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Abstract We present algorithms and techniques for the repair of timed system models,
given as networks of timed automata (NTA). The repair is based on an analysis of timed
diagnostic traces (TDTs) that are computed by real-time model checking tools, such as UP-
PAAL, when they detect the violation of a timed safety property. We present an encoding
of TDTs in linear real arithmetic and use the MaxSMT capabilities of the SMT solver Z3
to suggest a minimal number of possible syntactic repairs of the analyzed model. The sug-
gested repairs include modified values for clock bounds in location invariants and transition
guards, adding or removing clock resets, etc. We then present an admissibility criterion,
called functional equivalence, which ensures that the proposed repair preserves the func-
tional behavior of the considered NTA. We discuss a proof-of-concept tool called TARTAR

that we have developed, implementing the repair and admissibility analysis, and give in-
sights into its design and architecture. We evaluate the proposed repair technique on faulty
mutations generated from a diverse suite of case studies taken from the literature. We show
that TARTAR can admissibly repair 69% to 88% of the seeded errors in the considered sys-
tem models.
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1 Introduction

The analysis of system design models using model checking technology is an important
step in the system design process. It enables the automated verification of system properties
against given design models. The automated nature of model checking facilitates the integra-
tion of the verification step into the design process since it requires no further intervention
of the designer once the model has been formulated and the property has been specified.

Often it is sufficient to abstract from real time aspects when checking system properties,
in particular when the focus is on functional aspects of the system. However, in certain
domains, non-functional properties of the system such as response times or the timing of
periodic behavior play an important role. In such cases, it is necessary to incorporate real
time aspects into the models and the specification, as well as to use specialized real-time
model checking tools, such as UPPAAL [BLL+95], Kronos [Yov97] or opaal [DHJ+11]
during the verification step.

Next to the automatic nature of model checking, the ability to return counterexamples,
in real-time model checking often referred to as timed diagnostic traces (TDT), is a fur-
ther practical benefit of the use of model checking technology. A TDT describes a timed
sequence of steps that lead the design model from the initial state of the system into a state
violating a real-time property. However, a TDT alone neither constitutes a causal explana-
tion of the property violation, nor does it provide hints as to how to correct the model.

We present an automated method that computes proposals for possible repairs of a net-
work of timed automata (NTA) that avoid the violation of a timed safety property. Consider
the TDT depicted as a time annotated sequence diagram [BL97] in Figure 1(c). This scenario
describes a simple message exchange where the process client sends a message req to
the process db which, after some processing steps returns a message ser to client. As-
sume a requirement on the system stating that the time from sending req to receiving ser
is not to be more than 4 time units. Further assume that the timing interval annotations on the
sequence diagram represent the minimum and maximum time for the message transmission
and processing steps that the NTA, from which the diagram has been derived, permits. It is
then easy to see that it is possible to execute the system in such a way that this property is
violated.

(a) Timed Automata client (b) Timed Automata db (c) TDT tdt

Fig. 1 Network of Timed Automata - Running Example

Various changes to the underlying NTA model depicted in Figure 1 may avoid this prop-
erty violation. We present analyses that can suggest a whole range of repairs in addition to
clock bound variation, such as modifying clock bounds, comparison operators in constraints,
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clock references, clock resets, and location urgency. Examples of repairs computed for the
model in Figure 1 are:

– Reducing the maximum time it takes to transmit ser message to be at most 1 time unit
by exchanging z <= 2 with z <= 1.

– Exchanging the comparison operator in the constraint w ≥ 1 to w < 1 ensures that the
time to send a request is below 1 time unit.

– An exchange of clock z in z ≤ 2 with clock y restricts the time of processing and
receiving the response to at most 2 time units.

– To reset the clock y on the previous transition instead ensures that the time for sending
and processing the request is below 1 time unit.

– Making the location serReceiving urgent reduces the time to receive a response to 0.

Proposing such changes to the model may either serve to correct clerical mistakes made
during the editing of the model, or point to necessary changes in the dimensioning of its
time resources, thus contributing to improved design space exploration.

The repair method described in this paper relies on an encoding of a TDT as a constraint
system in linear real arithmetic. This encoding provides a symbolic abstract semantics for
the TDT by constraining the sojourn time of the NTA in the locations visited along the trace.
The constraint system is then augmented by auxiliary model variation variables which rep-
resent syntactic changes to the NTA model, for instance, the variation of a location invariant
condition or a transition guard. We assert that the thus modified constraint system implies
the non-reachability of a violation. At the same time, we assert that the model variation vari-
ables have a value that implies that no change of the NTA model will occur, for instance,
by setting a clock bound variation variable to 0. This renders the resulting constraint system
unsatisfiable.

In order to compute a repair, we derive a partial MaxSMT instance by turning the con-
straints that disable any repair into soft constraints. We solve this MaxSMT instance using
the SMT solver Z3 [dMB08]. If the MaxSMT instance admits a solution, the resulting model
provides values of the model variation variables. These values indicate a repair of the NTA
model which entails that along the sequence of locations represented by the TDT, the prop-
erty violation will no longer be reachable.

In a next step it is necessary to check whether the computed repair is an admissible re-
pair in the context of the full NTA. This is important since the repair was computed locally
with respect to only a single given TDT. Thus, it is necessary to define a notion of admis-
sibility that is reasonable and helpful in this setting. To this end, we propose the notion of
functional equivalence which states that as a result of the computed repair, neither erstwhile
existing functional behavior will be eliminated, nor will new functional behavior be added.
Functional behavior in this sense is represented by the languages accepted by the untimed
automata of the unrepaired and the repaired NTAs. Functional equivalence is then defined
as equivalence of the languages accepted by these automata. We propose a zone-based au-
tomaton construction for implementing the functional equivalence test that is efficient in
practice.

We have implemented our proposed method in a proof-of-concept tool called TARTAR.
Our evaluation of TARTAR is based on several non-trivial NTA models taken from the liter-
ature, including the frequently considered pacemaker model [JPM+12]. For each model, we
automatically generated mutants by injecting syntactic modifications which we then model
checked using UPPAAL and repaired using TARTAR. The evaluation shows that our tech-
nique is able to compute an admissible repair for 69% to 88% of the detected faults.
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Related Work. There are relatively few results available on a formal treatment of TDTs.
The zone-based approach to real-time model checking, which relies on a constraint-based
abstraction of the state space, is proposed in [HNSY94]. The use of constraint solving to per-
form reachability analysis for NTAs is described in [YPD94]. This approach ultimately lead
to the on-the-fly reachability analysis algorithm used in UPPAAL [BY03]. [DKL07] defines
the notion of a time-concrete UPPAAL counterexample. Work documented in [PvV10] de-
scribes the computation of concrete delays for symbolic TDTs. The above cited approaches
address neither fault analysis nor repair for TDTs. Our use of MaxSMT solvers for com-
puting minimal repairs is inspired by the use MaxSAT solvers for fault localization in C
programs, which was first explored in the BugAssist tool [JM11]. We present an approach
that uses a counterexample to prevent bad behavior while the technique in [BSGC21] com-
putes repairs to ensure missing expected behavior. The algorithm presented in [EYG22]
repairs a TA by adding time constraints, whereas the approach in this paper modifies ex-
isting time constraints. Our approach also shares some similarities with syntax-guided
synthesis [ABD+15, RKT+17], which has also been deployed in the context of program
repair [LCL+17]. One key difference is how we determine the admissibility of a repair in
the overall system, which takes advantage of the semantic restrictions imposed by timed
automata. The modification of time constraints by extra variables can also be interpreted as
a parametric timed automata (PTA). A PTA is used in [AAGR19] to repair a TA that does
not behave according to an oracle. Each of the generated repairs can only prevent a finite
number of explicit timed traces whereas the repairs generated by our approach can prevent
an infinite number of symbolically encoded traces. The algorithm in [GSN+16] checks
whether a synthesized TA exists for a given set of properties. If this automaton does not ex-
ist, mixed integer linear programming is used to modify bounds in the specified properties
such that a TA can be synthesized. The modifications of bounds in STL specifications is a
different goal than the modification of bounds in the TA that we propose.

Contributions. We augment in this work the original publications in [KLW19]
and [KLW20] on computing syntactic repairs for timed systems. More examples in this
work illustrate the approach. We also added proofs for the theorems, extended the defini-
tions given in the preliminaries and harmonized the presentation.

Structure of the Paper. We will introduce the automata and real-time concepts needed in our
analysis in Section 2. In Section 3, we present the logical formalization of TDTs. The repair
and admissibility analyses are presented in Section 4 and 5, respectively. We present the
implementation in the tool TARTAR in Section 6. In Section 7, we report on experimental
evaluation and case studies. We provide a conclusion and perspectives for future research in
Section 8.

2 Preliminaries

The timed automaton model that we use in this paper is adapted from [BY03]. Given a set of
clocks C, we denote by B(C) the set of all clock constraints over C, which are conjunctions
of atomic clock constraints of the form c ∼ n, where c ∈ C, ∼∈ {<,≤,=,≥, >} and
n ∈ N. For the remainder of this section, we fix a finite set of clocks C.

Definition 1 (Timed Automaton (TA) [BY03]) A Timed Automaton T is a tuple T =
(L, l0, Σ,Θ, I) where L is a finite set of locations, l0 ∈ L is an initial location,Σ is a finite
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set of actions, Θ ⊆ L×B(C)×Σ × 2C × L is the transition relation, and I : L→ B(C)
denotes a labeling of locations with clock constraints, referred to as location invariants. For
θ ∈ Θ with θ = (l, g, a, r, l′), we refer to g as the guard of θ and to r as its clock resets.

The operational semantics of T is given by a timed transition system (TTS) in Defini-
tion 2. A clock valuation u is a functionC → R≥0. For a clock constraint b, we write u |= b
iff b evaluates to true in u. There are two types of transitions. An action transition models
the execution of an action whose guard is satisfied. These transitions are instantaneous and
reset the specified clocks. The passing of time in a location is modeled by delay transitions.
Both types of transitions guarantee that location invariants are satisfied in the pre and post
state.

Definition 2 (Timed Transition System (TTS) [BFL+18]) For a Timed Automaton
(L, l0, Σ,Θ, I), a timed transition system is a tuple H = (S, s0, Σ,→) where S =
{(l, u) ∈ L × RC≥0 | u |= I(l)}, s0 is the initial state (l0, u0) such that u0 maps all

clocks to 0, and a transition (l, u)
t−→ (l′, u′) is in→ iff

– (action transition) t = (l, g, a, r, l′) ∈ Θ, u |= I(l) ∧ g, u′ |= I(l′) and for all clocks
c ∈ C, u′(c) = 0 if c ∈ r and u′(c) = u(c) otherwise; or

– (delay transition) t ∈ R≥0, l = l′, u |= I(l), u′ |= I(l) and u′ = u+ t.

An urgent location is a location that has to be left again without taking a delay transi-
tion [BFL+18]. Urgent locations are syntactic sugar of Uppaal and can be expressed as an
additional clock p which is reset with entering the location and a location invariant p = 0.

A run [BY03] of a TTS with initial state s0 is a sequence of states and actions of the
form s0

t1−→ a1−→ s1
t2−→ a2−→ . . . with si = (li, ui) where every ti is in R≥0 with (li, ui)

ti−→
(li, ui+1) in→ , and every ai is in Σ with (li, ui+1)

(li,g,ai,r,li+1)−−−−−−−−−→ (li+1, ui+1) in→.
A timed trace [BY03] is a sequence of timed actions ξ = (t′1, a1), (t

′
2, a2), . . . that is

generated by a run of a TTS associated with a TA, where t′i =
∑

0<j≤i
tj . We capture families

of timed traces that perform the same sequence of action transitions but differ in their delay
transitions by the notion of a symbolic timed trace.

Definition 3 (Symbolic Timed Trace (STT)) A symbolic timed trace (STT) of T is a
sequence of actions Y= θ0, . . . , θn−1. A realization of Y is a sequence of delay val-

ues δ0, . . . , δn such that there exists states s0, . . . , sn, sn+1 with si
δi−→ θi−→ si+1 for all

i ∈ [0, n) and sn
δn−→ sn+1. We say that a STT is feasible if it has at least one realization.

The timed language for a TA T is the set of all its timed traces, which we denote by
LT (T ). The untimed language of T consists of words over T ’s alphabet Σ so that there
exists at least one timed trace of T forming this word. Formally, for a timed trace ξ =
(t1, a1), (t2, a2) . . . , the untime operator µ(ξ) returns an untimed trace ξµ = a1a2... .
We define the untimed language Lµ(T ) of the TA T as Lµ(T ) = {µ(ξ) | ξ ∈ LT (T )}.
We represent a finite untimed language using a Nondeterministic Finite Automaton and an
infinite untimed language using a Nondeterministic Büchi Automaton.

Definition 4 (Nondetermistic Finite Automaton (NFA) [BFL+18]) A nondeterministic
finite automaton is a tuple M = (S,Σ,→, S0, F ) where S denotes a finite set of states,
Σ denotes an alphabet,→⊆ S × Σ × S denotes a transition relation, S0 ⊆ S denotes the
set of initial states, and F ⊆ S denotes the set of acceptance states. We write s a−→ s′
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when (s, a, s′) ∈→. An execution of M is a sequence s0
a0−→ s1 . . .

an−1−→ sn such that
s0 ∈ S0 and sn ∈ F . A run s0, s1, . . . , sn of M is the projection of an execution s0

a0−→
s1 . . .

an−1−→ sn on the state sequence. M accepts a word w = a0, a1, . . . , an−1 when an
execution s0

a0−→ s1 . . .
an−1−→ sn exists. The language Lf (M) recognized by M is the set

of (finite length) words accepted by M .

Definition 5 (Nondeterministic Büchi Automaton (NBA) [BFL+18]) An NFA B =
(S,Σ,→, S0, F ) is called a Büchi automaton in case it is used with an acceptance con-
dition for infinite input sequences. For an infinite sequence r of states, let inf(r) = {s ∈ S |
ri = s for infinitely many i}. An NBA B accepts an infinite word w = a1a2 . . ., w ∈ Σω ,
iff B has an infinite run r = s0s1 . . . of states on w such that s0 ∈ S0, inf(r) ∩ F 6= ∅ and
∀i ∈ N+

0 , (si, ai+1, si+1) ∈→. The language L(B) ⊆ Σω recognized by an NBA B is
the set of infinite words accepted by B. pref(L(B)) denotes the set of all finite prefixes of
words in L(B).

For a given NFA or NBA M , the closure cl(M) denotes the automaton obtained from
M by turning every state into an accepting state. We call M closed iff M = cl(M). Notice
that an NBA accepts a safety language if and only if it is closed [AS87].

We use zones as given in Definition 6 in order to abstract an infinite-state TTS into a
finite-state Zone Automaton, c.f. Definition 7.

Definition 6 (Zone [BFL+18]) A diagonal constraint is an extended clock constraint of the
form x − y ∼ n with two clocks x and y. For a finite set C of clocks, let JϕKC = {u ∈
RC≥0 | u |= ϕ} denote the set of clock evaluations u satisfying a conjunction ϕ of diagonal
clock constraints. A subset z ⊆ RC≥0 is called a zone if there exists ϕ for which z = JϕKC .

Definition 7 (Zone Automaton (adapted from [BFL+18])) Assume a Timed Automaton
T = (L, l0, Σ,Θ, I). We define the zone automaton JT KZ = (SZ , s

0
Z , ΣZ , ΘZ) for T

such that SZ = {(l, z) | l ∈ L, z ⊆ RC≥0 is a zone}, s0Z = (l0, {u0}), ΣZ = Σ ∪ {δ} and
a transition relation ΘZ ⊆ SZ × ΣZ × SZ . Let z↑ = {u + d | u ∈ z, d ∈ R+

0 }, and let
z[r] denote the clock reset for a clock set r in a zone z such that in the resulting zone every
clock in r evaluates to 0. We write l a

; l′ for a transition (l, a, l′) ∈ ΘZ . The transition
relation ΘZ is the smallest relation that satisfies the following rules:

1. If (l, z) ∈ SZ , then (l, z)
δ
; (l, z↑ ∩ JI(l)KC).

2. If l
ϕ,a,r−−−→ l′ ∈ Θ, then (l, z)

a
; (l′, (z ∩ JϕKC)[r] ∩ JI(l′)KC).

A trace a0 . . . an is a trace of ΘZ iff for 0 ≤ i ≤ n, li
ai
; li+1 exists and l0 = l0. We call a

trace of ΘZ a symbolic trace.
LT (JT KZ) denotes the set of timed traces with time delays that satisfy the zones of at

least one symbolic trace of JT KZ .

Property Specification. We focus on the analysis of timed safety properties, which we
characterize by an invariant formula that has to hold for all reachable states of a TA.
These properties state, for instance, that there are certain locations in which the value of
a clock variable is not above, equal to or below a certain (integer) bound. Formally, let
T = (L, l0, C,Σ,Θ, I) be a TA. A timed safety property Π is a Boolean combination of
atomic clock constraints and location predicates @l where l ∈ L. A location predicate @l
holds in a state (l′, u) of T iff l′ = l. We say that an STT Y witnesses a violation of Π in
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T if there exists a realization of Y whose induced final state does not satisfy Π . We refer to
such an STT as a timed diagnostic trace (TDT) of T for Π .

T satisfies Π iff all its reachable states satisfy Π . This problem can be decided us-
ing model checking tools such as Kronos [Yov97] and UPPAAL [BLL+95]. UPPAAL in
particular computes a finite abstraction of the state space of an NTA using zones for the
graph construction. Reachability analysis is then performed by an on-the-fly search of the
zone graph. If the property is violated, the tool generates a feasible TDT that witnesses
the violation. The objective of our work is to analyze TDTs and to propose repairs for the
property violation that they represent. We use TDTs generated by the UPPAAL tool in our
implementation, but we maintain that our results can be adapted to any other tool producing
TDTs.

We further note that UPPAAL takes a network of timed automata (NTA) as input, which
is a CCS [Mil80] style parallel composition of timed automata T1 | . . . | Tn, yielding
a TA. Since our analysis and repair techniques focus on timing-related errors rather than
synchronization errors, we use TAs rather than NTAs in our formalization. However, our
repair analysis can be directly applied to the TA obtained by the parallel composition and
the implementation in TARTAR works directly on NTAs.

Example 1 The running example that we use throughout the paper consists of an NTA con-
taining two timed automata, depicted in Figure 1. As alluded to in the introduction, the
TAs client and db synchronize via the exchange of messages modeled by the pairs
of send and receive actions req! and req? as well as ser! and ser?, respectively.
The transmission time of the req message is controlled by the clock variable w and can
range between 1 and 2 time units. This is achieved by the location invariant w<=2 on the
reqReceived location in db together with the transition guard w>=1 on the transition
from reqReceived to reqProcessing. A similar mechanism using clock variable z
is used to constrain the timing of the transfer of message ser to be within 1 and 2 time
units. The processing time in db is constrained to exactly 1 time unit by the location invari-
ant y<=1 and the transition guard y>=1. In client, a transition to location timeout
can be triggered when the guard z==2 is satisfied in location serReceiving. The clock
variable x, which is not reset until the next req message is sent, is recording the time that
has elapsed since sending req and is used in location serReceiving in order to verify
if more than 4 time units have passed since req was sent. Every transition in the system is
labeled with an action τ . The timed safety property that we will consider for our example is
Π = ¬@client.serReceiving ∨ (x ≤ 4). For the violation of this property, UPPAAL
produces the TDT S = θ0 . . . θ3 where

θ0 = ((initial,reqAwaiting), ∅, τ, {x}, (reqCreate,reqAwaiting))
θ1 = ((reqCreate,reqAwaiting), ∅, τ, {w}, (reqSent,reqReceived))
θ2 = ((reqSent,reqReceived), {w ≥ 1}, τ, {y}, (reqSent,reqProcessing))
θ3 = ((reqSent,reqProcessing), {y ≥ 1}, τ, {z}, (serReceiving,reqAwaiting)).

3 Logical Encoding of Timed Diagnostic Traces

We present a logical formalization of the concept of Timed Diagnostic Traces (TDTs) gen-
erated by a real-time model checking tool. Practical model checking tools generate these
traces in a textual format. In the case of UPPAAL, which we use for generating the traces
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used in the analysis in this paper, symbolic TDTs are stored in an XML formatted file. The
formalization that we develop will enable a logic encoding and automated analysis of TDTs.

3.1 Timed Diagnostic Trace (TDT)

A TDT is a linear data structure that represents steps from an initial state of the system
leading into a property violating state of an NTA. Given an NTA N and property Π this
means that the final state in the TDT is violating Π . Figure 2 represents an excerpt of a
TDT obtained from the UPPAAL tool and illustrates the violation of the property Π =
¬@client.serReceiving ∨ (x < 4) by the NTA in Figure 1.

The TDT contains information regarding the locations, location invariants, transition
guards and reset operations affected by the execution of transitions. It also contains a repre-
sentation of the difference bound matrices (DBMs) that are attached to every location in the
NTA. The TDTs that we consider are symbolic in the sense that they do not give concrete
time values at which certain locations are reached, but rather constraints on the clock values
that need to be met for the property violating state to be reachable. For instance, consider
the DBM table entry <clockbound clock1="sys.x" clock2="sys.t(0)"
bound="5" comp="<="/> in Figure 2 which represents the constraint on x in the state
serReceiving as x ≤ 5. In other words, no concrete value of x when entering the vio-
lating state is given.

The objective of our analysis is to identify possible syntactic changes to the NTA model
in order to propose repairs for the violation of timed reachability properties. The symbolic
representation of the valid clock assignments per location in the TDT given by DBMs, as
is done for instance by UPPAAL, is not useful for this purpose. This is due to the fact
that DBMs perform operations and optimizations on the constraints when they construct
zones [BY03]. As a result, bound values in the UPPAAL code can not necessarily be directly
associated with bound entries in the DBM. It is therefore necessary to define our own logic
representation of the TDT. This representation is based on the following observations:

– The TDT represents an equivalence class of runs of the NTA in the sense that all runs in
this class traverse the same sequence of action transitions. This yieds a sequence l0...ln
of NTA locations that are reached during the execution of the TDT.

– For every location lj , there is a corresponding sojourn time in this location that we
denote using a positive real valued delay variable δj .

– The value of every clock variable c in location lj , which we denote by cj , is constrained
by the value of cj when entering the location plus the delay δj and any location invariant
constraint that refers to c in location lj . Notice that we need to be able to refer to the val-
ues of clocks in individual location, which is why we choose a Static Single Assignment
form encoding of the clock variables.

– For any clock c in the successor location lj+1, the value cj+1 is determined by the value
cj plus the sojourn time δj , if the clock is not being reset during the transition from lj
to lj+1, or 0 otherwise.

– The sojourn time δj in a location lj is constrained by the clock invariant conditions
of the NTA component TAs that perform the computation step triggering the transition
into location lj+1. This means that the clock value cj plus δj are bounded by any clock
constraint that refers to a clock variable c. For instance, in the TDT in Figure 2, the
location LocVec4 contains the TA location reqProcessing with the invariant y <=
1. Hence, the sojourn time in LocVec4 is constrained by y4 + δ4 ≤ 1.
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<trace initial_node="State1" trace_options="symbolic">
<system>
<clock name="t(0)" id="sys.t(0)"/>
<clock name="x" id="sys.x"/>
...
<process id="db" name="db">
<location id="db.reqAwaiting" name="reqAwaiting">...</location>
<location id="db.reqProcessing" name="reqProcessing"><![CDATA[1

&& y <= 1]]>
</location>
...
<edge id="db.Edge3" from="db.Processing" to="db.reqAwaiting">
<guard>y >= 1</guard>
<sync>ser!</sync>
<update>z:=0</update></edge>
...
<edge id="client.Edge3" from="client.reqSent"

to="client.serReceiving">
<guard>1</guard>
<sync>ser?</sync>
<update>1</update></edge>
...
<node id="State4" location_vector="LocVec4" .../>
<node id="State5" location_vector="LocVec5" .../>
...
<location_vector id="LocVec4" locations="client.reqSent

db.reqProcessing"/>
<location_vector id="LocVec5" locations="client.serReceiving

db.reqAwaiting"/>
...
<dbm_instance id="DBM5">
<clockbound clock1="sys.x" clock2="sys.t(0)" bound="5" comp="<="/>
</dbm_instance>
...
<transition from="State4" to="State5" edges="client.Edge3 db.Edge3 "/>
</trace>

Fig. 2 Excerpt from the XML representation of a symbolic TDT generated by UPPAAL

– The transition from location lj to location lj+1 is guarded by clock constraints on
some of the clocks c, if at least one is given, and otherwise by true. This means
that the time when entering location lj as well as the time elapsing while in lo-
cation lj are constrained by these guards. We represent this by adding constraints
of the form cj + δj ∼ β with β ∈ N to the symbolic constraint system. No-
tice that only the transition guards of the component TAs that performed the step
leading to the step in the TDT need to be taken into account. In case the step
performs a synchronization, the conjunctions of the transition guards for all clock
variables on the sending and the receiving transitions need to be considered. To il-
lustrate this point consider the <transition from="State4" to="State5"
edges="client.Edge3 db.Edge3"/> entry in the TDT in Figure 2 which spec-
ifies that both the client and db component TAs are executing a step. The synchro-
nization is indicated by the <sync>ser!</sync> and <sync>ser?</sync> en-
tries which refer to edges in the transition graph of the TAs engaged in this synchronous
communication step. The <guard>1</guard> and <guard>y >= 1</guard>
entries in these edges imply that this transition needs to be guarded by the condition
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true ∧ y ≥ 1, where the true corresponds to the transition guard in the client TA
and y ≥ 1 is the guard in the db TA.

– When a location lj is labeled as urgent, lj has to be left immediately and we constrain
the delay δj in this location to have value 0.

3.2 TDT Formalization

Our analysis relies on a logical encoding of TDTs in the theory of quantifier-free linear real
arithmetic. For the remainder of this paper, we fix a TA T = (L, l0, C,Σ,Θ, I) with a
safety property Π and assume that Y= θ0, . . . , θn−1 is an STT of T . We use the following
notation for our logical encoding where j ∈ [0, n+1] is a position in a realization of Y and
c ∈ C is a clock:

– lj denotes the location of the pre state of θj for j < n and the location of the post state
of θj−1 for j = n.

– cj denotes the value of clock variable c when reaching the state at position j.
– δj denotes the delay of the delay transition leaving the state at position j ≤ n.
– resetj denotes the set of clock variables that are being reset by action θj for j < n.
– ibounds(c, l) denotes the set of pairs (β,∼) such that the atomic clock constraint c ∼ β

appears in the location invariant I(l).
– gbounds(c, θ) denotes the set of pairs (β,∼) such that the atomic clock constraint c ∼ β

appears in the guard of action θ.
– urgent denotes the set of indices of those locations lj , 1 ≤ j ≤ n, which are marked as

urgent in the TA model from which Y has been derived.

To illustrate the use of ibounds, assume location l to be labeled with invariants x >
2 ∧ x ≤ 4 ∧ y ≤ 1, then ibounds(x, l) = {(2, >), (4,≤)}. The usage of gbounds is
accordingly.
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Definition 8 The timed diagnostic trace constraint system (TDTCS) associated with STT
Y is the conjunction T of the following constraints:

C0 ≡
∧
c∈C

c0 = 0 (clock initialization)

A ≡
∧

j∈[0,n]

δj ≥ 0 (time advancement)

R ≡
∧

c∈resetj ,

cj+1 = 0 (clock resets)

D ≡
∧

c/∈resetj

cj+1 = cj + δj (sojourn time)

I ≡
∧

(β,∼)∈ibounds(c,lj)

cj ∼ β ∧ cj + δj ∼ β (location invariants)

G ≡
∧

(β,∼)∈gbounds(c,θj)

cj + δj ∼ β (transition guards)

U ≡
∧

j∈urgent

δj = 0 (urgent location)

L ≡ @ln ∧
∧
l 6=ln

¬@l (location predicates)

Let further Φ ≡ Π[cn+1/c] where Π[cn+1/c] is obtained from Π by substituting
every occurrence of a clock c ∈ C by cn+1. For instance, for the property Π used in
Example 1 we haveΦ = ¬@client.serReceiving∨x5 < 4. Then, theΠ-extended TDTCS
associated with Y is defined as T Π = T ∧ ¬Φ.

A satisfying assignment of a TDTCS T is a variable assignment to every clock cj and
delay variable δj in T that satisfies every constraint in T . A satisfying assignment of T
induces a realization δ0...δn of Y . T is a correct formalization of Y when any assignment
of T contains a realization of Y and any realization r in Y is part of an assignment of T .

Theorem 1 When a TDTCS T is created for an STT Y by Definition 8, then δc0, . . . , δ
c
n is

a realization of Y iff there exists a satisfying variable assignment ι for T such that for all
j ∈ [0, n], ι(δj) = δcj .

Proof Assume an STT Y = θ0, ...., θn−1 of a TA, a TDTCS T of Y and an arbitrary delay
sequence δ = δ0, . . . , δn. We need to prove that δ either satisfies Y and T or none of
both. We show by induction over the delays that after each delay δj the clocks values are
equivalent in Y and T , and satisfy the same clock constraints.

Base Case: In the initial state, no delay has yet occurred. The value of every clock in Y
is 0, which is also ensured in T by C0.

Induction Step: It holds that the clock values in Y and T are equivalent for δ0...δj−1.
We assume that after a time delay δj a transition θj transits from a location lj to a location
lj+1. A constraint in Y or T is not satisfied for δj in one of the following cases:

– When δj is negative, it violates the semantics of Y but also violates the constraints inA
of T .
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– After δj , a guard ci ∼ β of a clock ci is not enabled. The clock value of ci was equivalent
by assumption in Y and T before δj , and so is equivalent after δj . Since the guard is by
construction of T encoded in Y and T and the clock value of ci is equivalent, the guard
is not enabled in Y and T .

– After δj , a clock ci does not satisfy a location invariant ci ∼ β in lj . Since the invariant
is by construction encoded in Y and T and the clock value of ci is equivalent as shown
above, ci + δj is violated in Y and T .

– A clock ci does not satisfy a location invariant ci ∼ β in lj+1. By construction of T ,
the invariant is encoded in Y and T . The clock value of ci is either ci + δj when ci is
reset or 0. By the construction of T , ci is reset in T exactly when it is reset by θj in Y .
Thus, ci ∼ β in lj+1 is not satisfied in Y and T .

– δj is not 0 even lj is an urgent location. By construction of T , lj is in U and so only
δj = 0 is an assignment of T . Thus, Y and T are not satisfied.

– With any other value of δj , the time constraints in Y and T are satisfied.

As we see, the clock values in Y and T are equivalent after each delay, and also equivalently
satisfy the clock constraints in Y and T . In consequence, δ satisfies Y and T , or none of
both. ut

Theorem 1 ensures that an assignment of T and the contained realization of Y satisfy the
same time constraints and location predicates. Consequently, they also equivalently violate
or satisfy the time constraints and location predicates of which an invariant property Π
exists. This allows us to infer Corollary 1 because the conjunction of T and Π is a Π-
extended TDTCS T Π . A modification of T Π that turns the formula unsatisfiable is also a
potential repair in the underlying TA since it prevents the property violation. We will use
this insight in the next section to compute a repair.

Corollary 1 An STT Y witnesses a violation of Π in a TA iff T Π is satisfiable.

Proof We know by Theorem 1 that a realization r of an STT exists iff a satisfying assign-
ment ι of the STT exists. r and ι satisfy equivalent location predicates and clock constraints
and, thus, r and ι equivalently hold or violate Π . ut

4 Repair Computation

We propose a repair technique that analyzes the responsibility of syntactic elements oc-
curring in a single TDT for causing the violation of a specification Π . We first present
the formalization of different syntactic modifications of a TDT that can potentially remedy
causes for property violations and then present the algorithm to compute a set of such syn-
tactic modifications that are possible repairs. The question of admissibility of the computed
repairs will be addressed in Section 5. Throughout this section, we assume that Y is a TDT
for T and Π .

4.1 Formal Modification of Syntactic Elements

We introduce variation variables v that represent correction values of syntactic elements of
the TA for which Y is produced and which characterize the proposed repair. For instance,
to modify clock bounds for a transition in a TA, a fresh variation variable is added to every
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clock bound occurring in location invariants and transition guards involved in this transition.
The values of the variation variables are computed so that none of the realizations of Y in
the modified automaton leads to a violation of Π . This is done by defining a new constraint
system that captures the conditions on the variable v under which the violation ofΠ will not
occur in the corresponding trace of the modified automaton. Using this constraint system,
we then define a MaxSMT problem so that its solution minimizes the number of changes to
T that are needed to achieve the repair.

Clock Bound Variation. Recall that the clock bounds occurring in location invariants and
in transition guards are represented by the I and G sets defined for the TDT Y . We then
introduce bound variation variables vbvi describing the possible static variation in the TA
code for a clock bound β with an index i in the set ibounds∪ gbounds, and modify the TDT
constraint system accordingly. A variation of the bounds only affects the location invariant
constraints I and the transition guard constraints G. We thus define an appropriate invariant
variation constraint Ibv and guard variation constraint Gbv that capture the clock bound
modifications:

Ibv ≡
∧

(c∼β)∈ibounds

c ∼ (β + vbvi ) ∧ c+ δj ∼ (β + vbvi )

Gbv ≡
∧

(c∼β)∈gbounds

c+ δj ∼ (β + vbvi )

We also need constraints ensuring that the modified clock bounds remain positive:

Zbv ≡
∧

(c∼β)∈ibounds ∪ gbounds

β + vbvi ≥ 0

Putting all of this together, we obtain the bound variation TDT constraint system

T bv ≡ C0 ∧ A ∧R ∧D ∧ Ibv ∧ Gbv ∧ Zbv ∧ U ∧ L

which captures all realizations of Y in TAs T bv that are obtained from T by modifying the
clock bounds by some syntactically consistent variations vbvi .

As an example, consider the bound variation for the guard y ≥ 1 of transition Θ3 in
Example 1. The modified guard constraint, a conjunct in Gbv, is y3 + δ3 ≥ 1 + vbvi . The
corresponding non-negativity constraint in Zbv is 1 + vbvi ≥ 0.

Operator Variation. This type of variation is motivated by the assumption that a wrong
comparison operator in a location invariant or transition guard may cause a property vio-
lation. We assume for the repair encoding that the operators ∼ are indexed according to
their order in the sequence 〈 <,≤,=,≥, > 〉. The possible repairs are encoded by a fresh
variation variable vovi where the value of vovi is the index of the corresponding compari-
son operator. For instance, the use of the < comparison operator as a repair is indicated by
setting vovi = 1.

We define operator variation constraints Iov and Gov with the help of an n-ary exclusive
or operation

⊕
i=0...n

fi which is satisfied iff exactly one of the formulas fi is true:

Iov ≡
∧

(c∼β)∈ibounds

⊕
0≤k≤5

c ∼k β ∧ c+ δj ∼k β ∧ v ov
i = k.

Gov ≡
∧

(c∼β)∈gbounds

⊕
0≤k≤5

c+ δj ∼k β ∧ v ov
i = k.
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Now, we construct an operator variation TDT constraint system T ov ≡ C0 ∧ A ∧R ∧D ∧
Iov ∧ Gov ∧ U ∧ L.

As an example for the operator variation encoding, consider the guardw >= 1 of transi-
tion θ2 in Figures 1(b). The Gov contains the constraintw2 >= 1∧(v ov

i = 0)
⊕
...

⊕
w2 >

1 ∧ (v ov
i = 5).

Clock Reference Variation. This variation aims to repair property violations resulting from
errors that can be traced back to the unintended use of a wrong clock variable. We uniquely
identify every clock in the repair encoding by an index k. We introduce a fresh variation
variable v cv

i for every constraint with a clock c. Its assigned value k indicates that in the
constraint, the clock ck is to be used instead of c. For example, if y ≤ 2 is a repaired
constraint, where clock y has index k = 1, then v cv

i = 1.
We define the appropriate clock variation constraints Icv and Gcv:

Icv ≡
∧

(c∼β)∈ibounds

⊕
0≤k≤|C|

(ck ∼ β) ∧ (ck + δj ∼ β) ∧ (v cv
i = k)

Gcv ≡
∧

(c∼β)∈gbounds

⊕
0≤k≤|C|

(ck + δj ∼ β) ∧ (v cv
i = k)

From this we obtain the clock reference variation TDT constraint system T cv ≡ C0 ∧ A ∧
R ∧D ∧ Icv ∧ Gcv ∧ U ∧ L.

An example for the clock reference repair encoding is given by the guard y ≥ 1
of transition θ3 in Figures 1(b). Gcv contains the constraint (y3 + δ3 ≥ 1) ∧ (v cv

i =
0)

⊕
...

⊕
(z3 + δ3 ≥ 1) ∧ (v cv

i = 4).

Reset Clock Variation. This variation aims to repair a property violation by adding or re-
moving clock resets. We introduce a variation variable v rv

c,θ for the transition θ leaving lo-
cation lj and every clock c in the TDT. The reset status in the extended constraint system is
inverted when v rv

c,θ 6= 0: if c was not reset before, it will now be reset, and vice versa. This
is encoded by the clock reset variation constraintsRrv and Drv:

Rrv ≡
∧

c∈reset(θj)

cj+1 =

{
0, if v rv

c,θ = 0

c+ δj , otherwise
.

Drv ≡
∧

c/∈reset(θj)

cj+1 =

{
c+ δj , if v rv

c,θ = 0

0, otherwise
.

As a result we obtain the reset clock variation TDT constraint system T rv ≡ C0∧A∧Rrv∧
Drv ∧ I ∧ G ∧ U ∧ L.

To illustrate the clock reset repair encoding, consider the clock reset y := 0 on transition
θ2 in Figures 1(b). Rrv contains the constraint ((y3 = 0) ∧ (v rv

y,θ2
= 0)) ∨ ((y3 = y2 +

δ2) ∧ (v rv
y,θ2
6= 0)).

Urgent Location Variation. Here we aim to repair cases where a faulty usage of urgent
locations causes a property violation. Urgency of a location is modeled in the TDT constraint
system by setting the location delay δj to 0. We define a fresh variation variable v uv

i for a
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location lj . For v uv
i 6= 0, the urgency for a location lj is inverted. We encode this idea using

the following urgency variation constraint Uuv:

Uuv ≡
∧

lj∈urgent

(v uv
i = 0 =⇒ δj = 0) ∧

∧
lj /∈urgent

(v uv
i 6= 0 =⇒ δj = 0).

We construct the urgent location variation TDT constraint system T uv ≡ C0 ∧A∧R∧
D ∧ I ∧ G ∧ Uuv ∧ L.

As an example for the urgent location repair encoding, consider the location
serReceiving reached by θ3 in Figures 1(a). Uuv contains the constraint (v uv

i 6= 0) →
(δ4 = 0).

4.2 Repair by Variation Analysis.

The objective of the variation analysis is to provide hints to the system designer regarding
which minimal syntactic changes to the considered model might prevent the violation of
property Π . Minimality here is considered with respect to the number of syntactic modifi-
cations that need to be performed in the considered TA model.

For the analysis, we first choose one of the variation TDTCS described before and denote
it with T ∗. We implement an analysis by using T ∗ to derive an instance of the partial
MaxSMT problem whose solutions yield candidate repairs for the timed automaton T . The
partial MaxSMT problem takes as input a finite set of assertion formulas belonging to a
fixed first-order theory. These assertions are partitioned into hard and soft assertions. The
hard assertions F∗H are assumed to hold and the goal is to find a maximal subset F ′ ⊆ F∗S
of the soft assertions such that F ′ ∪ F∗H is satisfiable in the given theory.

For the purpose of our analysis, the hard assertions are formed by the conjunction

F∗H ≡ (∃δj , cj . T ∗) ∧ (∀δj , cj . T ∗ ⇒ Φ).

Note that the free variables of F∗H are exactly the variation variables v∗i . Given a satisfying
assignment ι for F∗H , let Tι be the timed automaton obtained from T by modifying a clock
bound according to the variation value ι(v∗i ) and let Y ι be the TDT corresponding to Y in
Tι. Then F∗H guarantees that

1. Y ι is feasible, and
2. Y ι has no realization that witnesses a violation of Π in Tι.

We refer to such an assignment ι as a local clock repair for T and Y . To obtain a minimal
local clock repair, we use the soft assertions given by the conjunction

F∗S ≡
∧
v∗i

v∗i = 0.

Clearly, F∗H ∧ F∗S is unsatisfiable because T ∗ ∧ F∗S is equisatisfiable with T , and T ∧ ¬Φ
is satisfiable by assumption. However, if there exists at least one local clock repair for T and
Y , then F∗H alone is satisfiable. In this case, the MaxSMT instance F∗H ∪ F∗S has at least
one solution. Every satisfying assignment of such a solution corresponds to a local repair
that minimizes the number of syntactic modifications that need to be performed on T , and
hence on the considered TA. Note that hard and soft assertions remain within a decidable
logic. Using an SMT solver such as Z3, we can enumerate all the optimal solutions for the
partial MaxSMT instance and obtain a minimal local clock bound repair from each of them.
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Example 2 We have applied the bound variation repair analysis to the TDT from Example 1.
The following repairs exist:

1. v bv
z,l5

= −1. This corresponds to a variation of the location invariant
regarding clock z in location 5 of the TDT, corresponding to location
client.serReceiving, to read z ≤ 1 instead of z ≤ 2. This indicates that
the violation of the bound on the total duration of the transaction, as indicated by a
return to the serReceiving location and a value greater than 4 for clock x, can
be avoided by ensuring that the time taken for transmitting the ser message to the
client is constrained to take exactly 1 time unit.

2. A further computed repair is v bv
w,l2

= −1. Interpreting this variation in the context of
Example 1 means that location db.reqReceived will be left when the clock w has
value 1. In other words, the transmission of the message req to the db takes exactly
one time unit, not between 1 and 2 time units as in the unrepaired model.

3. Another computed repair is v bv
y,l3

= −1 and v bv
y,θ3

= −1, which reduce the time delay
in location db.reqProcessing by 1 time unit.

4. No further minimal repair exists.

Examples of repairs according to the other analyses for the TDT in Figure 1(c) include
the following. The operator repair analysis returns, among others, a repair v ov

w,θ2
= 1, which

suggests to exchange the operator in the transition guard w ≥ 1 by< and to reduce the time
for receiving the message req to be less than one time unit. The reference clock analysis
returns a repair v cv

z,l4
= y. The repair exchanges the clock z in the clock constraint z ≤ 2

by y, which implies that the model has to receive the message ser in less than one time
unit since the guard y ≥ 1 is satisfied when entering location serReceiving. The reset
clock analysis returns a repair v rv

x,θ2
= true, which indicates to reset clock x during the

transition leading into location reqProcessing. The urgent location analysis returns a
repair v uv

serReceiving = true which suggests to turn serReceiving into an urgent location.
This repair reduces the time for receiving message ser to zero.

Complexity Considerations. The tool Z3 [Z319] computes a repair for partial MaxSMT
instances without quantifiers. The repair analysis first executes quantifier elimination on
F∗H , which has a double exponential worst-case complexity in the number of quantifier
variables [DH88]. The number of quantified variables in F∗H rises linearly with the length
of the TDT. Afterwards, every repair analysis solves a MaxSMT problem for quantifier-free
linear real arithmetic constraints. The complexity of the repair computation is determined
by the number of time constraints in the TDT which increases with the length of the TDT.
The complexity of quantifier-free linear real arithmetic is polynomial [Kar84, KS16]. The
MaxSMT problem can be reduced in polynomial time to a MaxSAT problem, and a MaxSAT
problem is an optimization problem in the complexity class NP [KV12]. We conclude that
the quantifier elimination is the most complex computation in the analysis, which means
that the overall complexity is in the worst case double exponential in the length of the TDT.

5 Admissibility of Repair

The synthesized repairs that lead to a TA Tι change the original TA T in fundamental ways,
both syntactically and semantically. This brings up the question whether the synthesized
repairs are admissible. In fact, one of the key questions is what notion of admissibility is
meaningful in this context.
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Admissibility Criteria. From a syntactic point of view, the repair obtained from a satisfying
assignment ι of the MaxSMT instance ensures that Tι is a syntactically valid TA model,
for instance, by placing non-negativity constraints on repaired clock bounds. In case repairs
alter right hand sides of clock constraints to rational numbers, this can easily be transformed
to integers by normalizing all clock constraints in the TA.

From a semantic perspective, the impact of the repairs is more profound. Since the re-
pairs affect time bounds in location invariants and transition guards, as well as clock resets,
the behavior of Tι may be fundamentally different from the behavior of T .

– The computed repair for one property Π may render another property Π ′ violated. To
check admissibility of the synthesized repair with respect to the set of all properties Π̂
in the system specification, a full re-checking of Π̂ is necessary.

– A repair may have introduced zenoness and timelock [BK08] into Tι. As discussed
in [BK08], there exist both an over-approximating static test for zenoness as well as a
model checking based precise test for timelocks that can be used to verify whether the
repair is admissible in this regard.

– Due to changes in the possible assignment of time values to clocks, reachable locations
in the TA T may become unreachable in Tι, and vice versa. On the one hand, this means
that some functionalities of the system may no longer be provided since part of the
actions in T will no longer be executable in Tι, and vice versa. Further, a reduction
in the set of reachable locations in Tι compared to T may mean that certain locations
with property violations in T are no longer reachable in Tι, which implies that certain
property violations are masked by a repair instead of being fixed. On the other hand, the
repair leading to locations becoming reachable in Tι that were unreachable in T may
have the effect that previously unobserved property violations become visible and that
Tι possesses functionality that T does not have, which may or may not be desirable.

It should be pointed out that we assess admissibility of a repair leading to Tι with respect to
a given TA model T , and not with respect to a correct TA model T ∗ satisfyingΠ . Before we
define an admissibility test based on functional equivalence, we introduce some necessary
foundation.

Functional Equivalence. While various variants of semantic admissibility may be consid-
ered, we are focusing on a notion of admissibility that ensures that a repair does not unduly
change the functional behavior of the modeled system while adhering to the timing con-
straints of the repaired system. We refer to this as functional equivalence. The functional
capabilities of a timed system manifest themselves in the sets of action or transition traces
that the system can execute. For TAs T and Tι this means that we need to consider the lan-
guages over the action or transition alphabets that these TAs define. Considering the timed
languages of T and Tι, we can state that LT (T ) 6= LT (Tι) since the repair forces at least
one timed trace to be purged from LT (T ). This means that equivalence of the timed lan-
guages cannot be an admissibility criterion ensuring functional equivalence.

At the other end of the spectrum we may relate the de-timed languages of T and Tι.
The de-time operator α(T ) is defined such that it omits all timing constraints and resets
from any TA T . Requiring L(α(T )) = L(α(Tι)) is tempting since it states that when
eliminating all timing related features from T and from the repaired Tι, the resulting action
languages will be identical. However, this admissibility criterion would be flawed, since the
repair in Tι may imply that unreachable locations in T will be reachable in Tι, and vice
versa. This may have an impact on the untimed languages, and even though L(α(T )) =
L(α(Tι)), it may be that Lµ(T ) 6= Lµ(Tι). To illustrate this point, consider the running
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example in Fig. 1(a) and assume the invariant in location client.serReceiving to
be modified from z ≤ 2 to z ≤ 1 in the repaired TA Tι. Applying the de-time operator
to Tι implies that the location client.timeout, which is unreachable in Tι, becomes
reachable in the de-timed model. Since client.timeout is reachable in T , the TAs T
and Tι are not functionally equivalent, even though their de-timed languages are identical.
Notice that for the untimed languages it holds that Lµ(T ) 6= Lµ(Tι) since no timed trace
in LT (Tι) reaches location timeout, even though such a timed trace exists in LT (T ).
In particular, Lµ(T ) contains the untimed trace Θ0Θ1Θ2Θ3Θ4, where Θ4 is the transition
towards the location client.timeout, which is missing in Lµ(Tι). As a consequence,
we resort to considering the untimed languages of T and Tι when assessing functional
equivalence and require Lµ(T ) = Lµ(Tι). It is easy to see that Lµ(T ) = Lµ(Tι) ⇒
L(α(T )) = L(α(Tι)). In conclusion, the equivalence of the untimed languages ensures
functional equivalence.

Admissibility Test. Designing an algorithmic admissibility test for functional equivalence
is challenging due to the computational complexity of determining the equivalence of the
untimed languages Lµ(T ) and Lµ(Tι). While language equivalence is decidable for lan-
guages defined by NBAs, it is undecidable for timed languages [AD94]. For untimed lan-
guages, however, this problem is again decidable [AD94]. The algorithmic implementation
of the test for functional equivalence that we propose proceeds in two steps.

– First, the untimed languages Lµ(T ) and Lµ(Tι) are constructed. This requires an un-
time transformation of T and Tι yielding NBAs representing Lµ(T ) and Lµ(Tι). While
the standard untime transformation for TAs [AD94] relies on a region construction, we
propose a transformation that relies on a zone construction [HNSY94]. This will provide
a more succinct representation of the resulting untimed languages and, hence, a more
efficient equivalence test.

– Second, it needs to be determined whether Lµ(T ) = Lµ(Tι). As we shall see, the
obtained NBAs are closed. Hence, we can reduce the equivalence problem for these ω-
regular languages to checking equivalence of the regular languages obtained by taking
the finite prefixes of the traces in Lµ(T ) and Lµ(Tι). This allows us to interpret the
NBAs obtained in the first step as NFAs, for which the language equivalence check is a
standard construction [HU00].

Automata for Untimed Languages. The construction of an automaton representing an un-
timed language, here referred to as an untime construction, has so far been proposed based
on a region abstraction [AD94]. The region abstraction is known to be relatively ineffi-
cient since the number of regions is, among other things, exponential in the number of
clocks [BK08]. We therefore propose an untime construction based on the construction of a
zone automaton [HNSY94], which in the worst case is of the same complexity as the region
automaton, but is more succinct in practice [BY03].

Definition 9 (Untimed Nondeterministic Büchi Automaton) Assume a TA T and the cor-
responding zone automaton JT KZ = (SZ , s

0
Z , ΣZ , ΘZ). We define the untimed Nondeter-

ministic Büchi automaton as the closed NBA BT = (S,Σ,→, S0, F ) obtained from JT KZ
such that S = SZ , Σ = ΣZ \ {δ}, S0 = {s0Z} and F = S. For every transition in ΘZ

with a label a ∈ Σ, we add a transition to→ created by the rule (l,z)
δ
;(l,z↑)

a
;(l′,z′)

(l,z)
a−→(l′,z′)

with

z↑ = {v + δ ∈ I(l) | v ∈ z, δ ∈ R≥0}. In addition, we add self-transitions (l, z) τ−→ (l, z)
to every state (l, z) ∈ SB .



20 Martin Kölbl et al.

The following observations justify this definition:

– A timed trace of T may remain forever in the same location after a finite number of
action transitions. In order to enable BT to accept this trace, we add a self-transition
labeled with τ to→ for each state s ∈ S in BT , and later define s as accepting. These
τ -self-transitions extend every finite timed trace t leading to a state in Sτ to an infinite
trace t.τω .

– The construction of the acceptance set F is more intricate. Convergent traces are often
excluded from consideration in real-time model checking [BK08]. As a consequence,
in the untime construction proposed in [AD94], only a subset of the states in S may be
included in F . A repair may render a subgraph of the location graph of T that is only
reachable by divergent traces, into a subgraph in Tι that is only reachable by conver-
gent traces. However, excluding convergent traces is only meaningful when considering
unbounded liveness properties, but not when analyzing timed safety properties, which
in effect are safety properties. As argued in [BY03], unbounded liveness properties ap-
pear to be less important than timed safety properties in timed systems. This is due to
the observation that divergent traces reflect unrealistic behavior in the limit, but finite
prefixes of infinite divergent traces, which only need to be considered for timed safety
properties, correspond to realistic behavior. This observation is also reflected in the way
in which, e.g., UPPAAL treats reachability by convergent traces. In conclusion, this ar-
gument justifies our choice to define the zone automaton in the untime construction as a
closed BA, i.e., F = S.

We will now prove Theorem 2 and Theorem 3 to show that our admissibility test is
correct. Theorem 2 states that the zone based untimed NBA construction actually preserves
the untimed languages. In particular, we show that for a given TA T , L(BT ) = Lµ(T ). For
the proof, we use Untimed Bisimulation in order to replace the concrete time delay in T by
the empty word ε, and to establish the desired language equality.

Definition 10 (Untimed Bisimulation (adapted from [BY03])) For a TTS H =
(S, s0, Σ,→), let →ε be the relation obtained from → by replacing all delay transitions
(s1, δ, s2) by (s1, ε, s2). Then, a TTS H = (S, s0, Σ,→) is said to untimed simulate
another TTS H ′ = (S′, s′0, Σ,→′) if there exists a relation R ⊆ S × S′ such that (1)
(s0, s

′
0) ∈ R and (2) for all (s1, s′1) ∈ R, s2 ∈ S, and a ∈ Σ ∪ {ε} it holds that if

s1
a−→ s2 ∈→ε, then there exists s′2 with s′1

a−→ s′2 ∈→′ε and (s2, s
′
2) ∈ R. H and H ′ are

untimed bisimilar if in addition H ′ untimed simulates H .

The proof of Theorem 2 is based on the insight from Lemma 1 that two untimed bisimilar
TTSs have equivalent untimed languages.

Lemma 1 Given two TTS H1 and H2, if H1 untimed simulates H2, then Lµ(H1) ⊆
Lµ(H2).

Proof Assume that TTS H1 = (S, s0, Σ,→) untimed simulates a TTS H2 =
(S′, s′0, Σ,→′) with a simulation relation R. For any word v in Lµ(H1), we know that
a timed trace ξ = (t1, a1) . . . exists in L(H1). We show that v is also in Lµ(H2) by in-
ductively constructing a timed trace ξ′ = (t′1, a

′
1) . . . in L(H2) with µ(ξ) = µ(ξ′). The

induction iterates over the timed actions (ti, ai) in ξ.
Base Case: Initially, no timed action is taken in ξ. The relation (s0, s

′
0) is in R. For the

induction step, we assume helper variables t0 = 0 and t′0 = 0.
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Induction Step: For a timed action (ti+1, ai+1) in ξ and (si, s
′
i) inR, we now construct

a timed action (t′i+1, a
′
i+1) in ξ′.

For (ti+1, ai+1), a state s∗ exists in H1 such that a delay transition (si, t, s∗) with
t = ti+1 − ti and an action transition (s∗, ai+1, si+1) are in →. The untimed bisimu-
lation replaces delay transitions by ε, and defines →ε and →′ε. Since (si, s

′
i) is in R and

(si, ε, s∗) ∈→ε, a state s′∗ has to exist with (s′i, ε, s
′
∗) ∈→′ε and (s∗, s

′
∗) ∈ R. (s′i, ε, s

′
∗)

exists only since a delay transition (s′i, t
′, s′∗) exists in →′. We construct t′i+1 = t′i + t′.

Because (s∗, ai+1, si+1) is in→ε and (s∗, s
′
∗) ∈ R, a state s′i+1 in H2 has to exist such

that (si+1, s
′
i+1) ∈ R and (s′∗, ai+1, s

′
i+1) ∈→′ε. We conclude a′i+1 = ai+1. Hence, we

constructed the timed action (t′i+1, a
′
i+1) of ξ′ and (si+1, s

′
i+1) ∈ R holds.

In conclusion, we can construct for every timed word ξ in L(H1), a timed word ξ′ in
L(H2), such that µ(ξ) = µ(ξ′). ut

Additionally, the proof of Theorem 2 relies on the assumption that the timed language
of the zone automaton JT KZ is identical to the timed language of T , which we state in the
following lemma.

Lemma 2 (Zone Language Equivalence) Let JT KZ be a zone automaton derived from a
TA T , then LT (JT KZ) = LT (T ).

Proof The proof of this lemma can be derived from the proofs of Theorem 1 and Theorem
2 given in the full version of [YPD94], which together prove that the reachable states in the
transition system of T are also reachable in JT KZ , and vice versa. The proofs rely on an
induction over the length of the traces of T and JT KZ and imply an equivalence of the sets
of traces of T and JT KZ . This implies LT (JT KZ) = LT (T ). ut

Theorem 2 (Correctness of Untimed NBA Construction) For an untimed NBA BT de-
rived from a TA T according to Definition 9 it holds that L(BT ) = Lµ(T ).

Proof Assume a zone automaton JT KZ = (SZ , s
0
Z , ΣZ , ΘZ) for a TA T and let BT =

(SB , ΣB ,→, S0
B , F ) be the associated untimed NBA obtained according to Definition 9

with JT KZ .
Lemma 2 permits us to prove Theorem 2 by showing L(BT ) = Lµ(JT KZ). We prove

the conjecture by proving the stricter condition that the zone automaton JT KZ and the un-
timed NBA BT are untimed bisimilar. We may then conclude language equivalence by
Lemma 1 and bisimilarity. It is appropriate to compare an untimed NBA BT to a zone au-
tomaton JT KZ by untimed bisimulation since BT is an untimed automaton, in particular, an
untimed zone automaton.

We now show that R = {((l, zZ), (l, zB))|z↑Z = z↑B ∧ (l, zZ) ∈ SZ ∧ (l, zB) ∈ SB}
is an untimed bisimulation relation. R is an untimed bisimulation relation for the alphabet
Σ = (ΣB \ {τ}) ∪ (ΣZ \ {δ}), where the delay transitions δ and τ are removed by the
construction of the untimed bisimulation.

We show for an arbitrary ((l, zZ), (l, zB)) ∈ R that ((l′, z′Z), (l
′, z′Z)) ∈ R for all

actions a ∈ Σ. zB ⊆ zZ holds by construction of BT since transitions in BT reach a state
after taking an action transition. Hence, there are two cases to be considered in order to
determine whether z↑Z = z↑B :

1. If zZ = zB , then the untime construction creates a transition (l, zB)
a
; (l′, z′Z) ∈→

iff (l, zZ)
δ−→ (l, z↑Z)

a−→ (l′, z′Z) ∈ ΘZ exists.
2. If zZ = z↑B , then the untime construction creates a transition (l, zB)

a
; (l′, z′Z) ∈→

iff (l, zZ)
a−→ (l′, z′Z) ∈ ΘZ exists.
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In both cases it holds that ((l′, z′Z), (l
′, z′Z)) ∈ R. Thus, R is a bisimulation relation.

The tuple ((l0, z0), (l0, z0)) of the initial states of JT KZ and BT is in R, since S0
B = {s0Z}

holds by the definition of the untime construction, and trivially z↑0 = z↑0 . This implies that
BT and JT KZ are untimed bisimilar and L(BT ) = Lµ(JT KZ) holds. ut

Equivalence Check for Untimed Languages. Given that the zone automaton construction
delivers closed NBAs we can reduce the admissibility test Lµ(T ) = Lµ(Tι) defined over
infinite languages to an equivalence test over the finite prefixes of these languages, rep-
resented by interpreting the zone automata as NFAs. The following theorem justifies this
reduction.

Theorem 3 (Language Equivalence of Closed NBAs) Given closed NBAs B and B′, if
Lf(B) = Lf(B

′) then L(B) = L(B′).

Proof For a closed NBA B, it is easy to see that Lf(B) = pref(L(B)). Assume Lf(B) =
Lf(B

′) and L(B) 6= L(B′). This means that, w.l.o.g., (∃v)(v ∈ L(B)∧ v /∈ L(B′)). This
implies that there is no accepting run on some v in B′. Since B′ is closed, the only way of
not accepting v is that B′ blocks when reading a finite prefix v̂ = v1, . . . , vn of v. Hence,
v̂ ∈ Lf(B) ∧ v̂ /∈ Lf(B

′), which contradicts Lf(B) = Lf(B
′). Therefore, L(B) = L(B′).

ut

Complexity of the Admissibility Test. In order to test admissibility, we generate the state
space of the original TA and the TA to which we apply the repair. The computation of the
state space uses real-time model checking which is in PSPACE [ACD93]. Afterwards, we
interpret the two state spaces as NFAs and perform a language equivalence test. Checking
language equivalence of two NFAs is decidable in NP [GJ79]. The overall complexity of the
admissibility test is thus in PSPACE.

Discussion. One may want to adapt the admissibility test so that it only considers diver-
gent traces, e.g., in cases where only unbounded liveness properties need to be preserved
by a repair. This can be accomplished as follows. First, an overapproximating non-zenoness
test [BK08] can be applied to T and Tι. If it shows non-zenoness, then one knows that the
respective TA does not include convergent traces. If this test fails, a more expensive test
needs to be developed. It requires a construction of the untimed NBA using the approach
from [AD94], and subsequently a language equivalence test of the untimed languages ac-
cepted by the untimed NBAs using, for instance, the automata-theoretic constructions pro-
posed in [CDK93]. Checking language equivalence of two NBAs is in the complexity of
PSPACE [Cze92]. Creating the untimed NBA, which is the input to the equivalence check,
is also in PSPACE. So the overall complexity of this analysis remains in PSPACE.

6 Tool Implementation

We implemented the repair computations and the admissibility test in the tool TarTar. The
software architecture of TARTAR is depicted in Figure 3(b). The orange rectangles in the fig-
ure represent external tools that TARTAR calls in the course of the repair analysis. Uppaal is
a state-of-the-art and closed-source model checking tool, which TARTAR uses to compute a
TDT for a given model and property. The SMT solver Z3 [dMB08] is used to solve the gen-
erated partial MaxSMT problems. In order to check the admissibility of a repair, TARTAR

uses opaal and the AutomataLib component of LearnLib [IHS15] since they conveniently
provide functionality used in the implementation of the admissibility test.
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(a) TARTAR GUI (b) TARTAR Architecture

Fig. 3 TARTAR Tool

Data Flow Architecture. TARTAR consists of many computation steps. For example, a TDT
is parsed internally and stored as a Trace. This Trace is then modified and exported as
SMT-LIB2 [BFT17] code. We define a computation step of TARTAR as the computation
transforming input into result artifacts. This focus on artifacts ensures a highly cohesive
architecture and clear interfaces between any two computation steps. Computation steps
with identical objectives are grouped into a project. This results in four projects depicted by
blue rectangles in Figure 3(b).

– HMI denotes the user interfaces of TARTAR. The user inputs a timed model. TARTAR

then calls the project Repair Computation using a faulty timed model as a parameter. In
case that the model is correct, TARTAR calls the project Modification Seeding.

– Modification Seeding seeds modifications into a correct model and then repairs the re-
sulting faulty models by computing repairs using Repair Computation. We use this anal-
ysis in Section 7 in order to benchmark the Repair Computation analyses.

– Repair Computation computes candidate repairs for a faulty timed model, applies these
repairs to the model and finally automatically calls the Admissibility Test.

– Admissibility Test checks for every repaired model whether the computed repair is ad-
missible.

Control Flow Architecture. TARTAR computes iteratively a set of repairs for a given faulty
Uppaal model and a given property Π using the following steps:

0. Counterexample Creation. TARTAR calls Uppaal to verify the model against Π . In case
Π is violated, it stores a shortest symbolic TDT witnessing the violation in XML format.

1. Diagnostic Trace Creation. TARTAR parses the model and the TDT into a data structure
Trace. To add potential repairs, TARTAR copies the trace and replaces the constraints
that will potentially be subject to a repair by their modified variants. The modified trace
is then translated to a logic constraint system T ∗, represented in SMT-LIB2 code.

2. Repair Computation. Z3 [dMB08] then solves a MaxSMT problem on the modified trace
constraint system, computing a repair in which the number of unmodified constraints on
the variation variables of the form v∗ = 0 is maximized. Since Z3 can solve a MaxSMT
problem only for quantifier-free linear real arithmetic, TARTAR first runs a quantifier
elimination on the constraint system ∀δj , cj . T ∗ ⇒ Φ of F∗H .
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3. It then solves the MaxSMT problem with soft constraints requiring v∗ = 0 for all vari-
ation variables. In case no solution is found, TARTAR terminates. Otherwise, TARTAR

applies the repair to the faulty model and returns a repaired model.
4. Admissibility Test. TARTAR checks the admissibility of a repair and compares the un-

timed languages of the faulty and repaired models. TARTAR calls the model checker
opaal in order to compute the timed transition systems (TTS) of the original and the
repaired Uppaal model. We modified the opaal model checker in such a way that it re-
turns the TTS for a model. TARTAR then checks whether the two TTS have equivalent
untimed languages, in which case the repair is admissible. This check is implemented
using the library AutomataLib. In case the two TTS are not equivalent, the admissibility
test returns a trace as a witness for the difference.

5. Iteration. TARTAR enumerates all repairs, i.e., every combination of the same kind of
constraint modifications that corrects the TDT. The repairs are iteratively enumerated
starting with the ones that require the smallest number of modifications to the model.
After a repair is computed, the combination of modified variables that has been found
is prevented from being reconsidered for future repairs by setting these modification
variables to 0 using hard asserts. TARTAR then proceeds with attempting to compute
further, previously unconsidered repairs.

Fig. 4 TARTAR Component Architecture

Component Architecture. We
implemented TARTAR with the
general infrastructure depicted
in Figure 4. The interface Job
provides a general abstraction
for an algorithm and specifies
the necessary input and result
values of the algorithm by the
class Description. TARTAR

contains a Job for the projects
Modification Seeding, Repair Computations and Admissibility Test. The class Session
executes a Job and derivations of Session provide the different interfaces to the user.
With this infrastructure, the analysis implementation in TARTAR is independent from the
implementation of the user interfaces, thus reducing coupling and improving modifiability
of the code.

Implementation Details. We implemented the different projects that constitute TARTAR in
Java and use the build-management tool maven [Mav19] to manage the dependencies be-
tween the projects. TARTAR interacts differently with the external tools that are needed for
different purposes. It calls Uppaal via the command-line interface in order to generate a
TDT, calls Z3 via its API to compute a repair. For the admissibility test, it calls opaal using
a command-line script and the AutomataLib as an included Java library. For the implemen-
tation of the TARTAR analyses the following two details are essential.

– We modify constraints in an Uppaal model in order to apply a repair or to seed a fault.
Since neither clock constraints nor transitions possess explicit unique identifiers in an
Uppaal model, it is not obvious which constraint to change. We therefore uniquely iden-
tify a constraint by traversing the constraints in the sequence stored in the Uppaal model
file and use the constraint index in this sequence as its identifier.
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– The complexity of the algorithms for solving quantifier elimination and the MaxSMT
problem rise with the number of variables in the SMT model. We therefore reduce the
number of variables by exploiting implied equality constraints. For example, a variable
cj is created for every clock c in every step j of the TDT. We eliminate cj explicitly
before quantifier elimination by replacing it with the term

∑
i∈r...j di, where di is the

time delay at step i in the trace and r is the last step before j where c was reset.

7 Case Studies and Experimental Evaluation

We evaluate the repair analyses by applying TARTAR to the database model in Example 1
and to more complex case studies of different sizes.

7.1 Database Model Repairs.

We applied TARTAR to the database model in Figure 1. TARTAR finds two admissible clock
bound repairs. A replacement of w ≤ 2 by w ≤ 1 and a replacement of y ≤ 1 by y ≤ 0 and
y ≥ 1 by y ≥ 0 repairs the database model. With operator variation repair analysis, TARTAR

finds two admissible repairs that replace the operator in the clock constraintw >= 1 by< or
<=, respectively. With clock reference repair analysis, TARTAR finds 13 admissible clock
reference modification repairs, each involving two modifications. Nine repairs replace y in
the constraints y ≤ 1 and y ≥ 1 by a selection from the set of clocks z, x and w. Four
repairs replace y in the constraint y ≤ 1 by w or x, and w in the constraint w ≥ 1 by y
or z. Applying the reset repair analysis, TARTAR finds four admissible repairs. One repair
removes the reset of clock y, another removes the reset of clock z, and two repairs add a
reset of clock x either on the transitions towards the location reqProcessing or the transition
towards the location serReceiving. Applying the urgency location repair analysis, TARTAR

finds only two inadmissible and no admissible repairs, one setting the location reqAwaiting
and the other the location serReceiving to urgent.

The computed repairs are reasonable and we expected them. We remain to evaluate
whether TARTAR can analyze more complex models.

7.2 Evaluation Strategy

In order to perform an experimental evaluation of the repair analyses both qualitatively and
quantitatively, we need a set of timed automata models that violate given properties. Such
models are not publicly available in significant numbers and to the best of our knowledge, no
benchmark suite for property violating timed automata models exists. As a consequence, the
evaluation of our analyses is based on ideas taken from mutation testing [JH11]. Mutation
testing evaluates a test set by systematically modifying the program code to be tested and
computing the ratio of modifications that are detected by the test set. In adopting this strat-
egy, we seed modifications in existing models and check whether those can be successfully
repaired by our automated repair analyses. Thereby, we evaluate the quality of our repair
technique.
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Modification seeding modifies a given TA model syntactically in one of the following ways:

– replacing the comparison operator in a clock constraint by {<,≤,=,≥, >},
– swapping a clock name referenced in a clock constraint or invariant with some other

clock name occurring in the original model,
– modifying the set of clocks that are reset in any given transition,
– switching for any location whether it is urgent or not,
– or modifying the bound of a single clock constraint by an amount selected from the

set {−10,−1,+1,+0.1M,+M}, where M is the maximal clock bound occurring in a
given model. Our observation was that making either a small modification that is close
to the bound value or a modification in the order of the maximal bound value M often
introduces a property violation in the considered models.

The result is a modified TA that contains a single modification. TARTAR automatically
checks for every modified TA whether it violates a given property, in which case a TDT
is generated.

Experimental Procedure. TARTAR applies modification seeding to several models used for
experimentation and generates a set of TDTs by performing model checking for a given
property on each of the modified models. For every computed TDT, TARTAR performs the
above defined repair analyses one after another, and measures the ratio of TDTs for which
the analyses compute at least one repair.

7.3 Experiments

We have applied this evaluation strategy to eight UPPAAL models (see Table 1). Not all
of the models that we considered have been published with a property that can be violated
by mutating a clock constraint. For those models, we manually identify a suitable timed
safety property specifying an invariant condition which can then be violated by some of the
proposed mutations. In particular, we add a property to the Bando [Upp17] model which en-
sures that, for as long as the sender is active, its clock never exceeds the value of 28,116 time
units. In the FDDI token ring protocol [Upp17], the property that we use checks whether the
first member of the ring never remains in any given state for more than 140 time units. The
Viking model is taken from the set of test models of opaal [opa11]. For this model we use a
property that checks whether one of the Viking processes can only enter a safe state during
the first 60 time units. Note that all of these properties are satisfied by the original models
prior to modification seeding.

We applied modification seeding to the models given in Table 1 and analyzed the ob-
tained TDTs using the above described repair analyses implemented in TARTAR. All analy-
ses were performed on a computer with an i7-6700K CPU (4.00GHz), 60GB of RAM and a
64 bit Linux operating system. We summarize the results of this experiment per considered
model (Table 1) and per type of considered repair (Table 2). In Table 3, we give insight into
a subset of the repair analysis results for the cases where the repair analysis was of the same
type as the seeded modification.

In Table 1, we give in the first three rows the source of the model as well as its number of
locations and transitions. In every model, we modify the time constraints as described above,
which results in a number #Seed of modifications and the same number of modified models.
Uppaal analyzes each modified model and finds #TDT property-violating models. TimeUP is
the maximal time that Uppaal needs to create a TDT for the property violating models, and
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the longest TDT has a length of Length. Overall, TARTAR computed a number #Repair of
repairs for the TDTS, of which #Admissible are admissible. We say a TDT is solved when
at least one admissible repair is computed by a repair analysis. #Solved states the number
of solved TDTs. The computation effort for a repair analysis is given by the time TimeQE

for successful quantifier elimination, the number of timeouts #Timeout that occurred during
quantifier elimination after 10 minutes, the average time TimeRepair to compute a repair, and
the memory consumption MemRepair for the overall analysis. The constraint system that Z3
solves has the count #Variable of variables and #Constraint of constraints. The effort for
the admissibility test is given in time TimeAdm and memory MemAdm. All times are given in
seconds and memory consumption in MB. Notice that we omit the lines pertaining to the
modification seeding and TDT computation in Table 2 since they are irrelevant there.

We illustrate the evaluation procedure using an instance of the pacemaker case study,
which is a real world model of realistic size. One of the seeded bound modifications in-
creases a location invariant of this model which controls the minimal heart period to remain
within a range from 400 to 1,600 time units. The modification allows the pacemaker to de-
lay an induced ventricular beat for too long so that this violates the property that the time
between two ventricular beats of a heart is never longer than the maximal heart period of
1,000. TARTAR finds three repairs. The first repair reduces the maximal time delay between
two articular heartbeats such that the pacemaker cannot and no longer needs to trigger the ar-
ticular heartbeat. The second repair reduces the maximal time delay between two ventricular

Table 1 Experimental results according to model.

Model db rep. csma elevator viking bando Pacemaker SBR FDDI

Source [JLS96] [TB15] [opa11] [Upp17] [JPM+12] [Liu18] [Upp17]
#Location 8 10 9 24 77 104 21 16

#Transition 9 22 12 25 144 223 23 20
#Seed 110 191 88 310 1,955 1,187 353 314
#TDT 13 10 5 9 40 12 50 36

TimeUP 0.016 0.012 0.011 0.015 0.111 0.022 0.027 0.014
Length 4 2 1 18 279 9 84 11
#Repair 229 70 7 9 4,061 62 751 166

#Admissible 138 26 5 7 209 19 660 105
#Solved 9 8 4 5 21 10 31 34
TimeQE 89.346 0.049 0.049 86.539 31.555 0.663 117.057 29.859

#Timeout 2 0 0 21 46 20 86 51
TimeRepair 0.911 0.023 0.020 1.436 4.922 0.325 2.686 3.074
MemRepair 14.53 0.58 0.53 20.07 20.86 2.59 37.16 9.70
#Variable 30 16 6 120 1,156 116 765 116

#Constraint 91 72 28 180 8,144 988 1,211 272
TimeAdm 2.080 1.825 1.665 1.952 19.57 1.994 138.004 2.241
MemAdm 45 75 17 543 1,251 206 211 128

Table 2 Experimental results according to type of repair.

Repair Bound Mod. Operator Var. Clock Ref. Reset Clock Urgent Loc.

#Repair 533 3,929 693 45 155
#Admissible 364 96 625 37 47

#Solved 85 (48%) 51 (29%) 35 (20%) 13 (7%) 37 (21%)
TimeQE 15.209 117.057 33.282 89.346 0.107

#Timeout 8 44 61 113 0
TimeRepair 4.922 2.686 3.074 0.911 0.135
MemRepair 20.86 37.16 14.13 14.53 3.16
#Variable 1,156 996 1,120 996 1,120

#Constraint 2,498 8,144 5,355 2,836 2,502
TimeAdm 138.004 59.117 116.944 2.051 58.551
MemAdm 525 543 206 45 1,251
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heartbeats such that the pacemaker cannot trigger the first ventricular heartbeat. Both repairs
changes the heart behavior and removes functional behavior of the pacemaker and, hence,
are classified as inadmissible. In the model context, this appears to be reasonable since the
repairs restrict the environment of the pacemaker, and not the pacemaker itself. The third
repair is admissible and reduces the bound modified during the seeding of bound modifica-
tions by 1199.5. The minimal heart period is then also below or equal to the maximal heart
period of 1,000.

Overall, TARTAR seeded 4,508 modifications. This resulted in 175 TDTs in total. 60
TDTs were due to bound modification, 72 were due to operator variation, 27 were due
to changing the clock reference, 8 were due to complementing the reset of clocks and 8
were due to the switching of urgent locations (see Table 3). TARTAR found in total 5,355
repairs, out of which 1,169 were admissible. It found at least one admissible repair for 122
(69%) of the 175 TDTs. The maximal number of modified constraints in an admissible
repair computed for a single TDT using all types of repair analysis was 25. A total of 4, 222
repairs were of the same type as the seeded modification. Out of these same type repairs,
682 were admissible. At least one admissible same type repair exists for 102 (58%) of the
175 TDTs.

7.4 Result Interpretation

Pacemaker Instance Results. Our repair strategy minimizes the number of repairs but does
not optimize the computed value. For instance, in the pacemaker model the computed repair
of 1199.5 time units would be a correct and admissible repair even if the value was reduced
by 600 time units, which would be the minimal possible repair value.

Modification Seeding Results. Few of the seeded modifications resulted in a property viola-
tion. TARTAR seeded 4,508 faults, which led to 175 TDTs, thus only 3.9% of these modifi-
cations result in a TDT. This supports the hypothesis that, in practice, often times only few
time constraints impact the satisfaction of a checked property.

Repair results where the seeded modification is of arbitrary type. TARTAR computes at
least one admissible repair by bound modification for 85 (48%), by operator variation for 51
(29%), by clock reference for 35 (20%), by clock reset for 13 (7%) and by urgent location

Table 3 Subset of experimental results where type of repair corresponds to type of seeded modification.

Seed/Repair Bound Mod. Operator Var. Clock Ref. Reset Clock Urgent Loc.

#Seed 1,385 1,385 578 891 269
#TDT 60 72 27 8 8
TimeUP 0.111 0.083 0.093 0.027 0.021
Length 279 248 279 84 18
#Repair 314 3,508 383 6 11
#Admissible 226 68 380 6 2
#Solved 53 (88%) 38 (52%) 9 (33%) 1 (12%) 1 (12%)
TimeQE 15.209 31.858 25.392 43.922 0.027
#Timeout 3 8 10 7 0
TimeRepair 4.922 1.436 2.525 0.558 0.049
MemRepair 20.86 12.12 13.01 10.88 0.71
#Variable 1,156 996 1,120 25 90
#Constraint 2,498 8,144 5,355 57 279
TimeAdm 18.045 52.749 116.944 2.051 19.570
MemAdm 525 543 205 33 1,251
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for 37 (21%) of the 175 TDTs. Every analysis on its own computes less admissible repairs
than the combination of all repair analyses, which solves 122 (69%) of the 175 TDTs. The
largest number of constraints that an admissible repair modified was 25, which is less than
anticipated. This low number of modified constraints allow us to infer that only few con-
straints have an impact on whether a property is violated or not.

TARTAR does not find an admissible repair for every TDT. For instance, TARTAR finds
an admissible repair for 53 TDT of the 60 TDTs created by bound modification, but only 3
analyses result in a timeout (Table 3). Hence, there exist 4 TDTs for which no admissible
repair was computed even though they did not result in a timeout. There are two reasons for
this phenomenon. Notice that a TDT is caused by modification seeding in which a constraint
c in a model is modified. First, the seeding of a modification in the model may enable or
disable transitions and, as a consequence, change the functional behavior of the unmodi-
fied model. A repair computed by TARTAR may not precisely undo the modification, and
therefore it cannot be guaranteed that the repaired model is functionally consistent with the
unmodified model. Second, even if the modified model is functionally consistent with the
unmodified model, the computed repair may not undo the modification and at the same time
be inadmissible.

Computational effort. A comparison of TQE and TR in every table confirms that the compu-
tational effort for the repair computation is largely determined by the quantifier elimination
step, as we also concluded from the complexity analysis for the repair analysis. Only the
urgent location repair consumes more computation time during the repair computation than
during the quantifier elimination step. We expect that in light of the observed 226 timeouts, a
more efficient quantifier elimination procedure would lead to a significantly higher number
of repairs that could be computed without encountering a timeout. Furthermore, the number
of timeouts, and thus the computation time needed for the repair, seems to correlate with the
length of the analyzed TDT. With 86 the SBR model includes the largest number of timeouts
and the third longest TDT with a length of 84 steps. The bando model has the third most
timeouts (46) and the longest TDT. Obviously, the longer the TDT, the larger the result-
ing constraint system, leading to increased computational effort. With 1, 156 variables and
8, 144 constraints, the bando model yields the largest constraint system. The SBR model has
the second largest constraint system with 765 variables and 1, 211 constraints. The model
FDDI has a shorter TDT with a length of 11 transitions and a much smaller constraint sys-
tem with 116 variables and 272 constraints. In order to provide some statistical evidence for
the impact of the TDT length and the intrinsic model complexity on the computational effort
we analyzed the statistical relationship between the length of the TDT and the computation
time for a repair (Tr = TQE + TR) as well as the relationship between #Variable and Tr ,
both by estimating Kendall’s tau [Fie13] for every TDT. Kendall’s tau is a measure for the
ordinal association between two measured quantities. A correlation computed by Kendall’s
tau estimation approach is considered significant if the probability p that there is actually no
correlation in a larger data set is below a certain threshold. We use the commonly applied
significance threshold of 0.05. The length of a TDT is significantly related (τ1 = 0.521,
p < .001) to Tr . Also #Variable is significantly related (τ2 = 0.496, p < .001) to Tr .
From this we conclude that the complexity of a repair depends not only on the TDT length,
but also on the intrinsic complexity of the model as expressed by the number of variables
occurring in the model.

We also observe that the admissibility test requires more computational resources than
the repair computation. The maximum amount of memory used for the admissibility test
was 1, 251MB in contrast to 37.16MB for the repair computation. This is in line with our
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expectation since the admissibility test involves searches of the state space of the full NTA,
while the repair analyses only consider a single TDT.

Modifying states from urgent to non-urgent during modification seeding resulted in only
8 TDTs. This low number is due to the observation that the considered models contain only
very few urgent states. Modifying non-urgent states to urgent ones, however, did not lead to
a single property violation resulting in a TDT. The rationale is that urgency ensures to leave
a state immediately without a delay which leads to a restriction rather than a relaxation
regarding the time budget spent along an execution trace. As a consequence, making a state
urgent does not cause a property violation in many models since the type of the checked
properties is typically time bounded reachability, and a restricted time budget does not make
it more likely that the property is violated.

Results of repairs that have the same type as the seeded modification. Recall that we seed
different types of modifications that correspond to the different types of repair analyses that
we propose. For every type of a repair analysis, we now compare the probability to compute
an admissible repair when the seeded modificaton is of the same type as the repair (see
Table 3) with the case when the seeded modification is of arbitrary type (see Table 2). Bound
modification analysis repairs with a higher probability (88% to 48%) a TDT with a seeded
bound modification than a modification of an arbitrary type. Also, operator modification
analysis (52% to 29%), clock reference analysis (33% to 20%) and clock reset analysis
(12% to 7%) compute a repair with a higher probability for the same type of seeded fault as
a modification of an arbitrary type. Only the urgent location analysis computes a repair with
a lower probability (12% to 21%) for a TDT with a seeded urgent location modification
than for a modification of arbitrary type. In summary, with the exception of the urgent repair
analysis, an admissible repair is computed with a higher probability if the repair analysis is
of the same type as the seeded modification.

We finally observe that the repair computations of a seeded modification of an arbitrary
type (Table 2) and repair computations of the same type as the seeded modification (Ta-
ble 3) require similar computational effort in terms of time and memory consumption. We
conclude that the computational effort of a repair analysis is independent of the type of a
seeded modification that it repairs.

8 Conclusion

We have presented an approach to derive minimal repairs for timed reachability properties
of NTA models from TDTs returned as counterexamples during model checking. The objec-
tive of this repair synthesis is to facilitate fault localization and debugging of such models
during the design process. Our approach includes a formalization of TDTs using linear real
arithmetic, a repair strategy based on MaxSMT solving, the definition of an admissibility
criterion and test for the computed repairs, the development of an analysis and repair tool,
and the application of the proposed method to a number of case studies of realistic complex-
ity. To the best of our knowledge, this is the first rigorous treatment of counterexamples in
real-time model checking. We have nonetheless observed that our analysis computes a sig-
nificant number of admissible repairs within realistic computation time bounds and memory
consumption.

In future work we plan to explore the interplay between different repairs that are com-
puted for a repaired system that still violates a property, and develop refined strategies to
select promising repairs from a repair set. A further generalization of the analysis is to not
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only compute clock constraint modifications for faulty models but also to compute possible
relaxations of clock constraints for correct models in order to support design space explo-
ration.
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for reachability. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 27th International Conference, TACAS 2021, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part I, volume 12651 of
Lecture Notes in Computer Science, pages 291–310. Springer, 2021.

BY03. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Lectures on
Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 87–124.
Springer, 2003.

CDK93. Edmund M. Clarke, I. A. Draghicescu, and Robert P. Kurshan. A unified approach for showing
language inclusion and equivalence between various types of omega-automata. Inf. Process. Lett.,
46(6):301–308, 1993.

Cze92. D. B. Czerbo. Handbook of theoretical computer science : J. van leeuwen, ed., vol. A: algorithms
and complexity, vol. B: formal methods and semantics (elsevier, amsterdam, 1990), 2296 pp.,
hardcover, dfl. 555.00. Artif. Intell. Medicine, 4(4):309, 1992.

DH88. James H. Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. J. Symb.
Comput., 5(1/2):29–35, 1988.
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