to an expected breach of a primary claim or listed cir-
cumstances. In case of such a breach, it gives the purchaser an IndemnityClaim

for indemnification by means of an appropriate compensation in money.

Example 1 (Bakery SPA). As a running example, we use an SPA for the fictitious
sale of a bakery from the seller Eva to the purchaser Chris. We instantiate this
example by the UML class diagram presented in Figure 2. In the bakery SPA,
Chris agrees to pay the purchase price of e40, 000 (PayClaim), and Eva agrees
to give Chris ownership of the bakery Shares Bakery (TransferClaim). Both
claims are due at the agreed closing 28 days after signing. In case the pretzel
bakery is not transferred or the purchase price is not paid at closing, then the
other contracting party may withdraw from the purchase contract. In addition
to the primary claims, Eva warranties in a WarrantyClaim PretzelWarranty

that the bakery can bake 10, 000 of pretzels a day. If the bakery in the example
cannot bake 10, 000 of pretzels, then the warranty is breached and Chris has to
assert this breach within the DueDate of 14 days of closing. In case of assertion,
Eva has to make good within 28 days because of the PerformanceClaim Claim1,
otherwise she has to pay within 14 days a compensation of e1, 000 per 100 of
pretzels that cannot be baked, due to the CompensationClaim Claim2. Claim2
has a minimal compensation of e1000. Any claim under the warranty has a
Limitation of 42 days of closing. Further crucial facts are represented in the
bakery SPA. Due to debts of the Eva, a local bank Bank has ownership by way
of security in the shares in the bakery SecurityOwnership.

Manual inspection reveals the following inconsistencies in the SPA: Eva’s
primary claim according to the SPA is to transfer the bakery to Chris. In order
to fulfill her claim, she must be the owner. However, consider that Bank is the
owner of the bakery due to the transfer of ownership by way of security. Eva
cannot fulfill her claim as she is not the owner of the Bakery, which we consider
an inconsistency, or at least a loophole. Another inconsistency is due to the
timing of the claims. The PretzelWarranty has a Limitation of 42 days after
Closing, even if an assertion occurs within 14 days after Closing, then followed
by the 28 days of Claim1 and 14 days of Claim2. This implies that Claim2 can
take up to 56 days after closing, contradicting the Limitation of 42 days.

4 Formalization

We present the logical encoding of the objects of an SPA in decidable fragments of
first-order logic and demonstrate the encoding using the bakery SPA case study.
A model representing a satisfying assignment of the formalization represents a
possible execution of the considered SPA.

7

Fig. 2. Object Diagram of Bakery SPA

We intend the consistency analyses in Section 5 to occur before signing when
facts of life are only partially known. In an SPA, for example, a claim can define
the performance of a transfer, whereas it is unknown whether and on which day
the property relations will change. We use variables to model legal facts, and
constrain their possible values according to the constraints specified in the SPA.
We formalize an SPA using decidable fragments of first-order logic since it turns
out to be ideally suited to accommodate incomplete legal facts.

4.1 Logical Formalization of Contract Entities

An SPA consists of a set of claims with which an execution of the SPA has to
comply. Whether a claim is performed in an execution depends on the objective
situation and the behavior of the contracting parties that we call legal facts. We
define an execution of an SPA as a combination of legal facts such that for every
primary claim or independent claim, the claim itself or one of its associated
secondary claims is performed. Notice, that not every claim in an SPA needs to
be performed in a specific execution. First, we formalize the legal facts, then the
claims and lastly, combine the claims such that a satisfying assignment of the
formalization is a possible SPA execution.

Formalization of Legal Facts. An SPA according to the class diagram in
Figure 1 contains a set P of persons and a set O of objects. In the formalization,
we reference a person p or an object o by the index of p in P and the index of o
in O, which yields unique identifiers.

Dates in an SPA are usually given by calendar dates. Calendar dates are
complicated to process due to the many rules that govern them, such as the
treatment of a leap year. In the formalization, we simplify the processing and

8

represent dates using integer variables. An execution of an SPA begins on date
dS = 0 with the signature of all contract parties and the closing is performed on
date dC by the transfer of the business ownership. For each claim c in an SPA,
we create a date dc for its performance date.

An ownership can only be transferred from the owner to a new owner. Prop-
erty relations can be explicitly depicted by the class PropertyRight, with an
association Owner towards a Person p and an association Property towards an
Object o. We define a set PR and add to it a tuple (p, o) for every instance of
PropertyRight. We formalize the property rights by an uninterpreted function
owner(Object) : Person. φowner represents the property relations stated in the
SPA.

φowner =
∧

(p,o)∈PR

(owner(o) = p) (1)

Formalization of the Claims. Having formalized the legal facts in the SPA,
we are now ready to formalize the claims in the SPA. We define a set C which
contains the claims in an SPA. The set CI contains the primary claims and
independent warranty claims of an SPA. For every claim c, the set C(c) contains
every secondary claim s with a Trigger to c. In the following, we refer to a
claim in C(c) as a consequence claim of c.

Each claim c in the SPA contains a Performance lc, which must be performed
for the claim to be performed. Either lc is a logical formula or the name of an
operation in Figure 1. In the latter case, lc is replaced with the formalization
of the pre- and postconditions of the corresponding operation. For example, the
conditions of a property transfer p of an object o from the debtor d to a creditor
is represented by the constraint lpc ≡ owner(o) = d. For every claim c there
exists a performance date dc. The value of dc is either −1, which represents non-
performance, or in the interval [DueDate, Limitation]. If DueDate is undefined,
then its default value is the value of date Arise of the claim. In case DueDate

starts with the sign +, then we replace it with Arise + DueDate. We formalize
a claim r with φc ≡ (dc = −1) ∨ ((c.DueDate ≤ dc ≤ c.Limitation)⇒ lc).

A WarrantyClaim w is a special secondary claim since it is independent. For
this reason, in our formalization, the constraint dw = −1 encodes that w is met,
and otherwise it is breached on a date dw ≥ 0. A warranty w is formalized by
φw ≡ (dw = −1⇒ lw) ∨ (w.DueDate ≤ dw ≤ w.Limitation).

If a primary claim or an independent claim is not performed, the Debtor

is obliged to perform a consequence claim s that is associated to the claim. A
primary claim is breached when it is not performed (dc = −1), while a warranty
is breached on the date dw of the notification that the warranty Content is
not met. For the formalization of their consequence claims, we introduce a fresh
integer variable d′c with value −1 when the associated claim is performed. The
value of d′c is c.DueDate for a breached primary claim and the value of dc for
a breached warranty. In case s is a performance claim, its formalization with
a performance date ds and a Performance lc which is defined as φs ≡ (d′c <
ds ≤ s.Limitation)⇒ lc. In case s is a restitution claim, the SPA is withdrawn,

9

formally φs ≡ d′c < ds ≤ s.Limitation. In case s is a compensation claim,
the debtor pays a positive compensation ls to the creditor. The value of ls is the
Compensation that specifies the amount of the compensation. The compensation
is paid only above a minimum value Min and cannot be more than the maximum
value Max. In the other cases, ls = Compensation applies, as shown in Formula 2.
In every of the above cases, the compensation is performed.

φCompensation ≡ ls =

0, if Compensation < Min

Max if Compensation > Max

Compensation, otherwise

(2)

The compensation claim is formally a constraint φs ≡ φCompensation ∧ ((ds =
−1⇒ Compensation = 0) ∨ (d′c < ds ≤ s.Limitation)).

Execution of an SPA. We are now prepared to give the formalization φSPA
of SPA executions. φSPA encodes the property rights and the claims in an SPA,
and that in an execution of an SPA, for every primary claim and independent
claim, either the claim or one of its consequence claims need to be performed.

φSPA ≡ φowner ∧
∧
c∈C

φc ∧
∧
c∈CI

(dc ≥ 0 ∨
∨

∀s∈C(c)

ds ≥ 0). (3)

An SMT solver, such as Z3 [dMB08], can produce a satisfiable model for φSPA
in case an execution of the SPA exists. This model then represents an execution
of the SPA that is consistent with all constraints specified in the SPA.

For a contracting party, it is preferable to perform the primary claims and
independent claims, and not their consequence claims. We formalize this prefer-
ence with the help of a special set φsoft that is encoded in Z3 using soft-asserts.
A constraint in φsoft is satisfied if the model still satisfies φSPA, otherwise the
constraint is not unsatisfied.

φsoft ≡
∧
c∈CI

dc ≥ 0 ∧
∧

s∈C(c)

ds = −1 (4)

The SMT solver Z3 computes an optimal solution for the partially satisfiable
MaxSMT problem φv∧φsoft in which the primary claims and independent claims
are preferably performed. Z3 returns as a model an execution of the SPA that
satisfies as few consequence claims as possible.

4.2 Formalization of the Bakery SPA

Legal Facts in the Bakery SPA. The bakery SPA B describes a set of persons
PB = {Eva, Chris, Bank} and an object set OB = {Bakery, Price} with the
shares of the Bakery and the purchase price Price. Bakery is a property of
Bank due to the transfer of ownership by way of security, therefore:

φBowner ≡ owner(Bakery) = Bank (5)

10

Claims in the Bakery SPA. Eva is obliged by the TransferClaim to transfer
the shares of the bakery on a day du. She has to perform the TransferClaim on
the day of Closing (28) and if she misses that date, Chris has a claim on her
delivery. Eva can only perform the transfer if she is the owner of Bakery. The
formalization is the constraint

φTransferClaim ≡ (−1 = du) ∨ ((28 ≤ du)⇒ (owner(Bakery) = Eva)). (6)

Furthermore, Chris is obliged by PayClaim to pay Price to Eva. The condition
for the transfer is formally captured by the constraint owner(Price) = Chris.
The transfer is performed on a day dz and is due on day 28. The formalization
of the PayClaim is

φPayClaim ≡(−1 = dz) ∨ ((28 ≤ dz)⇒ owner(PurchasePrice) = Chris). (7)

If one of these two primary claims is not performed, then the related restitution
(shorthand: Res.) claim allows the respective creditor on a date ≥ 0 to withdraw
from the SPA, formally

φRes.Purchaser ≡ dRes.Purchaser = −1 ∨ PayClaim.DueDate < dRes.Purchaser (8)

φRes.Seller ≡ dRes.Seller = −1 ∨ TransferClaim.DueDate < dRes.Purchaser. (9)

If the warranty claim PretzelWarranty is breached, then Chris notifies this
breach on a day dg ≥ 0. dg = −1 means that there is no indication of a non-
performance and therefore the warranty Condition Pretzels = 10, 000 is met.
The formalization for the PretzelWarranty is

φPretzelWarranty ≡ (dg = −1⇒ Pretzels = 10000) ∨ (28 ≤ dg ≤ 28 + 14). (10)

In the bakery SPA, the warranty has the consequence Claim1, so that the seller
can subsequently perform the pretzel guarantee on a date dn.

φClaim1 ≡ (dn = −1) ∨ (dg < dn ≤ dg + 28⇒ Pretzels = 10000) (11)

On the other hand, it may be more advantageous for the debtor to pay a com-
pensation ls on a date ds for the Compensation. The value of ls is constrained
by the formula φsCompensation. If no compensation occurs (ds = −1), then ls is 0.
The formalization of the compensation claim Claim2 is

φClaim2 ≡ φsCompensation ∧ ((ds = −1⇒ ls = 0) ∨ (dg < ds ≤ dg + 28 + 14))

(12)

For a compensation claim, ls is either 0 or lies in the range of values between
a minimum value Min and a maximum value Max of the compensation. For a
paid pretzel compensation, ls must exceed the value of e1, 000 and an upper
limit Max is not specified. ls of the compensation claim is calculated according
to the the constraint φsCompensation.

φsCompensation ≡ ls =

{
0, if (10.000− Pretzels/100) ∗ 1000 ≤ 1.000

(10.000− Pretzels/100) ∗ 1000, otherwise
. (13)

11

Execution of Bakery SPA. An execution of the bakery SPA does not need
to perform every primary claim but can also perform an associated consequence
claim. The overall encoding of the claims in the bakery SPA is

φBSPA ≡φBowner ∧ (φTransferClaim ∨ φRes.Purchaser) ∧ (φPayClaim ∨ (14)

φRes.Seller) ∧ (φPretzelWarranty ∨ φClaim1 ∨ φClaim2) (15)

A model of φBSPA should preferably perform primary claims or independent
claims. This is formalized by

φBsoft ≡ du ≥ 0 ∧ dz ≥ 0 ∧ dRes.Purchaser = −1 ∧ (16)

dRes.Seller = −1 ∧ dg = −1 ∧ dn = −1 (17)

The bakery SPA is formalized by the constraint φBSPA ∧ φBsoft. Each satisfying
model of this constraint represents a possible execution of the bakery SPA.

5 Contract Analyses

We now propose static and dynamic analyses that find inconsistencies in the
object diagram of an SPA.

5.1 Static Analyses

In an SPA, legal elements can be missing. For instance, an SPA does legally
not exist if one of the essential entities (essentialia negotii) is missing. For in-
stance, according to the German civil code [BGB, § 433], the contract of sale
must contain, for example, the contracting parties, the purchase object as well
as the purchase price. In an SPA, every primary claim also needs at least one
consequence claim and every claim needs a DueDate by which it is to be per-
formed. We say a contract is statically inconsistent if one of these legal elements
is missing. When an SPA is drawn up according to the class diagram in Figure 1,
it is possible to statically check whether every essential legal element is present
in the SPA. A static inconsistency analysis is easy to implement using static
analyses and can be performed during the parsing (syntactic processing of the
contract text) of an SPA.

5.2 Dynamic Analyses

It is more complicated to find a dynamic inconsistency in a contract. An SPA
describes both legal facts and claims that the respective contracting parties have
agreed upon. For example, Eva agrees to transfer the shares of the bakery. In
order to transfer ownership of the shares, she must be the owner. This contradicts
the fact that the Bank is the owner of the bakery shares. Despite this fact,
the overall SPA can be fulfilled, since Chris can withdraw from the contract.
However, an SPA where Chris always has to withdraw is not desirable. For an

12

SPA, it is therefore essential, that each claim can be fulfilled individually, and
at least one execution of the SPA exists. We propose two semantic analyses for
an SPA:

Analysis I Can each claim be performed?
Analysis II Does there exist an execution of the SPA?

Formalization of the Dynamic Consistency Analyses. We now encode
analyses I and II for a given SPA using the constraints defined in Section 4. If an
encoded analysis is satisfiable, then an SMT solver returns a satisfying variable
assignment. If it is unsatisfiable, the SMT solver Z3 can return an unsatisfiability
core, which is a minimal subset of conditions that contradicts satisfiability. This
subset indicates which claims in the SPA contradict another and, hence, causes
an inconsistency in the SPA. These claims need to be changed in the SPA in
order to obtain a consistent contract. Remember, a primary claim c is performed
on its date dc and a warranty w is asserted on day dw. In the following, we
abuse notation and ignore that warranties behave differently to simplify the
presentation.

Analysis I is encoded in the constraints Φc and Φs for every claim in C. We
already formalized a claim c by a constraint φc, which has to perform on a date
dc. For every claim, in addition the property relation represented by φowner has
to hold. A primary claim or an independent claim c ∈ CI can be performed when
the following constraint is satisfiable.

Φc ≡ φowner ∧ φc ∧ dc ≥ 0. (18)

A consequence claim s ∈ C(c) in an SPA usually needs to be performed if, at the
same time, the claim c that is the Trigger of s is not performed:

Φs ≡ φowner ∧ (dc = −1) ∧ φc ∧ φs ∧ ds ≥ 0. (19)

If every constraint Φc and Φs is satisfiable, then every claim of the considered
formalized SPA can be performed.

Analysis II checks whether an execution of the SPA exists by assessing the
satisfiability of

ΦSPA ≡ φSPA ∧ φsoft. (20)

In addition, Analysis II recognizes whether all primary claims and independent
claims can be performed in the same execution. In this case, every constraint in
φsoft is satisfied.

Dynamic Consistency Analyses of the Bakery SPA. The bakery SPA is
given by the object diagram in Figure 2. ContractCheck generates the following
analyses and checks them for satisfiability by the SMT solver Z3.

13

Analysis I checks whether the individual primary claims and independent claims
are fulfillable. The TransferClaim is formalized in the Equation 6 and the cor-
responding Analysis I is

ΦTransferClaim ≡ φBowner ∧ φTransferClaim ∧ du ≥ 0 (21)

≡ owner(Bakery) = Bank ∧ (du = −1 ∨ (22)

(28 ≤ du ⇒ owner(Bakery) = Eva)) ∧ du ≥ 0. (23)

owner is a function, therefore the two constraints owner(Bakery) = Bank and
owner(Bakery) = Eva are mutually exclusive. As a consequence, the claim cannot
be performed, which indicates that the contract contains a logical inconsistency.
The SMT solver returns these two inconsistent constraints as an unsatisfiability
core.

Analysis I for the PayClaim (Equation 7) is

ΦPayClaim ≡ owner(Bakery) = Bank ∧ (dz = −1 ∨ (24)

(28 ≤ dz ⇒ owner(Price) = Chris)) ∧ dz ≥ 0. (25)

The SPA states that the closing should be performed on day dz = 28. A possible
model that an SMT solver computes contains the assignments dz = 28 and
owner(Price) = Chris. We can conclude that the PayClaim can be performed.

Analysis I for the PretzelWarranty (Equation 10) is

ΦPretzelWarranty ≡owner(Bakery) = Bank ∧ 28 ≤ dg ≤ 28 + 14 ∧ (26)

(dg = −1⇒ pretzels = 10000) ∧ dg = −1. (27)

ΦPretzelWarranty is satisfiable for dg = −1 and pretzels = 10000. Thus, Pretzel-
Warranty can be performed.

The Analysis II is encoded in the constraint ΦB
SPA. It can be used to check

whether an execution of the bakery SPA exists.

ΦB
SPA ≡φBSPA ∧ φBsoft (28)

The SMT solver that we use in our automated analysis searches for a satis-
fiable assignment and computes, for instance, a model with the date assign-
ments: du = −1, dz = 28, dg = −1, dn = −1, ds = −1, dResitutionSeller = −1,
dResitutionPurchaser = 29. This means that the bakery SPA can be performed,
even though it is inconsistent since the primary claim TransferClaim cannot be
performed. This exemplifies that inconsistency of an SPA does not mean that
it cannot be performed. Furthermore, as the SMT solver confirms, if the bakery
is not assigned by way of security but instead owner(Bakery) = Eva holds, the
pretzel bakery SPA would be consistent.

Further Dynamic Analyses

14

Time Analyses. The due date and limitation of a claim can refer to other time
events in the contract. In the bakery SPA, for instance, the DueDate of Claim1
depends on the assert date of PetzelWarranty. The combination of several due
dates and limitations can result in an inconsistency where the due date of a claim
is after the claim expired because of its limitation. Analysis ΦLimitation c checks
this inconsistency for every claim c ∈ C with a Limitation. For this analysis,
we need to substitute c.DueDate ≤ dc ≤ c.Limitation with c.DueDate ≤ dc.

ΦLimitation c ≡ φSPA[c.DueDate ≤ dc/c.DueDate ≤ dc ≤ c.Limitation] ∧ (29)

c.Limitation < c.DueDate (30)

In the bakery SPA, the claims Claim1 and Claim2 have a Trigger to Pretzel-

Warranty and a Limitation of 70 days.
The SMT solver Z3 computes that ΦLimitation Claim1 is unsatisfiable, which

entails that the time constraints are consistent. For ΦLimitation Claim2, Z3 com-
putes a model that, for instance, contains the following assignments: dClaim1 =
−1, dPretzelWarranty = 30 and dClaim2 = 71. With this execution, Chris asserts
PretzelWarranty on day 29, then Eva tries to perform Claim1 for 28 days but
fails. In this model, the compensation claim is due after 71 days, even the legal
basis of the claim is outdated already after 70 days. This shows that there is an
inconsistency in the timing between the due dates and the Limitation of the
PretzelWarranty.

6 The ContractCheck Tool

An SPA is usually created in natural language and is not formalized. Natural
language processing to automatically obtain a semantic model for the SPA is
beyond the scope of this paper. Instead, we provide parameterized structured
English text blocks to the user. We provide a formal semantics of these textblocks
within the tool ContractCheck [CCT22] that we developed to support the SPA
formalization and analysis, so that the user is relieved from the need to povide
the formalization manually.

The workflow of the tool is depicted in the diagram in Figure 3. The user
only needs to manually select, combine and parameterize the text blocks. A set
of blocks represents a contract and is the input into ContractCheck. The incon-
sistency analyses are performed automatically by ContractCheck. ContractCheck
parses the blocks and translates them into an object diagram. The tool extracts
the formal representation of the SPA from this object diagram and generates the
analysis code as described in Section 5, which Z3 then checks for satisfiability.
Finally, ContractCheck outputs the results.

Fig. 3. Tool Analysis Workflow, Modeled using BPMN [Obj14]

15

ID: Block1

Text:
The seller $seller.Name hereby sells shares of $shares.Name, with all
rights and obligations pertaining thereto, to the Purchaser
$purchaser.Name, who accepts such sale.

Object:
“spa:SPA”, “seller:Person”,“purchaser:Person”, “share:Share”,
“transfer:PrimaryClaim”

Assignment:
“seller.name=Eva”, “purchaser.name=Chris”, “spa.Seller=$seller”,
“transfer.Performance=$shares.transfer($purchaser)”, . . .

Fig. 4. Excerpt from Text Block Encoding of Bakery SPA

SPA Creation by Text Blocks. A user can create and analyze an SPA in the
web interface of ContractCheck. For every text block, a mapping from text to
the elements of the class diagrams in Figure 1 is defined. A text block consists
of a unique ID, a natural language Text that is parameterized by Objects and
value Assignments to them. Since the variables in Figure 1 are of a class type,
they represent the formalization of an SPA.

A text block example of the bakery SPA in JSON format is given in Figure 4.
The text block with the ID Block1 defines the essential components of an SPA:
A seller, a buyer, the shares to be sold and a price. The $-character in the text
indicates the assignment of a variable value, such as the attribute Name for a
person. For instance, the assignment to $seller.name is currently Eva, as defined
in the Assignment section of the block. A block may reference the variables
of another block by using the $-character. For instance, can the property right
prop assign to its attribute Property the value $Block1 share, which references
the variable share in Block1. The library of formalized text blocks can easily be
extended. Using the defined text blocks, a user can create an SPA and and have
it checked automatically using the above devined analyses in ContractCheck.

Representation of Results. The results of the analyses are also depicted in
the web interface of ContractCheck.

Fig. 5. Bakery SPA Execution

The syntactic analysis outputs
text messages for each missing legal
entity. The result of a dynamic anal-
ysis is either a satisfying model, or an
unsatisfiability core. ContractCheck
depicts a satisfying model by a se-
quence diagram. For the bakery SPA,
a computed execution is depicted in
Figure 5. The constraints contained
in the unsatisfiability core are being
added due to certain blocks, which
ContractCheck draws side by side in
the web interface, as shown in Fig-
ure 6. The figure shows Block1 and

16

Fig. 6. Inconsistence Output for the Bakery SPA.

the block with the chattel mortgage. These are the text blocks that created
constraints contained in the unsatisfiability core of ΦTransferClaim. The depicted
claims help the user to identify the claims that contradict each other.

Quantitative Evaluation. We analyzed with ContractCheck the bakery SPA
and run the dynamic analyses for the claims TransferClaim, PayClaim, Pretzel-
Warranty, RestitutionSeller RestitutionBuyer, Claim1, Claim2 and the overall
contract. The SMT constraint systems that encode the analyses contain at most
21 variables and 63 constraints. The memory demand of the SMT-solver was for
every analysis below 18MB and a model was found within 2ms. These results
show that our analyses encoding is efficient for small SPAs. An analysis of a
more realistic size SPA is currently being undertaken.

7 Conclusion

We presented a method for the logical modeling and consistency analysis of legal
contracts using the example of an SPA. We provided an ontology for SPAs using
UML class diagrams and illustrated the refinement of this ontology to a UML
object diagram for a case study. We discussed the logical formalization of the
SPA using decidable fragments of first-order logic via SMT solving. We finally
introduced the tool ContractCheck which allows textual editing of contracts
using building blocks, performs the automated derivation of the logical encoding
of the contract and the consistency conditions, invokes the Z3 SMT solver, and
returns the analysis results to the user. We view this work as an innovative
contribution to the enhancement of the quality of complex legal artifacts using
logic-based, automated analysis methods.

Future research will increase the scope and complexity of the contract arti-
facts that we consider. We will also further develop the analysis of the dynamic
execution of contracts by introducing state-machine models, among others in
order to assess the advantageousness of the contract for different contractual
parties in light of the possible dynamic execution scenarios.

References

BBB09. Philippe Balbiani, Jan M. Broersen, and Julien Brunel. Decision procedures
for a deontic logic modeling temporal inheritance of obligations. Electron.
Notes Theor. Comput. Sci., 231:69–89, 2009.

17

BGB. Bürgerliches Gesetzbuch, German Civil Code.
BK19. Tom Braegelmann and Markus Kaulartz. Rechtshandbuch Smart Contracts.

C.H. Beck, 2019.
BM21. Adilson Luiz Bonifácio and Wellington Aparecido Della Mura. Automatically

running experiments on checking multi-party contracts. Artif. Intell. Law,
29(3):287–310, 2021.

BPS10. Harold Boley, Adrian Paschke, and M. Omair Shafiq. Ruleml 1.0: The over-
arching specification of web rules. In RuleML, volume 6403 of Lecture Notes
in Computer Science, pages 162–178. Springer, 2010.

CCT22. ContractCheck, 2022. https://github.com/sen-uni-kn/ContractCheck.
CM07. Pablo F. Castro and T. S. E. Maibaum. A complete and compact propositional

deontic logic. In ICTAC, volume 4711 of Lecture Notes in Computer Science,
pages 109–123. Springer, 2007.

CM08. Pablo F. Castro and T. S. E. Maibaum. A tableaux system for deontic action
logic. In DEON, volume 5076 of Lecture Notes in Computer Science, pages
34–48. Springer, 2008.

CS17. John J. Camilleri and Gerardo Schneider. Modelling and analysis of normative
documents. J. Log. Algebraic Methods Program., 91:33–59, 2017.

dMB08. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In TACAS, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer, 2008.

DNS08. Nirmit Desai, Nanjangud C. Narendra, and Munindar P. Singh. Checking
correctness of business contracts via commitments. In AAMAS (2), pages
787–794. IFAAMAS, 2008.

EGB+01. Tom Engers, Rik Gerrits, Margherita Boekenoogen, Erwin Glassée, and Pa-
tries Kordelaar. Power: using uml/ocl for modeling legislation - an application
report. In 8th international conference on Artificial intelligence and law, pages
157–167. Association for Computing Machinery, 01 2001.

FMS+17. Carlos Faciano, Sergio Mera, Fernando Schapachnik, Ana Haydée Di Iorio,
Bibiana Luz Clara, Verónica Uriarte, Maŕıa Fernanda Giaccaglia, Maŕıa Belén
Ruffa, and Cristian Marcos. Performance improvement on legal model check-
ing. In ICAIL, pages 59–68. ACM, 2017.

GMS10. Daniel Goŕın, Sergio Mera, and Fernando Schapachnik. Model checking legal
documents. In JURIX, volume 223 of Frontiers in Artificial Intelligence and
Applications, pages 151–154. IOS Press, 2010.

GMS11. Daniel Goŕın, Sergio Mera, and Fernando Schapachnik. A software tool for
legal drafting. In FLACOS, volume 68 of EPTCS, pages 71–86, 2011.

Gru18. Michael Grupp. Wie baut man einen rechtsautomaten? In Markus Hartung,
Micha-Manuel Bues, and Gernot Halbleib, editors, Legal Tech, edge number:
1110. C.H. Beck, 2018.

GS22. Alexander Gebele and Kai-Steffen Scholz, editors. Beck’sches Formularbuch
Bürgerliches, Handels- und Wirtschaftsrecht. C.H. Beck, 14th edition, 2022.

HKZ12. Tom Hvitved, Felix Klaedtke, and Eugen Zalinescu. A trace-based model for
multiparty contracts. J. Log. Algebraic Methods Program., 81(2):72–98, 2012.

HLM20. Fritz Henglein, Christian Kjær Larsen, and Agata Murawska. A formally
verified static analysis framework for compositional contracts. In Financial
Cryptography Workshops, volume 12063 of Lecture Notes in Computer Science,
pages 599–619. Springer, 2020.

HS16. Claire A Hill and Steven Davidoff Solomon. Research Handbook on Mergers
and Acquisitions. Edward Elgar Publishing, 2016.

18

Kab05. Vandana Kabilan. Contract workflow model patterns using BPMN. In EMM-
SAD, volume 363 of CEUR Workshop Proceedings, pages 171–182. CEUR-
WS.org, 2005.

KJ03. Vandana Kabilan and Paul Johannesson. Semantic representation of contract
knowledge using multi tier ontology. In Isabel F. Cruz, Vipul Kashyap, Ste-
fan Decker, and Rainer Eckstein, editors, Proceedings of SWDB’03, The first
International Workshop on Semantic Web and Databases, Co-located with
VLDB 2003, Humboldt-Universität, Berlin, Germany, September 7-8, 2003,
pages 395–414, 2003.

KS16. Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic
Point of View, Second Edition. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2016.

MB15. Wellington Aparecido Della Mura and Adilson Luiz Bonifácio. Devising a
conflict detection method for multi-party contracts. In SCCC, pages 1–6.
IEEE, 2015.

MDCS10. Enrique Mart́ınez, Gregorio Dı́az, Maŕıa-Emilia Cambronero, and Gerardo
Schneider. A model for visual specification of e-contracts. In IEEE SCC,
pages 1–8. IEEE Computer Society, 2010.

MKK14. Nishtha Madaan, P. Radha Krishna, and Kamalakar Karlapalem. Consis-
tency detection in e-contract documents. In ICEGOV, pages 267–274. ACM,
2014.

MS22a. Wolfgang Meyer-Sparenberg. Unternehmenskaufvertrag (gmbh-anteile) –
käuferfreundlich. In Alexander Gebele and Kai-Steffen Scholz, editors,
Beck’sches Formularbuch Bürgerliches, Handels- und Wirtschaftsrecht. C.H.
Beck, 2022.

MS22b. Wolfgang Meyer-Sparenberg. Unternehmenskaufvertrag (gmbh-anteile) –
verkäuferfreundlich. In Alexander Gebele and Kai-Steffen Scholz, editors,
Beck’sches Formularbuch Bürgerliches, Handels- und Wirtschaftsrecht. C.H.
Beck, 2022.

MSJ22. Wolfgang Meyer-Sparenberg and Christof Jäckle, editors. Beck’sches M&A-
Handbuch: Planung, Gestaltung, Sonderformen, regulatorische Rahmenbedin-
gungen und Streitbeilegung bei Mergers & Acquisitions. C.H. Beck, 2nd edition,
2022.

OAS21. OASIS Standard. LegalRuleML, version 1.0, 2021. https:

//docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/

os/legalruleml-core-spec-v1.0-os.pdf.
Obj14. Object Management Group. Business Process Model and Notation,, 2014.

https://www.omg.org/spec/BPMN.
Obj17. Object Management Group. Unified Modelling Language, Specification 2.5.1,

2017. http://www.omg.org/spec/UML.
PF19. Boris P. Paal and Martin Fries. Smart Contracts. Mohr Siebeck, 2019.
Pfi22. Benedikt Pfisterer. Share deal. In Stefan Weise and Hans-Frieder Krauß,

editors, Beck’sche Online-Formulare. C.H. Beck, 2022.
PGR+11. Monica Palmirani, Guido Governatori, Antonino Rotolo, Said Tabet, Harold

Boley, and Adrian Paschke. Legalruleml: Xml-based rules and norms. In
RuleML America, volume 7018 of Lecture Notes in Computer Science, pages
298–312. Springer, 2011.

PPS07. Gordon J. Pace, Cristian Prisacariu, and Gerardo Schneider. Model checking
contracts - A case study. In ATVA, volume 4762 of Lecture Notes in Computer
Science, pages 82–97. Springer, 2007.

19

https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.pdf
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.pdf
https://docs.oasis-open.org/legalruleml/legalruleml-core-spec/v1.0/os/legalruleml-core-spec-v1.0-os.pdf
https://www.omg.org/spec/BPMN
http://www.omg.org/spec/UML

PS07. Cristian Prisacariu and Gerardo Schneider. A formal language for electronic
contracts. In FMOODS, volume 4468 of Lecture Notes in Computer Science,
pages 174–189. Springer, 2007.

PS12. Cristian Prisacariu and Gerardo Schneider. A dynamic deontic logic for com-
plex contracts. J. Log. Algebraic Methods Program., 81(4):458–490, 2012.

Sei18a. Christoph H. Seibt, editor. Beck’sches Formularbuch Mergers & Acquisitions.
C.H. Beck, 3rd edition, 2018.

Sei18b. Christoph H. Seibt. GmbH-Anteilskaufvertrag - ausführlich, käuferfreundlich.
In Beck’sches Formularbuch Mergers & Acquisitions, pages 324–456. C.H.
Beck, 2018.

Sei18c. Christoph H. Seibt. Gmbh-anteilskaufvertrag - ausführlich,
verkäuferfreundlich, deutsch. In Beck’sches Formularbuch Mergers &
Acquisitions, pages 233–323. C.H. Beck, München, 2018.

Sei18d. Christoph H. Seibt. Gmbh-anteilskaufvertrag - knapp, ausgewogen. In
Beck’sches Formularbuch Mergers & Acquisitions, pages 515–525. C.H. Beck,
2018.

Sei18e. Christoph H. Seibt. Gmbh-anteilskaufvertrag - knapp, verkäuferfreundlich. In
Beck’sches Formularbuch Mergers & Acquisitions, pages 457–514. C.H. Beck,
2018.

vH20a. Philipp von Hoyenberg. Share deal (GmbH, fester kaufpreis). In Lutz Weipert,
Peter Arnhold, and Marc Baltus, editors, Münchener Vertragshandbuch, pages
228–233. C.H. Beck, 2020.

vH20b. Philipp von Hoyenberg. Share deal (GmbH, mit stichtagsbilanzierung). In
Lutz Weipert, Peter Arnhold, and Marc Baltus, editors, Münchener Ver-
tragshandbuch, Beck-online Bücher, pages 203–227. C.H. Beck, 2020.

VW51. Georg Henrik Von Wright. Deontic logic. Mind, 60(237):1–15, 1951.
WAB20. Lutz Weipert, Peter Arnhold, and Marc Baltus, editors. Münchener Ver-

tragshandbuch: Band 2. C.H. Beck, 8th edition, 2020.
Wil22. Rüdiger Wilhelmi. § 453. In Beate Gsell, Wolfgang Krüger, Stephan Lorenz,

and Christoph Reymann, editors, Beck’scher Online Großkommentar, edge
note: 744–782. C.H. Beck, 2022.

WK22. Stefan Weise and Hans-Frieder Krauß, editors. Beck’sche Online-Formulare:
Vertrag. C.H. Beck, 2022.

WS05. Feng Wan and Munindar P. Singh. Formalizing and achieving multiparty
agreements via commitments. In AAMAS, pages 770–777. ACM, 2005.

20

Appendix

Text of Bakery SPA

§1 Main Content
1.1 The Seller Anna hereby sells the shares of Bakery AG with all rights

and obligations pertaining thereto (including the dividend right for the current
financial year), to the Purchaser Chris who accepts such sale. 1.2 The purchaser
pays the purchase price 40.000e to the seller.

1.3 If the transfer is not performed, the Purchaser has the right to withdraw.
1.4 If the pay is not performed, the Seller has the right to withdraw.

§2 The Seller hereby represents and warrants to the Purchaser in the form of an
independent guarantee pursuant to Section 311 (1) of the German Civil Code
and exclusively in accordance with the provisions of this Agreement that the
following statements (the “Warranties“) are true and correct as of the date of
this Agreement and that the warranties set forth in this paragraph will also be
true and correct as of the Closing Date:

2.1 The company can produce at least the 10.000 of Pretzels every day (Pret-
zel Warranty). In case of the breach of the warranty, it needs to be asserted within
14 days.
§3 The Purchaser’s rights arising from any inaccuracy of any of the Warranties
contained in §1 shall be limited to supplementary performance claims and com-
pensation claims against the Seller, subject to the provisions of

3.1 In case the Pretzel Warranty is not met and then the creditor may demand
subsequent performance within 28 business days from the debtor after having
transfered the shares.

3.2 In case the Pretzel Warranty is not met and the damage is above 1000e
then a compensation of 100e per 100 pretzels not baked pretzels is paid within
14 business days.
§4 Claims of §3 expire after 42 business days.
§5 The Bakery AG is transferred by way of security to Bank B.

Text Blocks of Bakery SPA

ID: Block1

Text:

The seller $seller.Name hereby sells shares of $shares.Name, with all rights
and obligations pertaining thereto (including the dividend right for the
current financial year), to the Purchaser $purchaser.Name, who accepts
such sale.

Object:
”spa:SPA”, ”seller:Person”, ”purchaser:Person”, ”shares:Shares”, ”trans-
fer:PrimaryClaim”

Assignment:

”purchaser.Name=Chris”, ”seller.Name=Eva”, ”spa.Seller=$seller”,
”spa.Purchaser=$purchaser”, ”shares.Name=Bakery AG”,
”spa.Object=$shares”, ”spa.Claim=$transfer”, ”spa.Closing=28”,
”transfer.Performance=Bakery.transfer($purchaser)”,
”transfer.Debtor=$seller”, ”transfer.Creditor=$purchaser”, ”trans-
fer.DueDate=28”

21

ID: Block2

Text:
The purchaser pays the purchase price $price.Amount e to the seller
on date $payment.DueDate.

Object: ”spa:$SPA”, ”price:PurchasePrice”, ”payment:PrimaryClaim”

Assignment:

”spa=$Block1 spa”, ”spa.Price=$price”, ”price.Amount=40000”,
”payment.Debtor=Block1 Purchaser”, ”spa.Claim=$payment”,
”payment.Creditor=Block1 Seller”, ”payment.DueDate=28”, ”pay-
ment.Performance=price.transfer($seller)”

ID: Block3

Text:
If the $claim is not performed, the $withdraw.Creditor
has the right to withdraw.

Object: ”claim:$Claim”, ”withdraw:RestitutionClaim”

Assignment:
”claim=$Block1 transfer”, ”withdraw.Name=Restitution Purchaser”,
”withdraw.Trigger=$claim”, ”withdraw.Debtor=$claim.Creditor”,
”withdraw.Creditor=$claim.Debtor”

ID: Block4

Text:
If the $claim is not performed, the $withdraw.Creditor
has the right to withdraw.

Object: ”claim:$Claim”, ”withdraw:RestitutionClaim”

Assignment:
”claim=$Block2 payment”, ”withdraw.Name=Restitution Seller”,
”withdraw.Trigger=$claim”, ”withdraw.Debtor=$claim.Creditor”,
”withdraw.Creditor=$claim.Debtor”

ID: Block5

Text:

The Seller hereby represents and warrants to the Purchaser in the form of
an independent guarantee pursuant to Section 311 (1) of the German Civil
Code and exclusively in accordance with the provisions of this Agreement
that the following statements (the “Warranties“) are true and correct as
of the date of this Agreement and that the Warranties set forth in this
paragraph will also be true and correct as of the Closing Date:

ID: Block6

Text:
The company can produce at least the $amount of $thing every day.
In case of the breach of the warranty, it needs to be asserted within
$warranty.Limitation days.

Object:
”warranty:WarrantyClaim”, ”count:Integer”, ”amount:Integer”,
”thing:String”

Assignment:

”warranty.Name=PretzelWarranty”, ”warranty.Debtor=$Block1 seller”,
”warranty.DueDate=$Block1 spa.Closing”, ”thing=Pretzels”,
”warranty.Creditor=$Block1 purchaser”, ”warranty.Limitation = +14”,
”warranty.Performance=(Block6 count=Block6 amount)”, ”amount=10000”,
”Block1 spa.Claim=$warranty”

22

ID: Block7

Text:

The Purchaser’s rights arising from any inaccuracy of any of the War-
ranties contained in $block shall be limited to supplementary performance
claims and compensation claims against the Seller, subject to the provi-
sions of

Object: ”claim:$Claim”, ”per:PerformanceClaim”, ”block:$Block”

Assignment:
”block=$Block6”, “claim=$Block6 warranty”, “per.Trigger=$claim”,
“per.Name=Claim1”, “per.DueDate=+28”,
“per.Debtor=$claim.Debtor”, “per.Creditor=$claim.Creditor”

ID: Block8

Text:
In case the $claim is not met and then the creditor may demand subse-
quent performance within $per.DueDate business days from the debtor
after having transfered the shares.

Object: ”claim:$Claim”, ”per:PerformanceClaim”

Assignment:
“claim=$Block6 warranty”, ”per.Name=Claim1”, ”per.Trigger=$claim”,
”per.DueDate=+28”, ”per.Performance=$claim.Performance”,
”per.Debtor=$claim.Debtor”, ”per.Creditor=$claim.Creditor”

ID: Block9

Text:
In case the $claim is not met and the damage is above $comp.Min ethen
a compensation $claim.Performance is paid within $comp.DueDate days.

Object: ”claim:$Claim”, ”comp:CompensationClaim”

Assignment:

“claim=$Block6 warranty”, ”comp.Name=Claim2”, ”comp.Min=1000”,
”comp.DueDate=+42”,”comp.Trigger=$claim”,
”comp.Compensation=((Block6 amount-Block6 count)/100)*1000”,
”comp.Debtor=$claim.Debtor”, ”comp.Creditor=$claim.Creditor”

ID: Block10

Text: Claims in $block expire after $d business days.
Objects: ”claim:$Claim”, ”d:Date”, ”block:Block”

Assignment: “block=Block8”, “d=28+42”, “${//$block//Claim}.Limitation=$d”

ID: Block11

Text: The $object is transferred by way of security to $owner.Name.
Objects: ”owner:Person”, ”object:$Object”, ”prop:PropertyRight”

Assignment:
”owner.Name=Bank”, ”object=$Block1 shares”,
”prop.Owner=$owner”, ”prop.Property=$object”

23

	Automated Consistency Analysis for Legal Contracts

