
DyNetKAT: An Algebra of Dynamic Networks1

Georgiana Caltais £ �2

University of Konstanz, Germany3

Hossein Hojjat £�4

Tehran Institute for Advanced Studies, Iran5

Mohammad Reza Mousavi £�6

University of Leicester, UK7

Hünkar Can Tunç £�8

University of Konstanz, Germany9

Abstract10

We introduce a formal language for specifying dynamic updates for Software Defined Networks.11

Our language builds upon Network Kleene Algebra with Tests (NetKAT) and adds constructs for12

synchronisations and multi-packet behaviour to capture the interaction between the control- and13

data-plane in dynamic updates. We provide a sound and ground-complete axiomatization of our14

language. We exploit the equational theory to provide an efficient reasoning method about safety15

properties for dynamic networks. We implement our equational theory in DyNetiKAT – a tool16

prototype, based on the Maude Rewriting Logic and the NetKAT tool, and apply it to a case study.17

We show that we can analyse the case study for networks with hundreds of switches using our initial18

tool prototype.19

Subject Classification Theory of computation → Semantics and reasoning20

Keywords and phrases Software Defined Networks, Dynamic Updates, Dynamic Network Reconfig-21

uration, NetKAT, Process Algebra, Equational Reasoning22

Funding Georgiana Caltais: supported by the DFG project “CRENKAT”, proj. no. 39805682123

Mohammad Reza Mousavi: supported by the UKRI Trustworthy Autonomous Systems Node in24

Verifiability, Grant Award Reference EP/V026801/1.25

Hünkar Can Tunç: supported by the DFG project “CRENKAT”, proj. no. 39805682126

1 Introduction27

Software defined networking (SDN) has gained immense popularity due to simplicity in28

network management and offering network programmability. Many programming languages29

have been designed for programming SDNs [25, 15]. They range from industrial-scale,30

hardware-oriented and low-level programming languages such as OpenFlow [18] to domain-31

specific, high-level and programmer-centric languages such as Frenetic [10]. In recent years,32

there has been a growing interest in analysable languages based on mathematical foundations33

which provide a solid reasoning framework to prove correctness properties in SDNs (e.g.,34

safety).35

There is a spectrum of mathematically inspired network programming languages that36

varies between those with a small number of language constructs and those with expressive37

language design which allow them to support more networking features. On the more38

expressive side of the spectrum, Flowlog [20] is an example of a language that uses a powerful39

formalism (first-order Horn clause logic) to program a Software Defined Network (SDN). In40

order to keep the language decidable, Flowlog disallows recursion in the clauses. For the41

purpose of formal analysis of a Flowlog program, the authors of [20] provide a translator42

to the Alloy tool. As another example of an expressive language, Kinetic [14] is a language43

based on finite state machines that is mostly geared towards dynamic feature of SDNs. Model44

© Georgiana Caltais, Hossein Hojjat, and Mohammad Reza Mousavi, Hünkar Can Tunç;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gcaltais@gmail.com
https://www.sen.uni-konstanz.de/members/research-staff/dr-georgiana-caltais/
mailto:h.hojjat@teias.institute
https://teias.institute/people/faculty/cs/hossein-hojjat/
mailto:mm789@leicester.ac.uk
https://www.cs.le.ac.uk/people/mm789/
mailto:hcantunc@gmail.com
https://www.sen.uni-konstanz.de
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

:2 DyNetKAT: An Algebra of Dynamic Networks

checking is used to formally analyse the Kinetic programs. NetKAT [2, 9] is an example of45

a minimalist language based on Kleene algebra with tests that has a sound and complete46

equational theory. While the core of the language is very simple with a few number of47

operators, the language has been extended in various ways to support different aspects48

of networking such as congestion control [8], history-based routing [5] and higher-order49

functions [26].50

Our starting point is NetKAT, because it provides a clean and analyseable framework51

for specifying SDNs. The minimalist design of NetKAT does not cater for some common52

(failure) patterns in SDNs, particularly those arising from dynamic reconfiguration and the53

interaction between the data- and control-plane flows. In [16], the authors have proposed54

an extension to NetKAT to support stateful network updates. The extension embraces the55

notion of mutable state in the language which is in contrast to its pure functional nature.56

The purpose of this paper is to propose an extension to NetKAT to support dynamic and57

stateful behaviours. To this end, we pledge to keep the minimalist design of NetKAT with58

adding only a few number of new operators. Furthermore, our extension does not contradict59

the nature of the language.60

A number of concurrent extensions of NetKAT have been introduced to date [22, 27, 13].61

These extensions followed different design decisions than the present paper and a comparison62

of their approaches with ours is provided in Section 2; however, the most important difference63

lies in the fact that inspired by earlier abstractions in this domain [21], we were committed to64

create different layers for data-plane flows and dynamic updates such that every data-plane65

packet observes a single set of flow tables through its flight through the network. This allowed66

us, unlike the earlier approaches, to build a layer on top of NetKAT without modifying its67

semantics.68

1.1 Running Examples69

Throughout the paper, we focus on modelling with DyNetKAT two examples that involve70

dynamically updating the network configuration. In the first example, stateful firewall, the71

data-plane initiates the update by allowing a disallowed path in the network as a result of72

requests received from the trusted intranet. In the second, distributed controller, the control-73

plane initiates the update by modifying the forwarding route of a packet in a multi-controller74

setting.75

▶ Example 1. A firewall is supposed to protect the intranet of an organization from76

unauthorised access from the Internet. However, due to certain requests from the intranet, it77

should be able to open up connections from the Internet to intranet. An example is when78

a user within the intranet requests a secure connection to a node on the Internet; in that79

case, the response from the node should be allowed to enter the intranet. The behaviour80

of updating the flow tables with respects to some events in the network such as receiving a81

specific packet is a challenging phenomenon for languages such as NetKAT.82

Figure 1 shows a simplified version of the stateful firewall network. In this version, the83

Switch does not allow any packet from the port ext to int at the beginning. When the Host84

sends a request to the Switch it opens up the connection.85

▶ Example 2. Another running example concerns a well-known challenge in SDNs, namely,86

race conditions resulting from dynamic updates of flow-tables and in-flight packets [17, 24].87

Below we specify a typical scenario for such race conditions; similar scenarios concerning88

actual bugs are abundant in the literature [24, 11, 12].89

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :3

SwitchHost int ext

Figure 1 Stateful Firewall

Consider the network topology depicted in Figure 2. The controller C1 controls the top90

part of the network (switches S1, S3 and S5) and the controller C2 is responsible for the91

bottom part. Initially, the packets from H1, which enter the network through switch S192

(port 2), should be routed through switches S5 (through ports 6 and 7), S6 (through ports93

8 and 10) and finally port 12 of switch S2, to reach H2. Due to an event, the controllers94

have to take down the previous route, and to install a new route in the network that routes95

packets from H3 through S3 (ports 1 to 3), S5 (through ports 5 to 7), S6 (ports 8 to 9) to96

switch S4 (port 11) to finally reach H4. It is an important security property that the traffic97

in these two routes should not mix. In particular, it will be serious breach if packets from98

H1 arrive at H4 or vice versa, packets from H3 arrive at H2.99

S3
1

3
S1

2

4

S4
13

11
S2

14

12

S5
6

7

5

S6
8

9 10

H4
15

H2
16

H1H3

C1

C2

Figure 2 Race Condition in a Distributed Controller

1.2 Our Contributions100

The contributions of this paper are summarized as follows:101

we define the syntax and operational semantics of a dynamic extension of NetKAT that102

allows for modelling and reasoning about control-plane updates and their interaction103

with data-plane flows;104

we give a sound and ground-complete axiomatization of our languages; and105

we devise analysis methods for reasoning about flow properties using our axiomatization,106

apply them on examples from the domain and gather and analyze evidence of applicability107

and efficiency for our approach.108

1.3 Structure of Paper109

In Section 2, we provide a brief overview of NetKAT, review our design decision and110

introduce the syntax and operational semantics of DyNetKAT. In Section 3, we investigate111

:4 DyNetKAT: An Algebra of Dynamic Networks

some semantic properties of DyNetKAT by defining a notion of behavioural equivalence and112

providing a sound and ground-complete axiomatization. We exploit this axiomatization in113

Section 4 in an analysis method. We implement and apply our analysis method in Section 5114

on a case study and report about its scalability on large examples with hundreds of switches.115

We conclude the paper and present some avenues for future work in Section 6.116

2 Language Design117

In what follows, we provide a brief overview of the NetKAT syntax and semantics [2]. Then,118

we motivate our language design decisions, we introduce the syntax of DyNetKAT and its119

underlying semantics, and provide the corresponding encoding of our running examples120

presented in Section 1.1.121

2.1 Brief Overview of NetKAT122

We proceed by first introducing some basic notions that are used throughout the paper.123

▶ Definition 1 (Network Packets.). Let F = {f1, . . . , fn} be a set of field names fi with124

i ∈ {1, . . . n}. We call network packet a function in F → N that maps field names in F to125

values in N. We use σ, σ′ to range over network packets. We write, for instance, σ(fi) = vi126

to denote a test checking whether the value of fi in σ is vi. Furthermore, we write σ[fi := ni]127

to denote the assignment of fi to vi in σ.128

A (possibly empty) list of packets is formally defined as a function from natural numbers129

to packets, where the natural number in the domain denotes the position of the packet in the130

list such that the domain of the function forms an interval starting from 0.131

The empty list is denoted by ⟨⟩ and is formally defined as the empty function (the function132

with the empty set as its domain). Let σ be a packet and l be a list, then σ :: l is the list l′ in133

which σ is at position 0 in l′, i.e., l′(0) = σ, and l′(i + 1) = l(i), for all i in the domain of l.134

In Figure 3, we recall the NetKAT syntax and semantics [2].135

NetKAT Syntax:
Pr ::= 0 | 1 | Pr + Pr | Pr · Pr | ¬Pr
N ::= Pr | f ← n | N + N | N ·N | N∗ | dup

NetKAT Semantics:
J1K(h) ≜ {h}
J0K(h) ≜ {}

Jf = nK (σ::h) ≜

{
{σ::h} if σ(f) = n

{} otherwise
J¬aK (h) ≜ {h} \ JaK (h)

Jf ← nK (σ::h) ≜ {σ[f := n]::h}
Jp + qK (h) ≜ JpK (h) ∪ JqK (h)

Jp · qK (h) ≜ (JpK • JqK) (h)
Jp∗K (h) ≜

⋃
i∈N

F i (h)
F 0 (h) ≜ {h}

F i+1 (h) ≜ (JpK • F i) (h)
(f • g)(x) ≜

⋃
{g(y) | y ∈ f(x)}

JdupK (σ::h) ≜ {σ::(σ::h)}

Figure 3 NetKAT: Syntax and Semantics [2]

The predicate for dropping a packet is denoted by 0, while passing on a packet (without136

any modification) is denoted by 1. The predicate checking whether the field f of a packet137

has value n is denoted by (f = n); if the predicate fails on the current packet it results138

on dropping the packet, otherwise it will pass the packet on. Disjunction and conjunction139

between predicates are denoted by Pr + Pr and Pr · Pr , respectively. Negation is denoted140

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :5

by ¬Pr . Predicates are the basic building blocks of NetKAT policies and hence, a predicate141

is a policy by definition. The policy that modifies the field f of the current packet to take142

value n is denoted by (f ← n). A multicast behaviour of policies is denoted by N + N , while143

sequencing policies (to be applied on the same packet) are denoted by N ·N . The repeated144

application of a policy is encoded as N∗. The construct dup simply makes a copy of the145

current network packet.146

In [2], lists of packets are referred to as histories. Let H stand for the set of packet147

histories, and P(H) denote the powerset of H. More formally, the denotational semantics148

of NetKAT policies is inductively defined via the semantic map J−K : N → (H → P(H)) in149

Figure 3, where N stands for the set of NetKAT policies, h ∈ H is a packet history, a ∈ Pr150

denotes a NetKAT predicate and σ ∈ F → N is a network packet.151

For a reminder, the equational axioms of NetKAT, denoted by ENK, are provided in152

Figure 4. ENK includes the Kleene Algebra axioms (KA-. . .), Boolean Algebra axioms153

(BA-. . .) and Packet Algebra axioms (PA-. . .). The novelty is the set of PA-axioms. In short,154

PA-MOD-MOD-COMM states that the order in which two different packet fields are assigned155

does not matter. PA-MOD-FILTER-COMM encodes a similar property, for the case of a156

field assignment followed by a test of a different field’s value. PA-MOD-FILTER ignores157

the test of a field preceded by an assignment of the same value to the field. Orthogonaly,158

PA-FILTER-MOD ignores a field assignment preceded by a test against the assigned value.159

PA-MOD-MOD states that a sequence of assignments to the same field only takes into160

consideration the last assignment. PA-CONTRA encodes the fact that a field cannot have161

two different values at the same point. PA-MATCH-ALL identifies the policy accepting162

all the packets with the sum of all possible tests of a field’s value. Intuitively, PA-DUP-163

FILTER-COMM states that adding the current packet to the history is independent of164

tests.165

p + (q + r) ≡(p + q) + r KA-PLUS-ASSOC a + (b · c)≡ (a + b) · (a + c) BA-PLUS-DIST
p + q ≡q + p KA-PLUS-COMM a + 1≡ 1 BA-PLUS-ONE
p + 0 ≡p KA-PLUS-ZERO a + ¬a≡ 1 BA-EXCL-MID
p + p ≡p KA-PLUS-IDEM a · b≡ b · a BA-SEQ-COMM

p · (q · r) ≡(p · q) · r KA-SEQ-ASSOC a · ¬a≡ 0 BA-CONTRA
1 · p ≡p KA-ONE-SEQ a · a≡ a BA-SEQ-IDEM
p · 1 ≡p KA-SEQ-ONE

p · (q + r) ≡p · q + p · r KA-SEQ-DIST-L f ← n · f ′ ← n′≡f ′ ← n′ · f ← n, if f ̸= f ′ PA-MOD-MOD-COMM
(p + q) · r ≡p · r + q · r KA-SEQ-DIST-R f ← n · f ′ = n′≡f ′ = n′ · f ← n, if f ̸= f ′ PA-MOD-FILTER-COMM

0 · p ≡0 KA-ZERO-SEQ dup · f = n≡f = n · dup PA-DUP-FILTER-COMM
p · 0 ≡0 KA-ZERO-SEQ f ← n · f = n≡f ← n PA-MOD-FILTER

1 + p · p∗ ≡p∗ KA-UNROLL-L f = n · f ← n≡f = n PA-FILTER-MOD
1 + p∗ · p ≡p∗ KA-UNROLL-R f ← n · f ← n′≡f ← n′ PA-MOD-MOD

q + p · r ≤ r⇒p∗ · q ≤ r KA-LFP-L f = n · f = n′≡ 0, if n ̸= n′ PA-CONTRA
p + q · r ≤ q⇒p · r∗ ≤ q KA-LFP-R Σif = i≡ 1 PA-MATCH-ALL

Figure 4 ENK: NetKAT Equational Axioms [2]

2.2 Design Decisions166

Our main motivation behind DyNetKAT was to have a minimalistic language that can model167

control-plane and data-plane network traffic and their interaction. Our choice for a minimal168

language is motivated by our desire to use our language as a basis for scalable analysis. We169

would like to be able to compile major practical languages into ours. Our minimal design170

helps us reuse much of the well-known scalable analysis techniques. Regarding its modelling171

:6 DyNetKAT: An Algebra of Dynamic Networks

capabilities, we are interested in modelling the stateful and dynamic behaviour of networks172

emerging from these interactions. We would like to be able to model control messages,173

connections between controllers and switches, data packets, links among switches, and model174

and analyse their interaction in a seamless manner.175

Based on these motivations, we started off with NetKAT as a fundamental and minimal176

network programming language, which allows us to model the basic policies governing the177

network traffic. The choice of NetKAT, in addition to its minimalist nature, is motivated178

by its rigorous semantics and equational theory, and the existing techniques and tools for179

its analysis. This motivated our next design constraint, namely, to build upon NetKAT in180

a hierarchical manner and without redefining its semantics. This constraint should not be181

taken lightly as the challenges in the recent concurrent extensions of NetKAT demonstrated182

[22, 27, 13]. We will elaborate on this point, in the presentation of our syntax and semantics.183

We could achieve this thanks to the abstractions introduced in the domain [21] that allowed184

for a neat layering of data-plane and control-plan flows such that every data-plane flow sees185

one set of flow-tables in its flight through the network.186

We then introduced few extensions and modifications to cater for the phenomena we187

desired to model in our extension regarding control-plane and dynamic and stateful behaviour:188

Synchronization: we introduced a basic mechanism of handshake synchronization with189

the possibility of communicating a network program (a flow table). This construct allows190

for capturing the dynamicity and interaction between the control and data planes.191

Guarded recursion: we introduced the concept of recursion to model the (persistent)192

dynamic changes that result from control messages and stateful behaviour; in other193

words, recursion is used to model the new state of the flow tables. An alternative194

modelling construct could have been using “global” variables and guards, but we preferred195

recursion due to its neat algebraic representation. We restricted the use of recursion196

to guarded recursion, that is a policy should be applied before changing state to a new197

recursive definition, in order to remain within a decidable and analyse-able realm. A198

natural extension of our framework could introduce formal parameters and parameterised199

recursive variables; this future extension is orthogonal to our existing extensions and in200

this paper, we go for a minimal extension in which the parameters are coded in variable201

names.202

Multi-packet semantics: we introduce the semantics of treating a list of packets, which is203

essential for studying the interaction between control- and data plane packets. This is in204

contrast with NetKAT where a single-packet semantics is introduced. The introduction205

of multi-packet semantics also called for a new operator to denote the end of applying a206

flow-table to the current packet and proceeding with the next packet (possibly with the207

modified flow-table in place). This is our new sequential composition operator, denoted208

by “;”.209

2.3 DyNetKAT Syntax210

As already mentioned, NetKAT provides the possibility of recording the individual “hops”211

that packets take as they go through the network by using the so-called dup construct. The212

latter keeps track of the state of the packet at each intermediate hop. As a brief reminder of213

the approach in [2]: assume a NetKAT switch policy p and a topology t, together with an214

ingress in and an egress out. Checking whether out is reachable from in reduces to checking:215

in ·dup · (p · t ·dup)∗ ·out ̸≡ 0 (see Definition 2 and Theorem 4 in [2]). Furthermore, as shown216

in [9], dup plays a crucial role in devising the NetKAT language semantics in a coalgebraic217

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :7

fashion, via Brzozowski-like derivatives on top of NetKAT coalgebras (or NetKAT automata)218

corresponding to NetKAT expressions.219

We decided to depart from NetKAT in this respect, due to our important constraint not220

to redefine the NetKAT semantics: the dup expression allows for observable intermediate221

steps that result from incomplete application of flow-tables and in concurrency scenarios, the222

same data packet may become subject to more than one flow table due to the concurrent223

interactions with the control plain. For this semantics to be compositional, one needs to224

define a small step operational semantics in such a way that the small steps in predicate225

evaluation also become visible (see our past work on compositionality of SOS with data on226

such constraints [19]). This will first break our constrain in building upon NetKAT semantics227

and secondly, due to the huge number of possible interleavings, make the resulting state-space228

intractable for analysis.229

In addition to the argumentation above, note that similarly to the approach in [2], we work230

with packet fields ranging over finite domains. Consequently, our analyses can be formulated231

in terms of reachability properties, further verifiable by means of dup-free expressions of232

shape: in · (p · t)∗ · out ̸≡ 0. Hence, we chose to define DyNetKAT synchronization, guarded233

recursion and multi-packet semantics on top of the dup-free fragment of NetKAT, denoted234

by NetKAT−dup.235

The syntax of DyNetKAT is defined on top of the dup-free fragment of NetKAT as:236

N ::= NetKAT−dup

D ::= ⊥ | N ; D | x?N ; D | x!N ; D | D ||D | D ⊕D | X
X ≜ D

(1)237

We sometimes write p ∈ NetKAT, p ∈ NetKAT−dup or, respectively, p ∈ DyNetKAT in238

order to refer to a NetKAT, NetKAT−dup or, respectively, DyNetKAT policy p.239

The DyNetKAT-specific constructs are as follows. By ⊥ we denote a dummy policy240

without behaviour. Our new sequential composition operator, denoted by N ; D, specifies241

when the NetKAT−dup policy N applicable to the current packet has come to a successful242

end and, thus, the packet can be transmitted further and the next packet can be fetched for243

processing according to the rest of the policy D.244

Communication in DyNetKAT, encoded via x!N ; D and x?N ; D, consists of two steps. In245

the first place, sending and receiving NetKAT−dup policies through channel x are denoted by246

x!N , and x?N . Intuitively, these correspond to updating the current network configuration247

according to N . Secondly, as soon as the sending or receiving messages are successfully com-248

municated, a new packet is fetched and processed according to D. The parallel composition249

of two DyNetKAT policies (to enable synchronization) is denoted by D ||D.250

As it will become clearer in Section 2.4 (semantics), communication in DyNetKAT251

guarantees preservation of well-defined behaviours when transitioning between network252

configurations. This corresponds to the so-called per-packet consistency in [21], and it253

guarantees that every packet traversing the network is processed according to exactly one254

NetKAT−dup policy.255

Non-deterministic choice of DyNetKAT policies is denoted by D ⊕ D. For a non-256

determinstic choice over a finite domain P , we use the syntactic sugar ⊕p∈P P ′, where p257

appears as “bound variable” in P ′; this is interpreted as a sum of finite summand by replacing258

the variable p with all its possible values in P .259

Finally, one can use recursive variables X in the specification of DyNetKAT policies,260

where each recursive variable should have a unique defining equation X ≜ D.261

:8 DyNetKAT: An Algebra of Dynamic Networks

For the simplicity of notation, we do not explicitly specify the trailing “;⊥” in our policy262

specifications, whenever clear from the context.263

In Figure 5 we provide the DyNetKAT formalization of the firewall in Example 1. In the264

DyNetKAT encoding, we use the message channel secConReq to open up the connection and265

secConEnd to close it. We model the behavior of the switch using the two programs Switch266

and Switch′.267

Host ≜ secConReq!1 ; Host⊕
secConEnd!1 ; Host

Switch ≜
(
(port = int) · (port← ext)

)
; Switch⊕(

(port = ext) · 0
)

; Switch⊕
secConReq?1 ; Switch′

Switch′ ≜
(
(port = int) · (port← ext)

)
; Switch′⊕(

(port = ext) · (port← int)
)

; Switch′⊕
secConEnd?1 ; Switch

Init ≜ Host ||Switch

Figure 5 Stateful Firewall in DyNetKAT

In Figure 6 we provide the DyNetKAT formalization of the distributed controllers in268

Example 2. In the code in Figure 6 the controllers work independently to update the network269

(which can lead to security breach). The specification SwitchXft is a generic specification270

for the behaviour of all switches in this example; the domain of P in this example is the set271

of all 5 policies that are being communicated, such as 0, ((port = 11) · (port ← 13)), and272

((port = 5) · (port← 7)).273

However, in the code in Figure 7 the controllers synchronise before updating the rest of274

the switches.275

2.4 DyNetKAT Semantics276

The operational semantics of DyNetKAT in Figure 8 is provided over configurations of277

shape (d, H, H ′), where d stands for the current DyNetKAT policy, H is the list of pack-278

ets to be processed by the network according to d and H ′ is the list of packets handled279

successfully by the network. The rule labels γ range over pairs of packets (σ, σ′) or280

communication/reconfiguration-like actions of shape x!q, x?q or rcfg(x, q), depending on281

the context.282

Note that the DyNetKAT semantics is devised in a “layered” fashion. Rule (cpol✓_ ;)283

in Figure 8 is the base rule that makes the transition between the NetKAT denotations284

and DyNetKAT operations. More precisely, whenever σ′ is a packet resulted from the285

successful evaluation of a NetKAT policy p on σ, a (σ, σ′)-labelled step is observed at the286

level of DyNetKAT. This transition applies whenever the current configuration encapsulates287

a DyNetKAT policy of shape p; q and a list of packets to be processed starting with σ. The288

resulting configuration continues with evaluating q on the next packet in the list, while σ′ is289

marked as successfully handled by the network.290

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :9

L ≜ (((port = 3) · (port← 5))+
((port = 4) · (port← 6))+
((port = 7) · (port← 8))+
((port = 9) · (port← 11))+
((port = 10) · (port← 12))+
((port = 13) · (port← 15))+
((port = 14) · (port← 16)))

S1 ≜ (port = 2) · (port← 4)
S2 ≜ (port = 12) · (port← 14)
S3 ≜ 0
S4 ≜ 0
S5 ≜ (port = 6) · (port← 7)
S6 ≜ (port = 8) · (port← 10)
SDN X1,...,X6 ≜ ((X1 + . . . + X6) · L)∗ ; SDN X1,...,X6⊕∑

X′
i
∈FT upSi?X ′

i ; SDN X1,...,X′
i
,...,X6

ft3 ≜ (port = 1) · (port← 3)
ft4 ≜ (port = 11) · (port← 13)
ft5 ≜ (port = 5) · (port← 7)
ft6 ≜ (port = 8) · (port← 9)
FT = {0, ft3 , ft4 , ft5 , ft6}

SDN ≜ SDN S1,...,S6 ||C1 ||C2

C1 ≜ upS1!0 ||upS3!ft3 ||upS5!ft5

C2 ≜ upS2!0 ||upS4!ft4 ||upS6!ft6

Figure 6 Distributed Controller in DyNetKAT: Independent Controllers

C1 ≜ upS1!0;
syn!1;
upS3!((port = 1) · (port← 3));
upS5!((port = 5) · (port← 7))

C2 ≜ upS2!0;
syn?1;
upS4!((port = 11) · (port← 13));
upS6!((port = 8) · (port← 9))

Figure 7 Distributed Controller in DyNetKAT: Synchronizing Controllers

:10 DyNetKAT: An Algebra of Dynamic Networks

The remaining rules in Figure 8 define non-deterministic choice, synchronization and291

recursion in the standard fashion.292

Rules (cpol_⊕) and (cpol_⊕) define non-deterministic behaviours. Assume H0 is the293

list of packets to be processed by the network according to p (respectively, q) and H ′
0 is the294

list of packets handled successfully by the network. Whenever p (respectively, q) determines295

a γ-labelled transition into (p′, H1, H ′
1) (respectively, (q′, H1, H ′

1)), the policy p⊕ q is able to296

mimic the same behaviour. Rules (cpol_||) and (cpol||_) follow a similar pattern; the only297

difference is that the “inactive” operand is preserved by the target of the semantic rule.298

Mere sending (cpol!) and receiving (cpol?) entail transitions labelled accordingly, and299

continue with the DyNetKAT policy following the ; operator. Note that the list of packets300

to be processed by the network and the list of packets handled successfully by the network301

remain unchanged.302

DyNetKAT synchronization is defined by (cpol!?) and (cpol?!). Intuitively, when both303

operands q and, respectively, s “agree” on sending/receiving a policy p on channel x in the304

context of the same packet lists H and H ′, and behave like q′, respectively, s′ afterwards,305

then a rcfg(x, p) step can be observed. The system proceeds with the continuation behaviour306

q′ || s′.307

As denoted by (cpolX), a recursive variable defined as X ≜ p behaves according to p.308

In Figure 9 we depict a labelled transition system (LTS) encoding a possible behaviour of309

the stateful firewall in Example 1. We assume the list of network packets to be processed310

consists of a “safe” packet σi travelling from int to ext (i.e., σi(port) = int) followed by a311

potentially “dangerous” packet σe travelling from ext to int (i.e., σe(port) = ext). For the312

simplicity of notation, in Figure 9 we write H for Host, S for Switch, S ′ for Switch′, SCR313

for secConReq and SCE for secConEnd. Note that σe can enter the network only if a secure314

connection request was received. More precisely, the transition labelled (σe, σi) is preceded315

by a transition labelled SCR?1 or rcfg(SCR, 1): n2
SCR?1, rcfg(SCR,1)−−−−−−−−−−−−−→ n3

(σe,σi)−−−−→ n4.316

In Figure 10 we depict an excerpt of the LTS corresponding to the distributed independent317

controllers in Example 2, given a network packet denoted by σ2. In Figure 10 we write318

σi to denote a network packet such that σi(port) = i. For instance, transitions of shape319

n0
(σ2,σi)−−−−→ ni encode forwarding of the current packet from port 2 to port i based on the320

subsequent unfoldings of the Kleene-star expression in the definition of SDN X1,...,X6 . The321

transition n2
(σ2,σ15)−−−−−→ n15 reveals a breach in the network corresponding to the possibility322

of forwarding the current packet from H1 to H4. This is possible due to two consecutive323

reconfigurations of the flow tables of switches S6 and S4, respectively, enabling traffic from324

port 8 to 9, and from port 11 to 13.325

3 Semantic Results326

In this section we define bisimilarity of DyNetKAT policies, introduce some necessary327

definitions and terminology, and provide a corresponding sound and complete axiomatization.328

3.1 An Axiom System for DyNetKAT Bisimilarity329

Bisimilarity of DyNetKAT terms is defined in the standard fashion:330

▶ Definition 2 (Bisimilarity (∼)). A symmetric relation R over DyNetKAT policies is a331

bisimulation whenever for (p, q) ∈ R the following holds:332

If (p, H0, H1) γ−→ (p′, H ′
0, H ′

1) then exists q′ s.t. (q, H0, H1) γ−→ (q′, H ′
0, H ′

1) and (p′, q′) ∈ R,333

with γ ::= (σ, σ′) | x?r | x!r | rcfg(x, r).334

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :11

(cpol✓_ ;)
σ′ ∈ JpK(σ::⟨⟩)

(p; q, σ :: H, H ′) (σ,σ′)−−−−→ (q, H, σ′ :: H ′)
(cpolX)

(p, H0, H1) γ−→ (p′, H ′
0, H ′

1)
(X, H0, H1) γ−→ (p′, H ′

0, H ′
1)

X ≜ p

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (p′, H1, H ′

1)
(cpol⊕_)

(q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(p⊕ q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(cpol_||)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p||q, H0, H ′
0) γ−→ (p′||q, H1, H ′

1)
(cpol||_)

(q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(p||q, H0, H ′

0) γ−→ (p||q′, H1, H ′
1)

(cpol?)
(x?p; q, H, H ′) x?p−−→ (q, H, H ′)

(cpol!)
(x!p; q, H, H ′) x!p−−→ (q, H, H ′)

(cpol!?)
(q, H, H ′) x!p−−→ (q′, H, H ′) (s, H, H ′) x?p−−→ (s′, H, H ′)

(q||s, H, H ′) rcfg(x,p)−−−−−−→ (q′||s′, H, H ′)

(cpol?!)
(q, H, H ′) x?p−−→ (q′, H, H ′) (s, H, H ′) x!p−−→ (s′, H, H ′)

(q||s, H, H ′) rcfg(x,p)−−−−−−→ (q′||s′, H, H ′)

γ ::= (σ, σ′) | x!q | x?q | rcfg(x, q)

Figure 8 DyNetKAT: Operational Semantics

We call bisimilarity the largest bisimulation relation.335

Two policies p and q are bisimilar (p ∼ q) if and only if there is a bisimulation relation336

R such that (p, q) ∈ R.337

Semantic equivalence of NetKAT−dup policies is preserved by DyNetKAT bisimilarity.338

▶ Proposition 3 (Semantic Layering). Let p and q be two NetKAT−dup policies. The following339

holds:340

JpK = JqK iff (p; d) ∼ (q; d)341

for any DyNetKAT policy d.342

Proof. The result follows directly according to the definition of bisimilarity and (cpol✓_ ;) in343

Figure 8. ◀344

Next, we introduce the restriction operator δL(−) [1, 3], with L a set of forbidden actions345

ranging over x?z and x!z as in (1). The semantics of δL(−) is:346

(δ)
(p, H0, H1) γ−→ (p′, H ′

0, H ′
1)

(δL(p), H0, H1) γ−→ (δL(p′), H ′
0, H ′

1)
γ ̸∈ L (2)347

:12 DyNetKAT: An Algebra of Dynamic Networks

n0 : (H||S, σi::σe::⟨⟩, ⟨⟩)

n1 : (H||S′, σi::σe::⟨⟩, ⟨⟩)

n2 : (H||S, σe::⟨⟩, σe::⟨⟩ n3 : (H||S′, σe::⟨⟩, σe::⟨⟩

n4 : (H||S′, ⟨⟩, σi::σe::⟨⟩

n5 : (H||S, ⟨⟩, σi::σe::⟨⟩

SCE!1,SCR!1

SCR!1,rcfg(SCR
,1)

SCE!1,SCR!1

SCE!1,rcfg(SCE,1)

(σi, σe)

(σi, σe)

SCE!1,SCR!1

SCR!1,rcfg(SCR,1)

SCE!1,rcfg(SCE,1)

(σe, σi)

SCE!1,SCR!1

SCE!1,SCR!1

S
C

E
!1

,rcfg(S
C

E
,1)

SCR!1,rcfg(SCR,1)

SCE!1,SCR!1

Figure 9 Stateful Firewall LTS

In practice, we use the restriction operator to force synchronous communication. For an348

example, consider the synchronising controllers in Figure 7. Let L be the set of restricted349

actions ranging over elements of shape upSi?X, upSi!X, syn?1 and syn!1. The restricted350

system δL(SDN S1,...,S6 ||C1 ||C2) ensures that: (1) traffic through S2 and S1 is first disabled351

via reconfigurations rcfg(upS2, 0) and rcfg(upS1, 0) and (2) the controllers acknowledge352

this deactivation via a synchronization step rcfg(syn, 1) before installing further flow tables353

for S4 and S6.354

In the style of [3], we define a projection operator πn(−) that, intuitively, captures the355

first n steps of a DyNetKAT policy. Its formal semantics is:356

(π)
(p, H0, H1) γ−→ (p′, H ′

0, H ′
1)

(πn+1(p), H0, H1) γ−→ (πn(p′), H ′
0, H ′

1)
(3)357

As we shall later see, πn(−) is crucial for defining the so-called “Approximation Induction358

Principle” that enables reasoning about equivalence of recursive DyNetKAT specifications.359

We further provide some additional ingredients needed to introduce the DyNetKAT axio-360

matization in Figure 11. First, note that our notion of bisimilarity identifies synchronization361

steps as in (cpol!?) and (cpol?!). At the axiomatization level, this requires introducing362

corresponding constants rcfgx,z defined as:363

(rcfgx,z)
(rcfgx,z; p, H0, H1) rcfg(x,z)−−−−−−→ (p, H0, H1)

(4)364

Last, but not least, we introduce the left-merge operator (T) and the communication-365

merge operator (|) utilised for axiomatizing parallel composition. Intuitively, a process of366

shape pTq behaves like p as a first step, and then continues as the parallel composition367

between the remaining behaviour of p and q. A process of shape p | q forces the synchronous368

communication between p and q in a first step, and then continues as the parallel composition369

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :13

n0 : (SDN, σ2::⟨⟩, ⟨⟩) . . .

n1 : SDNS1,S2,S3,S4,S5,ft6 ||C1 ||(upS2!0 ||upS4!ft4), σ2::⟨⟩, ⟨⟩)

n2 : SDNS1,S2,S3,S4,S5,ft6 ||C1 ||(upS2!0), σ2::⟨⟩, ⟨⟩)

nj : SDNS1,S2,S3,S4,S5,ft6 ||C1 ||(upS2!0 ||upS4!ft4), ⟨⟩, σj ::⟨⟩)

ni : SDN, ⟨⟩, σj ::⟨⟩)

rcfg(upS6, ft6)

rcfg(upS4, ft4)

(σ2, σj)
j ∈ {2, 6, 8, 11, 15}

(σ2, σi)
i ∈ {2, 6, 8, 12, 16}

Figure 10 Independent Controllers LTS (excerpt)

between the remaining behaviours of p and q. The corresponding semantic rules are:370

(T)
(p, H0, H1) γ−→ (p′, H ′

0, H ′
1)

(pTq, H0, H1)) γ−→ (p′ || q, H ′
0, H ′

1)
γ ::= (σ, σ′) | x!p | x?p | rcfg(x, p)

(|?!)
(p, H, H ′) x?r−−→ (p′, H, H ′) (q, H, H ′) x!r−−→ (q′, H, H ′)

(p | q, H, H ′) rcfg(x,p)−−−−−−→ (p′ || q′, H, H ′)

(|!?)
(p, H, H ′) x!r−−→ (p′, H, H ′) (q, H, H ′) x?r−−→ (q′, H, H ′)

(p | q, H, H ′) rcfg(x,p)−−−−−−→ (p′ || q′, H, H ′)

(5)371

From this point onward, we denote by DyNetKAT the extension with the operators in (2),372

(3) and (4):373

N ::= NetKAT−dup

De ::= ⊥ | N ; D | x?N ; De | x!N ; De | rcfgx,N ; De |
De ||De | De ⊕De | δL(De) | πn(De) | DeTDe | De|De | X
X ≜ De, n ∈ N, L = {c | c ::= x?N | x!N}

(6)374

Bisimilarity is defined for DyNetKAT terms as in (6) in the natural fashion, according to the375

operational semantics of the new operators in (2), (3) and (4).376

▶ Lemma 3. DyNetKAT bisimilarity is a congruence.377

Proof. The result follows from the fact that the semantic rules defined in this paper comply378

to the congruence formats proposed in [19]. ◀379

▶ Definition 4 (Complete Tests & Assignments [2]). Let F = {f1, . . . , fn} be a set of fields380

names with values in Vi, for i ∈ {1, . . . , n}. We call complete test (typically denoted by381

α) an expression f1 = v1 · . . . · fn = vn, with vi ∈ Vi, for i ∈ {1, . . . , n}. We call complete382

assignment (typically denoted by π) an expression f1 ← v1 · . . . · fn ← vn, with vi ∈ Vi, for383

i ∈ {1, . . . , n}. We sometimes write απ in order to denote the complete test derived from384

:14 DyNetKAT: An Algebra of Dynamic Networks

for p, q, r ∈ DyNetKAT and z, y ∈ NetKAT−dup

for a ::= z | x?z | x!z | rcfgx,z

0 ; p≡⊥ (A0)
(z + y) ; p≡ z ; p⊕ y ; p (A1)

p⊕ q≡ q ⊕ p (A2)
(p⊕ q)⊕ r≡ p⊕ (q ⊕ r) (A3)

p⊕ p≡ p (A4)
p⊕⊥≡ p (A5)

p || q≡ q || p (A6)
p || ⊥≡ p (A7)
p || q≡ pTq ⊕ qTp⊕ p | q (A8)
⊥Tp≡⊥ (A9)

(a ; p)Tq≡ a ;(p || q) (A10)
(p⊕ q)Tr≡ (pTr)⊕ (qTr) (A11)

(x?z ; p) | (x!z ; q)≡ rcfgx,z ;(p || q) (A12)
(p⊕ q) | r≡ (p | r)⊕ (q | r) (A13)

p | q≡ q | p (A14)
p | q≡⊥ [owise] (A15)

for at ::= α · π | x?z | x!z | rcfgx,z :
δL(⊥)≡⊥ (δ⊥)

δL(at ; p)≡ at ; δL(p) if at ̸∈ L (δ;)
δL(at ; p)≡⊥ if at ∈ L (δ⊥

;)
δL(p⊕ q)≡ δL(p)⊕ δL(q) (δ⊕)

for n ∈ N :
π0(p)≡⊥ (Π0)

πn(⊥)≡⊥ (Π⊥)
πn+1(at ; p)≡ at ; πn(p) (Π;)

πn(p⊕ q)≡πn(p)⊕ πn(q) (Π⊕)

p≡ q if ∀n ∈ N : πn(p) ≡ πn(q) (AIP)

ENK

Figure 11 The axiom system EDNK (including ENK)

the complete assignment π by replacing all fi ← vi in π with fi = vi; symmetrically for πα.385

Additionally, we sometimes write σα to denote the network packet whose fields are assigned386

the corresponding values in α; symmetrically for σπ.387

In Figure 11, we introduce EDNK – the axiom system of DyNetKAT, including the388

NetKAT axiomatization ENK. Most of the axioms in Figure 11 comply to the standard389

axioms of parallel and communicating processes [3], where, intuitively, ⊕ plays the role390

of non-deterministic choice, ; resembles sequential composition and ⊥ is a process that391

deadlocks.392

For instance, axioms (A2)− (A5) encode the ACI properties of ⊕ together with the fact393

that ⊥ is the neutral element.394

Axioms (A8) − (A15) define parallel composition (||) in terms of left-merge (T) and395

communication-merge (|) in the standard fashion. Additionally, (A12) “pin-points” a396

communication step via the newly introduced constants of form rcfgx,z. An interesting397

axiom is (A7) : p || ⊥ ≡ p which, intuitively, states that if one network component fails,398

then the whole system continues with the behaviour of the remaining components. This is a399

departure from the approach in [13], where recovery is not possible in case of a component’s400

failure; i.e., e || 0 ≡ 0.401

Axiom (A0) states that if the current packet is dropped as a result of the unsuccessful402

evaluation of a NetKAT policy, then the continuation is deadlocked. (A1) enables mapping403

the non-deterministic choice at the level of NetKAT to the setting of DyNetKAT.404

The axioms encoding the restriction operator δL(−) and the projection operator πn(−)405

are defined in the standard fashion, on top of DyNetKAT normal forms later defined in406

this section. Intuitively, normal forms are defined inductively, as sums of complete tests407

and complete assignments α · π, or communication steps x?q, x!q and rcfgx,q, followed by408

arbitrary DyNetKAT policies.409

Last, but not least, (AIP) corresponds to the so-called “Approximation Induction410

Principle”, and it provides a mechanism for reasoning on the equivalence of recursive411

behaviours, up to a certain limit denoted by n.412

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :15

3.1.1 Soundness and Completeness413

In what follows, we show that the axiom system EDNK is sound and ground-complete with414

respect to DyNetKAT bisimilarity.415

We proceed by first defining a notion of normal forms of DyNetKAT terms, together416

with a notion of guardedness and a statement about the branching finiteness of guarded417

DyNetKAT processes.418

▶ Lemma 5 (NetKAT−dup Normal Forms). We call a NetKAT−dup policy q in normal form419

(n.f.) whenever q is of shape Σα·π∈Aα · π with A = {αi · πi | i ∈ I}. For every NetKAT−dup
420

policy p there exists a NetKAT−dup policy q in n.f. such that ENK ⊢ p ≡ q.421

Proof. The result follows by Lemma 4 in [2], stating that:422

JpK =
⋃

x∈G(p)

JxK (7)423

where G(p) defines the language model of NetKAT terms. Let A be the set of all complete424

tests, and Π be the set of all complete assignments. Similarly to [2], we consider network425

packets with values in finite domains. Consequently, A and Π are finite. In [2], G(p) is defined426

as a set with elements in A·(Π·dup)∗·Π. Recall that, in our setting, we work with the dup-free427

fragment of NetKAT. Hence, G(p) is a finite set of shape G = {αi ·πi | i ∈ I, αi ∈ A, πi ∈ Π}.428

Based on the definition of J−K and (7) it follows that:429

JpK = JΣα·π∈Gα · πK (8)430

Therefore, by the completeness of NetKAT, it holds that: ENK ⊢ p ≡ Σα·π∈Gα · π. In other431

words, p can be reduced to a term in n.f. ◀432

▶ Definition 6 (DyNetKAT Normal Forms). We call a DyNetKAT policy in normal form433

(n.f.) if it is of shape434

Σ⊕
i∈I(αi · πi); di ⊕ Σ⊕

j∈Jcj ; dj (⊕⊥)435

where di, dj range over DyNetKAT policies and cj ::= x?q | x!q | rcfgx,q with q denoting436

terms in NetKAT−dup.437

▶ Definition 7 (Guardedness). A DyNetKAT policy p is guarded if and only if all occurrences438

of all variables X in p are guarded. An occurrence of a variable X in a policy p is guarded439

if and only if (i) p has a subterm of shape p′; t such that either p′ is variable-free, or all the440

occurrences of variables Y in p′ are guarded, and X occurs in t, or (ii) if p is of shape y?X; t,441

y!X; t or rcfgX,t.442

▶ Lemma 8 (Branching Finiteness). All guarded DyNetKAT policies are finitely branching.443

▶ Lemma 9 (DyNetKAT Normalization). EDNK is normalising for DyNetKAT. In other444

words, for every guarded DyNetKAT policy p there exists a DyNetKAT policy q in n.f. such445

that EDNK ⊢ p ≡ q.446

Proof. The proof follows from Lemma 5 and (A1) : (z + y); p ≡ z; p ⊕ y; p in a standard447

fashion, by structural induction.448

Base cases.449

p ≜ ⊥ trivially holds450

:16 DyNetKAT: An Algebra of Dynamic Networks

p ≜ q; d with q a NetKAT−dup term holds by Lemma 5 and (A1)451

p ≜ c; d with c ::= x?q | x!q | rcfgx,q trivially holds452

Induction step.453

p ≜ p1 ⊕ p2 p ≜ X - case discarded, as p is not guarded454

p ≜ p1Tp2 p ≜ πn(′)455

p ≜ p1 | p2 p ≜ δL(p′)456

p ≜ p1 || p2457

All items above follow by the axiom system EDNK and the induction hypothesis, under the458

assumption that p1, p2 and p′ are guarded. ◀459

For simplicity, in what follows, we assume that DyNetKAT policies are guarded.460

▶ Lemma 10 (Soundness of EDyNetKAT\AIP). Let EDyNetKAT\AIP stand for the axiom system461

EDNK in Figure 11, without the axiom (AIP). EDyNetKAT\AIP is sound for DyNetKAT462

bisimilarity.463

Proof. The proof reduces to showing that for all p, q DyNetKAT policies, the following464

holds: If EDyNetKAT\AIP ⊢ p ≡ q then p ∼ q. This is proven in a standard fashion, by case465

analysis on transitions of shape466

(p, H0, H ′
0) γ−→ (q, H1, H ′

1)467

with γ ::= (σ, σ′) | x?n | x!n | rcfg(x, n), according to the semantic rules in Figure 8, (2),468

(3), (4) and (5).469

For an example, consider (A1) and (A12) in Figure 11; the proof of soundness for these470

axioms are given in the following. The soundness proofs for the rest of the axioms are471

provided in Appendix A.472

Axiom under consideration:473

(z + y) ; p ≡ z ; p⊕ y ; p (A1) (9)474

for z, y ∈ NetKAT−dup and p ∈ DyNetKAT. Consider an arbitrary but fixed network475

packet σ, let Sz ≜ JzK(σ::⟨⟩), Sy ≜ JyK(σ::⟨⟩) and Szy ≜ Jz + yK(σ::⟨⟩). According to the476

semantic rules of DyNetKAT, the derivations of the term (z + y) ; p are as follows:477

(a)

For all σ′ ∈ Szy : (cpol✓_ ;)
((z + y); p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)478

Accordingly, the derivations of the term z ; p⊕ y ; p are as follows:479

(b)

For all σ′ ∈ Sz : (cpol✓_ ;)
(z; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)

(cpol_⊕)
(z; p⊕ y; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)

480

(c)

For all σ′ ∈ Sy : (cpol✓_ ;)
(y; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)

(cpol⊕_)
(z; p⊕ y; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)

481

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :17

As demonstrated in (a) and (b), (c), both of the terms (z + y) ; p and z ; p⊕ y ; p initially482

only afford a transition of shape (σ, σ′) and they converge into the same expression after483

taking that transition:484

((z + y); p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′) (10)485

(z ; p⊕ y ; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′) (11)486
487

In the case of the term (z + y) ; p, the possible values for the σ′ ranges over Szy. Whereas488

for the term (z + y) ; p, the possible values for the σ′ ranges over Sz ∪ Sy. However,489

observe that Szy is equal to Sz ∪ Sy:490

Szy = Jz + yK(σ::⟨⟩) (Definition of Szy) (12)491

= JzK(σ::⟨⟩) ∪ JyK(σ::⟨⟩) (Definition of +) (13)492

= Sz ∪ Sy (Definition of Sz and Sy) (14)493
494

Hence, it is straightforward to conclude that the following holds:495

((z + y) ; p) ∼ (z ; p⊕ y ; p) (15)496

497

Axiom under consideration:498

(x?z ; p) | (x!z ; q) ≡ rcfgx,z ;(p || q) (A12) (16)499

for p, q ∈ DyNetKAT. The derivations of the term (x?z ; p) | (x!z ; q) are as follows:500

(a)

(cpol?)
(x?z; p, H, H ′) x?z−−→ (p, H, H ′)

(cpol!)
(x!z; q, H, H ′) x!z−−→ (q, H, H ′)

(|?!)
((x?z ; p) | (x!z ; q), H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′)

501

The derivations of the term rcfgx,z ;(p || q) are as follows:502

(b)

(rcfgx,z)
(rcfgx,z ;(p || q), H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′)503

As demonstrated in (a) and (b), both of the terms (x?z ; p) | (x!z ; q) and rcfgx,z ;(p || q)504

initially only afford the transition rcfg(x, z) and they converge into the same expression505

after taking that transition:506

((x?z ; p) | (x!z ; q), H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′) (17)507

(rcfgx,z ;(p || q), H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′) (18)508
509

Hence, it is straightforward to conclude that the following holds:510

((x?z ; p) | (x!z ; q)) ∼ (rcfgx,z ;(p || q)). (19)511

◀512

:18 DyNetKAT: An Algebra of Dynamic Networks

▶ Lemma 11 (Soundness of AIP). The Approximation Induction Principle (AIP) is sound513

for DyNetKAT bisimilarity.514

Proof. The proof is close to the one of Theorem 2.5.8 in [3] and uses the branching finiteness515

property of DyNetKAT policies in Lemma 8. Assume two DyNetKAT policies p, p′ such that516

517

∀n ∈ N : πn(p) ≡ πn(p′) (20)518

By Lemma 10 it follows that519

∀n ∈ N : πn(p) ∼ πn(p′) (21)520

We want to prove that p ∼ p′. The idea is to build a bisimulation relation R such that521

(p, p′) ∈ R. We define R as follows:522

R = {(t, t′) | ∀n ∈ N : πn(t) ∼ πn(t′)} (22)523

Without loss of generality, assume that p and p′ are in n.f. Assume (p, p′) ∈ R and524

(p, H0, H ′
0) γ−→ (p1, H1, H ′

1) (23)525

Next, for all n > 0, define526

Sn = {p′
1 | (p′, H0, H ′

0) γ−→ (p′
1, H1, H ′

1) and πn(p1) ∼ πn(p′
1)} (24)527

The following hold:528

1. S1 ⊇ S2 . . . as if πn+1(p) ∼ πn+1(p′) then πn(p1) ∼ πn(p′
1). The latter is a straightforward529

result derived according to the definition of ∼ and the semantics of πn(−), under the530

assumption that p, p′ are in n.f.531

2. Sn ̸= ∅ for all n ≥ 1 since πn+1(p) ∼ πn+1(p′) by (21) and (p, H0, H ′
0) γ−→ (p1, H1, H ′

1)532

according to (23)533

3. Sn is finite, for all n ∈ N, as p′ is finitely branching according to Lemma 8534

Hence, the sequence S1, S2, . . . remains constant from some n onward and ∩n≥0Sn ̸= ∅. Let535

p′
1 ∈ ∩n≥0Sn. It holds that:536

(p′, H0, H ′
0) γ−→ (p′

1, H1, H ′
1)537

(p1, p′
1) ∈ R by the definition of R and Sn538

Symmetrically to (23), assume (p, p′) ∈ R and (p′, H0, H ′
0) γ−→ (p′

1, H1, H ′
1). By following a539

similar reasoning, we can show that:540

(p, H0, H ′
0) γ−→ (p1, H1, H ′

1)541

(p1, p′
1) ∈ R by the definition of R and Sn542

Hence, R is a bisimulation relation and p ∼ p′. ◀543

▶ Theorem 4 (Soundness & Completeness). EDNK is sound and ground-complete for DyNetKAT544

bisimilarity.545

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :19

Proof. Soundness: if EDNK ⊢ p ≡ q then p ∼ q, follows from Lemma 10 and Lemma 11.546

Completeness: if p ∼ q then EDNK ⊢ p ≡ q, is shown as follows. Without loss of generality,547

assume p and q are in n.f., according to Lemma 9. We want to show that:548

p ≡ q ⊕ p

q ≡ p⊕ q
(25)549

which, by ACI of ⊕ implies p ≡ q. This reduces to showing that every summand of p is a550

summand of q and vice-versa. We first argue that every summand of p is a summand of q.551

The reasoning is by structural induction.552

Base case.553

p ≜ ⊥. It holds by the hypothesis p ∼ q that q ≜ ⊥.554

Induction step.555

p ≜ ((α · π); p′) ⊕ p′′. Then, (p, σα :: H, H ′) (σα,σπ)−−−−−→ (p′, H, σπ :: H ′) implies by the556

hypothesis p ∼ q that (q, σα :: H, H ′) (σα,σπ)−−−−−→ (q′, H, σπ :: H ′) and p′ ∼ q′. Recall557

that q is in n.f.; hence, by the shape of the semantic rules in Figure 8 it holds that558

q ≜ ((α · π); q′)⊕ q′′. By the induction hypothesis, it holds that p′ ≡ q′ hence, (α · π); p′
559

is a summand of q as well.560

Cases p ≜ (c; p′)⊕ p′′ with c ::= x?n | x!n | rcfgx,n follow in a similar fashion.561

Hence, p ≡ q ⊕ p holds. The symmetric case q ≡ p⊕ q follows the same reasoning. ◀562

4 A Framework for Safety563

In this section we provide a language for specifying safety properties of DyNetKAT networks,564

together with a procedure for reasoning about safety in an equational fashion. Intuitively,565

safety properties enable specifying undesired network behaviours.566

▶ Definition 12 (Safety Properties - Syntax). Let A be an alphabet over letters of shape α · π567

and rcfg(x, p), with α and π ranging over complete tests and assignments as in Definition 4,568

and rcfg(x, p) ranging over reconfiguration actions. A safety property prop is defined as:569

act ::= α · π | rcfgx,p (where α · π, rcfgx,p ∈ A)
regexp ::= act | regexp + regexp | regexp · regexp

prop ::= [regexp]false
570

The intuition behind Definition 12 is as follows. A safety property specification prop is571

satisfied whenever the behaviour encoded by regexp cannot be observed within the network.572

Regular expressions regexp are defined with respect to actions act: a flow of shape α · π is573

the observable behaviour of a (NetKAT−dup) policy transforming a packet encoded by α574

into απ, whereas rcfgx,p corresponds to a reconfiguration step in a network. Recursively,575

a sum of regular expressions regexp1 + regexp2 encodes the union of the two behaviours,576

a concatenation of regular expressions regexp1 · regexp2 encodes the behaviour of regexp1577

followed by the behaviour of regexp2.578

▶ Definition 5 (Head Normal Forms for Safety). Let A be an alphabet over letters of shape α ·π579

and rcfg(x, p), with α and π ranging over complete tests and assignments as in Definition 4,580

and rcfg(x, p) ranging over reconfiguration actions. We write w, w′ for (non-empty) words581

:20 DyNetKAT: An Algebra of Dynamic Networks

with letters in A (i.e., w, w′ ∈ A∗) and | w | for the length of w. We write w′ ⪯ w whenever582

w′ is a prefix of w (including w).583

Let r be a regular expression (regexp) as in Definition 12. We call head normal form of584

r, denoted by hnf(r), the sum of words obtained by distributing · over + in r, in the standard585

fashion:586

hnf(a) ≜ a (a ∈ A)
hnf(w) ≜ w (w ∈ A∗)

hnf(r1 + r2) ≜ hnf(r1) + hnf(r2)
hnf(r1 · (r2 + r3)) ≜ hnf(r1 · r2) + hnf(r1 · r3)
hnf((r1 + r2) · r3) ≜ hnf(r1 · r3) + hnf(r1 · r3)

hnf(r′ · (r1 + r2) · r′′) ≜ hnf(r′ · r1 · r′′) + hnf(r′ · r2 · r′′)

587

Next, we give the formal semantics of safety properties.588

▶ Definition 13 (Safety Properties - Semantics). Let Prop stand for the set of all properties589

as in Definition 12. The semantic map J−K : Prop → DyNetKAT associates to each safety590

property in Prop a DyNetKAT expression as follows.591

Let Θ be the DyNetKAT policy (in normal form) encoding all possible behaviours over A:592

Θ ≜ Σ⊕
α·π∈A(α · π;⊥⊕ α · π; Θ) ⊕ Σ⊕

rcfgx,p∈A(rcfgx,p;⊥⊕ rcfgx,p; Θ)593

Then:594

(c1) J [Σ i ∈ I
wi ∈ A∗

wi]false K ≜ Σ⊕
w ∈ A∗

| w |< M
∀i ∈ I : wi ̸⪯ w

w;⊥ ⊕ Σ⊕
w ∈ A∗

| w |= M
∀i ∈ I : wi ̸⪯ w

(w;⊥ ⊕ w; Θ)

(c2) J[r]falseK ≜ J[hnf(r)]falseK [otherwise]

595

such that M is the length of the longest word wi, with i ∈ I, and w is a DyNetKAT-compatible596

term obtained from w where all letters have been separated by ; and inductively defined in the597

obvious way:598

a ≜ a (a ∈ A)
a · w ≜ a; w (a ∈ A, w ∈ A∗)599

The semantic map J−K : Prop → DyNetKAT is defined in accordance with the intuition600

provided in the beginning of this section. For instance, as shown in (c1), if none of the601

sequences of steps wi can be observed in the system, then the associated DyNetKAT term602

prevents the immediate execution of all wi. Typically, safety analysis is reduced to reachability603

analysis. Intuitively, in our context, a safety property is violated whenever the network604

system under analysis displays a (finite) execution that is not in the behaviour of the property.605

Thus, the semantic map in Definition 13 is based on traces (or words in A∗) and is not606

sensitive to branching; see the use of head normal forms in (c2).607

With these ingredients at hand, we can reason about the satisfiability of safety properties608

in an equational fashion.609

▶ Definition 14 (Etr
DNK). Let Etr

DNK stand for the equational axioms in Figure 11, including610

the additional axiom that enables switching from the context of bisimilarity to trace equivalence611

of DyNetKAT policies, namely:612

p; (q ⊕ r) ≡ p; q ⊕ p; r (A16) (26)613

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :21

▶ Definition 15 (Safe Network Systems). Assume a specification given as the safety formula614

s and a network system implemented as the DyNetKAT policy i. We say that the network is615

safe whenever the following holds:616

Etr
DNK ⊢ JsK⊕ i ≡ JsK (27)617

In words: checking whether i satisfies s reduces to checking whether the trace behaviour of i618

is included into that of s.619

4.1 Sugars for Safety620

In this section we introduce a version of safety properties extended with negated actions621

(¬(α·π) and, respectively, ¬rcfgx,p), the true construct and repetitions (rn), equally expressive622

but enabling more concise property specifications.623

▶ Definition 16 (Safety Properties - Extended Syntax). Let A be an alphabet over letters of624

shape α · π and rcfgx,p, with α and π ranging over complete tests and assignments as in625

Definition 4, and rcfgx,p ranging over reconfiguration actions. Safety properties are extended626

in the following fashion:627

acte ::= α · π | rcfgx,p | ¬acte (with α · π, rcfgx,p ∈ A)
regexpe ::= true | acte | regexpe + regexpe | regexpe · regexpe | (regexpe)n (with n ≥ 1)

prope ::= [regexpe]false
628

Intuitively, a property of shape [¬a]false, with a ∈ A, states that the system cannot do629

anything apart from a as a first step. The property [true]false states that no action can be630

observed in the network, whereas [rn]false encodes the repeated application of r for n times.631

Let Reg and, respectively, Rege denote the set of regular expressions regexp in Definition 12632

and, respectively, the set of regular expressions regexpe in Definition 16. The “desugaring”633

function defining the regular equivalent of the extended safety properties is defined as follows:634

ds : Rege → Reg
ds(true) ≜ Σa∈Aa

ds(¬(α · π)) ≜ Σ αi · πi ∈ A
αi ̸= α

or
πi ̸= π

αi · πi

ds(¬rcfgx,p) ≜ Σ rcfgy,q ∈ A
rcfgy,q ̸= rcfgx,p

rcfgy,q

ds(rn) ≜ ds(r · r · . . . · r︸ ︷︷ ︸
n times

)

ds(r1 · r2) ≜ ds(r1) · ds(r2) if r1 · r2 ̸∈ Reg
ds(r1 + r2) ≜ ds(r1) + ds(r2) if r1 + r2 ̸∈ Reg

ds(r) ≜ r [otherwise]

635

The (overloaded) semantic map J−K : Prope → DyNetKAT is defined as expected:636

J [re]false K ≜ J [ds(re)]false K637

For an example, consider the distributed controllers in Figure 2 and the corresponding638

encoding in Figure 6. Recall that reaching H4 from S2 is considered a breach in the system.639

This entails the safety formulae sn defined as [(true)n · (α ·π)]false, for n ∈ N, α ≜ (port = 2)640

and π ≜ (port ← 15). In words: no matter what sequence of events (of length n) is executed,641

:22 DyNetKAT: An Algebra of Dynamic Networks

α ·π cannot happen as the next step. Therefore, checking whether the network is safe reduces642

to checking, for all n ∈ N:643

Etr
DNK ⊢ JsnK⊕ SDN ≡ JsnK (28)644

Note that, for a fixed n, the verification procedure resembles bounded model checking [4].645

5 Implementation646

In Section 4 we introduced a notion of safety for DyNetKAT and provided a mechanism for647

reasoning about safety in an equational fashion, by exploiting DyNetKAT trace semantics.648

To this end, we search for traces that violate the safety property, i.e., we turn the equational649

reasoning about safety into checking for reachability properties of shape s ≜ ⟨regexp⟩true;650

for an implementation i, this is achieved by checking the following equation using our651

axiomatization: Etr
DNK ⊢ i⊕ JsK ≡ i.652

We developed a prototype tool, called DyNetiKAT, based on Maude [7] and Python [23],653

for checking the aforementioned equation. We build upon the reachability checking method in654

NetKAT [2]. For a reminder: we state that out is reachable from in, in the context of a switch655

policy p and topology t, whenever the following property is satisfied: in · (p · t)∗ ·out ̸≡ 0 (and656

vice-versa). The inputs to our tool are a DyNetKAT program p, a list of input predicates657

in, a list of output predicates out, and the equivalences that describe the desired properties.658

For an example, consider the stateful firewall in Figure 1 and the corresponding encoding in659

Figure 5. Consider that we have the input predicates in ≜ [port = int, port = ext]. We would660

like to check if packets at port int can arrive at port ext before and after reconfiguration661

events, and packets at port ext can arrive at port int only after a proper reconfiguration.662

This is achieved by analysing the step by step behaviour of DyNetKAT terms in normal form663

via a set of operators head(D), and tail(D, R), where R is a set of terms of shape rcfgX,N .664

Intuitively, the operator head(D) returns a NetKAT policy which represents the current665

configuration in the input D, and the operator tail(D, R) returns a DyNetKAT policy which666

represents the configurations in the input D that appear after the events in R.667

For the firewall example, the analysis reduces to defining the output predicates out ≜668

[port = ext, port = int], and the following properties:669

in(0) · head(p) · out(0) ̸≡ 0 (29)670

in(0) · head(tail(p, {rcfgsecConReq,1})) · out(0) ̸≡ 0 (30)671

in(1) · head(p) · out(1) ≡ 0 (31)672

in(1) · head(tail(p, {rcfgsecConReq,1})) · out(1) ̸≡ 0 (32)673
674

Intuitively, the equivalences in (29) and (30) express that packets at port int are able to reach675

to port ext in the current configuration and in the configuration after the synchronization on676

the channel secConReq. The equivalence in (31) expresses that packets at port ext are not677

able to reach to port int in the initial configuration and (32) expresses that the configuration678

after the synchronization on the channel secConReq allows this flow.679

We performed experiments on the FatTree topologies, which are most commonly used in680

data centers, to evaluate the performance of our implementation. A FatTree is a hierarchical681

tree which typically consists of 3 layers: core, aggregation and top-of-rack (ToR). The switches682

at each level contain a number of redundant links to the switches at the next upper level.683

The groups of ToR switches and their corresponding aggregation switches are called pods.684

In Figure 12 (left) we illustrate a FatTree topology with 4 pods. For analyzing scalability,685

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :23

A1 A2 A3 A4 A5 A6 A7 A8

C1 C2 C3 C4

T1 T2 T3 T4 T5 T6 T7 T8

Aggregation

Core

Top-of-Rack
Pod 1 Pod 2 Pod 3 Pod 4

of Switches Time (s)
7 0.12
36 1.45
99 19.87
208 154.55
375 690.23
612 3085.90

Figure 12 A FatTree Topology and Results of FatTree Experiments

we generated 6 FatTree topologies that grow in size and achieve a maximum size of 612686

switches. We checked two properties on these topologies and assessed the time performance687

of our tool. We first computed a shortest path forwarding policy between all pairs of ToR688

switches in the networks and in these forwarding policies we enforced that for certain two689

ToR switches Ta and Tb that reside in different pods, Ta is initially not able to communicate690

with Tb. Accordingly, the first property that we considered is to check if Tb is reachable from691

Ta in the initial configuration of the network. Then, in order to check a dynamic property692

we considered a scenario where in an updated configuration of the network, Tb becomes693

accessible to Ta. In accordance with this scenario the second property that we considered694

is to check if Tb is reachable from Ta after a proper reconfiguration. The experiments were695

conducted on a computer running Ubuntu 18.04 LTS with 8 core 3.7GHz AMD Ryzen 7 2700x696

processors and 32 GB RAM. The results of these experiments are displayed in Figure 12697

(right). The results indicate that for relatively small networks with less than 100 switches, a698

result is obtained in less than 20 seconds. For larger networks with sizes up to 375 switches,699

a result is obtained in less than 12 minutes. The experiment which contained 612 switches700

took the longest time with approximately 51 minutes.701

In order to be able to compare our technique with another verification method, we also702

aimed to perform an analysis based on explicit state model checking. For this purpose, we703

devised an operational semantics for NetKAT and implemented it in Maude along with the704

operational semantics of DyNetKAT. However, this method immediately failed at scaling705

even for small networks, hence, we did not perform further analysis by using this method.706

DyNetiKAT is available for download at: https://github.com/hcantunc/DyNetiKAT.707

6 Conclusions708

We developed a language, called DyNetKAT for modelling and reasoning about dynamic709

reconfigurations in Software Defined Networks. Our language builds upon the concepts,710

syntax, and semantics of NetKAT and hence, provides a modular extension and makes711

it possible to reuse the theory and tools of NetKAT. We define a formal semantics for712

our language and provide a sound and ground-complete axiomatization. We exploit our713

axiomatization to analyse reachability properties of dynamic networks and show that our714

approach is indeed scalable to networks with hundreds of switches.715

Our language builds upon the assumption that control plane updates interleave with data716

plane packet processing in such a way that each data plane packet sees one set of flow tables717

throughout their flight in the network. This assumption is inspired by the framework put718

forward by Reitblatt et al. [21] and is motivated by the requirement to design a modular719

extension on top of NetKAT. However, we have experimented with a much smaller-stepped720

semantics in which the control plane updates can have a finer interleaving with in-flight721

https://github.com/hcantunc/DyNetiKAT

:24 DyNetKAT: An Algebra of Dynamic Networks

packet moves. This alternative language breaks the hierarchy with NetKAT and a naive722

treatment of this alternative semantics will lead to much larger state-spaces. We would like723

to investigate this small-step semantics and efficient analysis techniques for it further.724

References725

1 Luca Aceto, Bard Bloom, and Frits W. Vaandrager. Turning SOS rules into equations. Inf.726

Comput., 111(1):1–52, 1994. doi:10.1006/inco.1994.1040.727

2 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,728

Cole Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In Suresh729

Jagannathan and Peter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium730

on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,731

2014, pages 113–126. ACM, 2014. doi:10.1145/2535838.2535862.732

3 Jos C. M. Baeten and W. P. Weijland. Process algebra, volume 18 of Cambridge tracts in733

theoretical computer science. Cambridge University Press, 1990.734

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.735

5 Ryan Beckett, Michael Greenberg, and David Walker. Temporal netkat. In Chandra Krintz and736

Emery Berger, editors, Proceedings of the 37th ACM SIGPLAN Conference on Programming737

Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,738

2016, pages 386–401. ACM, 2016. doi:10.1145/2908080.2908108.739

6 Georgiana Caltais, Hossein Hojjat, Mohammad Mousavi, and Hünkar Can Tunç. DyNetKAT:740

An Algebra of Dynamic Networks. URL: https://www.cs.le.ac.uk/people/mm789/pub/741

icalp2021-ext.pdf.742

7 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José743

Meseguer, and Carolyn L. Talcott. Full Maude: Extending Core Maude. In Manuel Clavel,744

Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and745

Carolyn L. Talcott, editors, All About Maude - A High-Performance Logical Framework, How746

to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in747

Computer Science, pages 559–597. Springer, 2007. doi:10.1007/978-3-540-71999-1_18.748

8 Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva.749

Probabilistic NetKAT. In Peter Thiemann, editor, Programming Languages and Systems -750

25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint751

Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,752

April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 282–309.753

Springer, 2016. doi:10.1007/978-3-662-49498-1_12.754

9 Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A755

Coalgebraic Decision Procedure for NetKAT. In Sriram K. Rajamani and David Walker,756

editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles757

of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 343–355.758

ACM, 2015. doi:10.1145/2676726.2677011.759

10 Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rexford,760

Alec Story, and David Walker. Frenetic: a network programming language. In Proceeding of761

the 16th ACM SIGPLAN international conference on Functional Programming (ICFP 2011).762

pages 279–291, ACM, 2011. .763

11 Ahmed El-Hassany, Ahmed Miserez, Pavol Bielik, Laurent Vanbever, and Martin T. Vechev.764

SDNRacer: concurrency analysis for software-defined networks. In Chandra Krintz and Emery765

Berger, Eds. , Proceedings of the 37th ACM SIGPLAN Conference on Programming Language766

Design and Implementation (PLDI 2016), 402–415, ACM, 2016. .767

12 Maciej Kuzniar, Peter Peresíni, and Dejan Kostic. Providing Reliable FIB Update Acknow-768

ledgments in SDN. In Aruna Seneviratne, Christophe Diot, Jim Kurose, Augustin Chaintreau,769

and Luigi Rizzo, Eds. Proceedings of the 10th ACM International on Conference on emerging770

Networking Experiments and Technologies (CoNEXT 2014), 415–422, ACM, 2014. .771

https://doi.org/10.1006/inco.1994.1040
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2908080.2908108
https://www.cs.le.ac.uk/people/mm789/pub/icalp2021-ext.pdf
https://www.cs.le.ac.uk/people/mm789/pub/icalp2021-ext.pdf
https://www.cs.le.ac.uk/people/mm789/pub/icalp2021-ext.pdf
https://doi.org/10.1007/978-3-540-71999-1_18
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2034773.2034812
10.1145/2908080.2908124
10.1145/2674005.2675006

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :25

13 Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. Concurrent772

Kleene Algebra with Observations: from Hypotheses to Completeness. CoRR, abs/2002.09682,773

2020. URL: https://arxiv.org/abs/2002.09682, arXiv:2002.09682.774

14 Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster, and Russell J.775

Clark. Kinetic: Verifiable dynamic network control. In 12th USENIX Symposium on Networked776

Systems Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015, pages777

59–72. USENIX Association, 2015. URL: https://www.usenix.org/conference/nsdi15/778

technical-sessions/presentation/kim.779

15 Zohaib Latif, Kashif Sharif, Fan Li , Md. Monjurul Karim, Sujit Biswas, and Yu Wang. A780

comprehensive survey of interface protocols for software defined networks. J. Netw. Comput.781

Appl. 156:102563, 2020. .782

16 Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerný. Event-driven network783

programming. In Chandra Krintz and Emery Berger, editors, Proceedings of the 37th ACM784

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016,785

Santa Barbara, CA, USA, June 13-17, 2016, pages 369–385. ACM, 2016. doi:10.1145/786

2908080.2908097.787

17 Jedidiah McClurg, Hossein Hojjat, and Pavol Cerný. Synchronization Synthesis for Network788

Programs. In Proceedings of the 29th International Conference on Computer Aided Verification789

(CAV 2017). volume 10427 of Lecture Notes in Computer Science, pages 301–321, Springer,790

2017. .791

18 Nick McKeown, Thomas E. Anderson, Hari Balakrishnan, Guru M. Parulkar, Larry L. Peterson,792

Jennifer Rexford, Scott Shenker, and Jonathan S. Turner. OpenFlow: enabling innovation in793

campus networks. Computer Communication Review, 38(2):69–74, 2008. .794

19 Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. Notions of bisimulation795

and congruence formats for SOS with data. Information and Computation, 200(1):107 – 147,796

2005. doi:https://doi.org/10.1016/j.ic.2005.03.002.797

20 Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishnamurthi. Tierless798

programming and reasoning for software-defined networks. In Ratul Mahajan and Ion Stoica,799

editors, Proceedings of the 11th USENIX Symposium on Networked Systems Design and800

Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014, pages 519–531. USENIX As-801

sociation, 2014. URL: https://www.usenix.org/conference/nsdi14/technical-sessions/802

presentation/nelson.803

21 Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstrac-804

tions for network update. In Lars Eggert, Jörg Ott, Venkata N. Padmanabhan, and George805

Varghese, editors, ACM SIGCOMM 2012 Conference, SIGCOMM ’12, Helsinki, Finland -806

August 13 - 17, 2012, pages 323–334. ACM, 2012. doi:10.1145/2342356.2342427.807

22 Alexandra Silva. Models of Concurrent Kleene Algebra. In Elvira Albert and Laura Kovács,808

editors, LPAR 2020: 23rd International Conference on Logic for Programming, Artificial809

Intelligence and Reasoning, Alicante, Spain, May 22-27, 2020, volume 73 of EPiC Series in810

Computing, page 516. EasyChair, 2020. URL: https://easychair.org/publications/paper/811

6C8R.812

23 Guido van Rossum. Python programming language. In Jeff Chase and Srinivasan Seshan,813

editors, Proceedings of the 2007 USENIX Annual Technical Conference, Santa Clara, CA,814

USA, June 17-22, 2007. USENIX, 2007.815

24 Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda, Bryan816

Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan J. Jackson, Andrew Lambeth, Romain817

Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan, Scott818

Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan Wendlandt, Alexander Yip, and819

Ronghua Zhang. Network Virtualization in Multi-tenant Datacenters. In Ratul Mahajan and820

Ion Stoica, Eds., Proceedings of the 11th USENIX Symposium on Networked Systems Design821

and Implementation (NSDI 2014), 203–216, USENIX Association, 2014.822

https://arxiv.org/abs/2002.09682
http://arxiv.org/abs/2002.09682
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kim
https://doi.org/10.1016/j.jnca.2020.102563
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/2908080.2908097
https://doi.org/10.1145/1355734.1355746
https://doi.org/https://doi.org/10.1016/j.ic.2005.03.002
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson
https://doi.org/10.1145/2342356.2342427
https://easychair.org/publications/paper/6C8R
https://easychair.org/publications/paper/6C8R
https://easychair.org/publications/paper/6C8R

:26 DyNetKAT: An Algebra of Dynamic Networks

25 Celio Trois, Marcos Didonet Del Fabro, Luis Carlos Erpen De Bona, and Magnos Martinello.823

A Survey on SDN Programming Languages: Toward a Taxonomy. IEEE Commun. Surv.824

Tutorials 18(4): 2687–2712, 2016. .825

26 Alexander Vandenbroucke and Tom Schrijvers. Pλωnk: functional probabilistic netkat. Proc.826

ACM Program. Lang., 4(POPL):39:1–39:27, 2020. doi:10.1145/3371107.827

27 Jana Wagemaker, Paul Brunet, Simon Docherty, Tobias Kappé, Jurriaan Rot, and Alexandra828

Silva. Partially Observable Concurrent Kleene Algebra. In Igor Konnov and Laura Kovács,829

editors, 31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4,830

2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 20:1–20:22. Schloss831

Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.20.832

A Soundness Proofs833

Axiom under consideration:834

0 ; p ≡ ⊥ (A0) (33)835

for p ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the derivations of836

the term 0 ; p are as follows:837

(a)

For all σ′ ∈ J0K(σ::⟨⟩) : (cpol✓_ ;)
(0 ; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)838

However, observe that J0K(σ::⟨⟩) is equal to empty set:839

J0K(σ::⟨⟩) = {} (Definition of 0) (34)840
841

Hence, the term 0 ; p does not afford any transition. Similarly, observe that according to842

the semantic rules of DyNetKAT, the term ⊥ does not afford any transition. Hence, the843

following trivially holds:844

(0 ; p) ∼ ⊥ (35)845

846

Axiom under consideration:847

p⊕ q ≡ q ⊕ p (A2) (36)848

for p, q ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are849

the possible transitions that can initially occur in the terms p⊕ q and q ⊕ p:850 {
(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(2) (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
851

852

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)853

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)854

855

The derivations of p⊕ q are as follows:856

(a)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (p′, H1, H ′

1)
857

https://https://doi.org/10.1109/COMST.2016.2553778
https://doi.org/10.1145/3371107
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :27

The derivations of q ⊕ p are as follows:858

(b)

(cpol⊕_)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(q ⊕ p, H0, H ′
0) γ−→ (p′, H1, H ′

1)
859

As demonstrated in (a) and (b), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then both of the860

terms p⊕ q and q ⊕ p converge to the same expression with the γ transition:861

(p⊕ q, H0, H ′
0) γ−→ (p′, H1, H ′

1)

(q ⊕ p, H0, H ′
0) γ−→ (p′, H1, H ′

1)
(37)862

Case (2): (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)863

864

The derivations of p⊕ q are as follows:865

(c)

(cpol⊕_)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
866

The derivations of q ⊕ p are as follows:867

(d)

(cpol_⊕)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(q ⊕ p, H0, H ′
0) γ−→ (q′, H1, H ′

1)
868

As demonstrated in (c) and (d), if (q, H0, H ′
0) γ−→ (q′, H1, H ′

1) holds then both of the869

terms p⊕ q and q ⊕ p converge to the same expression with the γ transition:870

(p⊕ q, H0, H ′
0) γ−→ (q′, H1, H ′

1)

(q ⊕ p, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(38)871

Therefore, by (37) and (38) it is straightforward to conclude that the following holds:872

(p⊕ q) ∼ (q ⊕ p) (39)873

874

Axiom under consideration:875

(p⊕ q)⊕ r ≡ p⊕ (q ⊕ r) (A3) (40)876

for p, q, r ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are877

the possible transitions that can initially occur in the terms (p⊕ q)⊕ r and p⊕ (q ⊕ r):878 
(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(2) (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(3) (r, H0, H ′

0) γ−→ (r′, H1, H ′
1)

879

880

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)881

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)882

883

The derivations of (p⊕ q)⊕ r are as follows:884

:28 DyNetKAT: An Algebra of Dynamic Networks

(a)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (p′, H1, H ′

1)
(cpol_⊕)

((p⊕ q)⊕ r, H0, H ′
0) γ−→ (p′, H1, H ′

1)

885

The derivations of p⊕ (q ⊕ r) are as follows:886

(b)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ (q ⊕ r), H0, H ′
0) γ−→ (p′, H1, H ′

1)
887

As demonstrated in (a) and (b), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then both of the888

terms (p⊕ q)⊕ r and p⊕ (q ⊕ r) converge to the same expression with the γ transition:889

((p⊕ q)⊕ r, H0, H ′
0) γ−→ (p′, H1, H ′

1)

(p⊕ (q ⊕ r), H0, H ′
0) γ−→ (p′, H1, H ′

1)
(41)890

Case (2): (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)891

892

The derivations of (p⊕ q)⊕ r are as follows:893

(c)

(cpol⊕_)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(cpol_⊕)

((p⊕ q)⊕ r, H0, H ′
0) γ−→ (q′, H1, H ′

1)

894

The derivations of p⊕ (q ⊕ r) are as follows:895

(d)

(cpol_⊕)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(q ⊕ r, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(cpol⊕_)

(p⊕ (q ⊕ r), H0, H ′
0) γ−→ (q′, H1, H ′

1)

896

As demonstrated in (c) and (d), if (q, H0, H ′
0) γ−→ (q′, H1, H ′

1) holds then both of the897

terms (p⊕ q)⊕ r and p⊕ (q ⊕ r) converge to the same expression with the γ transition:898

((p⊕ q)⊕ r, H0, H ′
0) γ−→ (q′, H1, H ′

1)

(p⊕ (q ⊕ r), H0, H ′
0) γ−→ (q′, H1, H ′

1)
(42)899

Case (3): (r, H0, H ′
0) γ−→ (r′, H1, H ′

1)900

901

The derivations of (p⊕ q)⊕ r are as follows:902

(e)

(cpol⊕_)
(r, H0, H ′

0) γ−→ (r′, H1, H ′
1)

((p⊕ q)⊕ r, H0, H ′
0) γ−→ (r′, H1, H ′

1)
903

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :29

The derivations of p⊕ (q ⊕ r) are as follows:904

(f)

(cpol⊕_)
(r, H0, H ′

0) γ−→ (r′, H1, H ′
1)

(q ⊕ r, H0, H ′
0) γ−→ (r′, H1, H ′

1)
(cpol⊕_)

(p⊕ (q ⊕ r), H0, H ′
0) γ−→ (r′, H1, H ′

1)

905

As demonstrated in (e) and (f), if (r, H0, H ′
0) γ−→ (r′, H1, H ′

1) holds then both of the terms906

(p⊕ q)⊕ r and p⊕ (q ⊕ r) converge to the same expression with the γ transition:907

((p⊕ q)⊕ r, H0, H ′
0) γ−→ (r′, H1, H ′

1)

(p⊕ (q ⊕ r), H0, H ′
0) γ−→ (r′, H1, H ′

1)
(43)908

Therefore, by (41), (42) and (43) it is straightforward to conclude that the following909

holds:910

((p⊕ q)⊕ r) ∼ (p⊕ (q ⊕ r)) (44)911

Axiom under consideration:912

p⊕ p ≡ p (A4) (45)913

for p ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are the914

possible transitions that can initially occur in the terms p⊕ p and p:915 {
(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)916

917

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)918

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)919

920

The derivations of p⊕ p are as follows:921

(a)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ p, H0, H ′
0) γ−→ (p′, H1, H ′

1)
922

(b)

(cpol⊕_)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ p, H0, H ′
0) γ−→ (p′, H1, H ′

1)
923

As demonstrated in (a) and (b), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then it is also the924

case that the term p⊕ p evolves into the same expression with the γ transition:925

(p⊕ p, H0, H ′
0) γ−→ (p′, H1, H ′

1) (46)926
927

Hence, it is straightforward to conclude that the following holds:928

(p⊕ p) ∼ p (47)929

:30 DyNetKAT: An Algebra of Dynamic Networks

Axiom under consideration:930

p⊕⊥ ≡ p (A5) (48)931

for p ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are the932

possible transitions that can initially occur in the terms p⊕⊥ and p:933 {
(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)934

935

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)936

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)937

938

The derivations of p⊕⊥ are as follows:939

(a)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕⊥, H0, H ′
0) γ−→ (p′, H1, H ′

1)
940

As demonstrated in (a), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then it is also the case that941

the term p⊕⊥ evolves into the same expression with the γ transition:942

(p⊕⊥, H0, H ′
0) γ−→ (p′, H1, H ′

1) (49)943
944

Hence, it is straightforward to conclude that the following holds:945

(p⊕⊥) ∼ p (50)946

Axiom under consideration:947

p || q ≡ q || p (A6) (51)948

for p, q ∈ DyNetKAT. The soundness proof of the axiom (A6) follows by induction on949

the size of the syntactic tree associated to p || q. Without loss of generality, assume p and950

q are in n.f. The size of p || q is then defined as follows:951

size(⊥) = 1 (52)952

size(α · π ; t) = 2 + size(t) (53)953

size(x?z ; t) = 2 + size(t) (54)954

size(x!z ; t) = 2 + size(t) (55)955

size(rcfgx,z ; t) = 2 + size(t) (56)956

size(p⊕ q) = 1 + size(p) + size(q) (57)957

size(p || q) = 1 + size(p) + size(q) (58)958
959

Base case.960

size(p || q) = 3. It follows that p ≜ ⊥ and q ≜ ⊥. Therefore, the soundness of (A6)961

trivially holds.962

Induction step. Assume (A6) is sound for all p, q such that size(p || q) ≤M , with M ∈ N.963

We want to show that (A6) is sound for all p, q such that size(p || q) > M .964

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :31

(i) p ≜ ⊥. Then, it is straightforward to observe that both ⊥ || q and q || ⊥ evolve965

according to the semantic rules corresponding to q. Hence, we can safely conclude that966

(⊥ || q) ∼ (q || ⊥) holds.967

(ii) p ≜ α · π; p′. Consider an arbitrary but fixed network packet σ, let Sαπ ≜ Jα · πK(σ::⟨⟩).968

The first step derivations entailed by p in a context p || t are as follows:969

(a)

For all σ′ ∈ Sαπ : (cpol✓_ ;)
(α · π ; p′, σ :: H, H ′) (σ,σ′)−−−−→ (p′, H, σ′ :: H ′)

(cpol_||)
((α · π ; p′) || t, σ :: H, H ′) (σ,σ′)−−−−→ (p′ || t, H, σ′ :: H ′)

970

The first step derivations entailed by p in a context t || p are as follows:971

(b)

For all σ′ ∈ Sαπ : (cpol✓_ ;)
(α · π ; p′, σ :: H, H ′) (σ,σ′)−−−−→ (p′, H, σ′ :: H ′)

(cpol||_)
(t ||(α · π ; p′), σ :: H, H ′) (σ,σ′)−−−−→ (t || p′, H, σ′ :: H ′)

972

Hence, given that q in n.f. always evolves into a term t with simpler structure (according973

to the DyNetKAT semantic rules), and based on the induction hypothesis, it is safe to974

conclude that (p || q) ∼ (q || p).975

(iii) p ≜ rcfgx,z ; p′. The reasoning is similar to (ii) above.976

(iv) p ≜ x?z; p′. The first step of asynchronous derivations entailed by p in a context p || t977

are as follows:978

(a)

(cpol?)
(x?z ; p′, H, H ′) x?z−−→ (p′, H, H ′)

(cpol_||)
((x?z ; p′) || t, H, H ′) x?z−−→ (p′ || t, H, H ′)

979

The first step of asynchronous derivations entailed by p in a context t || p are as follows:980

(b)

(cpol?)
(x?z ; p′, H, H ′) x?z−−→ (p′, H, H ′)

(cpol||_)
(t ||(x?z ; p′), H, H ′) x?z−−→ (t || p′, H, H ′)

981

Furthermore, if q has a summand of shape x!z ; q′, then:982

The first step synchronous derivations of p || q are as follows:983

(c)

(cpol?)
(x?z; p′, H, H ′) x?z−−→ (p′, H, H ′)

(cpol!)
(x!z ; q′, H, H ′) x!z−−→ (q′, H, H ′)

(cpol?!)
((x?z ; p′) ||(x!z ; q′), H, H ′) rcfg(x,z)−−−−−−→ (p′ || q′, H, H ′)

984

985

The first step synchronous derivations of q || p are as follows:986

:32 DyNetKAT: An Algebra of Dynamic Networks

(d)

(cpol!)
(x!z ; q′, H, H ′) x!z−−→ (q′, H, H ′)

(cpol?)
(x?z; p′, H, H ′) x?z−−→ (p′, H, H ′)

(cpol!?)
((x!z ; q′) ||(x?z ; p′), H, H ′) rcfg(x,z)−−−−−−→ (q′ || p′, H, H ′)

987

In connection with (iv)(a) and (iv)(b) above, note that q in n.f. always evolves into988

a term t with simpler structure (according to the DyNetKAT semantic rules). This,989

together with the observations in (iv)(c) and (iv)(d), and based on the induction990

hypothesis, enable us to safely to conclude that (p || q) ∼ (q || p).991

(v) p ≜ x!z ; p′. The reasoning is similar to (iv) above.992

(vi) p ≜ p1 ⊕ p2 where p1 and p2 are in n.f. Without loss of generality, assume p1 ::=993

α · π ; p′
1 | rcfgx,z ; p′

1 | x?z ; p′
1 | x!z ; p′

1 and assume (p1, H0, H ′
0) γ−→ (p′

1, H1, H ′
1). The994

derivation entailed by p1 in p is as follows:995

(cpol_⊕)
(p1, H0, H ′

0) γ−→ (p′
1, H1, H ′

1)
(p1 ⊕ p2, H0, H ′

0) γ−→ (p′
1, H1, H ′

1)
996

From this point onward, showing that the first step derivations entailed by p1 in997

a context p || t correspond to the first step derivations entailed by p1 in a context998

t || p follows the reasoning in (ii)−(v), with p1 ranging over terms of shape (α ·999

π ; p′
1), (rcfgx,z ; p′

1), (x!z ; p′
1) and (x?z ; p′

1), respectively. Hence, given that q in n.f.1000

always evolves into a term t with simpler structure (according to the DyNetKAT1001

semantic rules), and based on the induction hypothesis, it is safe to conclude that1002

(p || q) ∼ (q || p).1003

Axiom under consideration:1004

p || ⊥ ≡ p (A7) (59)1005

for p ∈ DyNetKAT. According to the semantic rules of DyNetKAT, observe that both1006

p || ⊥ and p evolve according to the semantic rules corresponding to p. Hence, it is1007

straightforward to conclude that the following holds:1008

(p || ⊥) ∼ p (60)1009

1010

Axiom under consideration:1011

p || q ≡ pTq ⊕ qTp⊕ p | q (A8) (61)1012

for p, q ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are1013

the possible transitions that can initially occur in the terms p || q and pTq ⊕ qTp⊕ p | q:1014


(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(2) (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(3) (p, H0, H ′

0) x!z−−→ (p′, H1, H ′
1) (q, H0, H ′

0) x?z−−→ (q′, H1, H ′
1)

(4) (p, H0, H ′
0) x?z−−→ (p′, H1, H ′

1) (q, H0, H ′
0) x!z−−→ (q′, H1, H ′

1)

1015

1016

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :33

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)1017

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)1018

1019

The derivations of p || q are as follows:1020

(a)

(cpol_||)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p || q, H0, H ′
0) γ−→ (p′ || q, H1, H ′

1)
1021

The derivations of pTq ⊕ qTp⊕ p | q are as follows:1022

(b)

(T)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(pTq, H0, H ′
0) γ−→ (p′ || q, H1, H ′

1)
(cpol_⊕)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) γ−→ (p′ || q, H1, H ′

1)

1023

As demonstrated in (a) and (b), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then both of the1024

terms p || q and pTq ⊕ qTp⊕ p | q converge to the same expression with the γ transition:1025

(p || q, H0, H ′
0) γ−→ (p′ || q, H1, H ′

1)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) γ−→ (p′ || q, H1, H ′

1)
(62)1026

Case (2): (q, H0, H ′
0) γ−→ (p′, H1, H ′

1)1027

1028

The derivations of p || q are as follows:1029

(c)

(cpol||_)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(p || q, H0, H ′
0) γ−→ (p || q′, H1, H ′

1)
1030

The derivations of pTq ⊕ qTp⊕ p | q are as follows:1031

(d)

(T)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(qTp, H0, H ′
0) γ−→ (q′ || p, H1, H ′

1)
(cpol⊕_)

(pTq ⊕ qTp, H0, H ′
0) γ−→ (q′ || p, H1, H ′

1)
(cpol_⊕)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) γ−→ (q′ || p, H1, H ′

1)

1032

As demonstrated in (c) and (d), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then both of the1033

terms p || q and pTq ⊕ qTp⊕ p | q are able to perform the γ transition:1034

(p || q, H0, H ′
0) γ−→ (p || q′, H1, H ′

1)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) γ−→ (q′ || p, H1, H ′

1)
(63)1035

Observe that the terms evolve into different expressions, however, according to the axiom1036

A6 the “||” operator is commutative. Hence, the following holds:1037

(p || q′) ∼ (q′ || p) (64)1038

:34 DyNetKAT: An Algebra of Dynamic Networks

Case (3): (p, H0, H ′
0) x!z−−→ (p′, H1, H ′

1) (q, H0, H ′
0) x?z−−→ (q′, H1, H ′

1)1039

1040

The derivations of p || q are as follows:1041

(e)

(cpol!?)
(p, H0, H ′

0) x!z−−→ (p′, H1, H ′
1) (q, H0, H ′

0) x?z−−→ (q′, H1, H ′
1)

(p || q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)
1042

The derivations of pTq ⊕ qTp⊕ p | q are as follows:1043

(f)

(cpol!?)
(p, H0, H ′

0) x!z−−→ (p′, H1, H ′
1) (q, H0, H ′

0) x?z−−→ (q′, H1, H ′
1)

(p | q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)
(cpol⊕_)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)

1044

As demonstrated in (e) and (f), if (p, H0, H ′
0) x!z−−→ (p′, H1, H ′

1) and (q, H0, H ′
0) x?z−−→ (q′,1045

H1, H ′
1) hold then both of the terms p || q and pTq ⊕ qT⊕p | q converge to the same1046

expression with the rcfg(x, z) transition:1047

(p || q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)
(65)1048

Case (4): (p, H0, H ′
0) x?z−−→ (p′, H1, H ′

1) (q, H0, H ′
0) x!z−−→ (q′, H1, H ′

1)1049

1050

The derivations of p || q are as follows:1051

(g)

(cpol?!)
(p, H0, H ′

0) x?z−−→ (p′, H1, H ′
1) (q, H0, H ′

0) x!z−−→ (q′, H1, H ′
1)

(p || q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)
1052

The derivations of pTq ⊕ qTp⊕ p | q are as follows:1053

(h)

(cpol?!)
(p, H0, H ′

0) x?z−−→ (p′, H1, H ′
1) (q, H0, H ′

0) x!z−−→ (q′, H1, H ′
1)

(p | q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)
(cpol⊕_)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)

1054

As demonstrated in (g) and (h), if (p, H0, H ′
0) x?z−−→ (p′, H1, H ′

1) and (q, H0, H ′
0) x!z−−→ (q′,1055

H1, H ′
1) hold then both of the terms p || q and pTq ⊕ qT⊕p | q converge to the same1056

expression with the rcfg(x, z) transition:1057

(p || q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)

(pTq ⊕ qTp⊕ p | q, H0, H ′
0) rcfg(x,z)−−−−−−→ (p′ || q′, H1, H ′

1)
(66)1058

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :35

Therefore, by (62), (63), (64), (65) and (66) it is straightforward to conclude that the1059

following holds:1060

(p || q) ∼ (pTq ⊕ qTp⊕ p | q) (67)1061

1062

Axiom under consideration:1063

⊥Tp ≡ ⊥ (A9) (68)1064

for p ∈ DyNetKAT. Observe that according to the semantic rules of DyNetKAT, the1065

terms ⊥Tp and ⊥ do not afford any transition. Hence, the following trivially holds:1066

(⊥Tp) ∼ ⊥ (69)1067

1068

Axiom under consideration:1069

(a ; p)Tq ≡ a ;(p || q) (A10) (70)1070

for a ∈ {z, x?z, x!z, rcfgx,z}, z ∈ NetKAT−dup and p, q ∈ DyNetKAT. In the following,1071

we make a case analysis on the shape of a and show that the terms (a ; p)Tq and a ;(p || q)1072

are bisimilar.1073

Case (1): a ≜ z1074

1075

Consider an arbitrary but fixed network packet σ, let Sz ≜ JzK(σ::⟨⟩). The derivations of1076

(z ; p)Tq are as follows:1077

(a)

For all σ′ ∈ Sz : (cpol✓_ ;)
(z ; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)

(T)
((z ; p)Tq, σ :: H, H ′) (σ,σ′)−−−−→ (p || q, H, σ′ :: H)

1078

The derivations of z ;(p || q) are as follows:1079

(b)

For all σ′ ∈ Sz : (cpol✓_ ;)
(z ;(p || q), σ :: H, H ′) (σ,σ′)−−−−→ (p || q, H, σ′ :: H ′)1080

As demonstrated in (a) and (b), both of the terms (z; p)Tq and z ;(p || q) initially afford1081

the same set of transitions of shape (σ, σ′) and they converge to the same expression after1082

taking these transitions:1083

((z; p)Tq, σ :: H, H ′) (σ,σ′)−−−−→ (p || q, H, σ′ :: H ′)

(z ;(p || q), σ :: H, H ′) (σ,σ′)−−−−→ (p || q, H, σ′ :: H ′)
(71)1084

Case (2): a ≜ x?z1085

1086

The derivations of (x?z ; p)Tq are as follows:1087

:36 DyNetKAT: An Algebra of Dynamic Networks

(c)

(cpol?)
(x?z ; p, H, H ′) x?z−−→ (p, H, H ′)

(T)
((x?z ; p)Tq, H, H ′) x?z−−→ (p || q, H, H ′)

1088

The derivations of x?z ;(p || q) are as follows:1089

(d)

(cpol?)
(x?z ;(p || q), H, H ′) x?z−−→ (p || q, H, H ′)1090

As demonstrated in (c) and (d), both of the terms (x?z; p)Tq and x?z ;(p || q) initially1091

only afford the x?z transition and they converge to the same expression after taking this1092

transition:1093

((x?z; p)Tq, H, H ′) x?z−−→ (p || q, H, H ′)

(x?z ;(p || q), H, H ′) x?z−−→ (p || q, H, H ′)
(72)1094

Case (3): a ≜ x!z1095

1096

The derivations of (x!z ; p)Tq are as follows:1097

(e)

(cpol!)
(x!z ; p, H, H ′) x!z−−→ (p, H, H ′)

(T)
((x!z ; p)Tq, H, H ′) x!z−−→ (p || q, H, H ′)

1098

The derivations of x!z ;(p || q) are as follows:1099

(f)

(cpol!)
(x!z ;(p || q), H, H ′) x!z−−→ (p || q, H, H ′)1100

As demonstrated in (e) and (f), both of the terms (x!z; p)Tq and x!z ;(p || q) initially1101

only afford the x!z transition and they converge to the same expression after taking this1102

transition:1103

((x!z; p)Tq, H, H ′) x!z−−→ (p || q, H, H ′)

(x!z ;(p || q), H, H ′) x!z−−→ (p || q, H, H ′)
(73)1104

Case (4): a ≜ rcfgx,z1105

1106

The derivations of (rcfgx,z ; p)Tq are as follows:1107

(g)

(rcfgx,z)
(rcfgx,z ; p, H, H ′) rcfg(x,z)−−−−−−→ (p, H, H ′)

(T)
((rcfgx,z ; p)Tq, H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′)

1108

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :37

The derivations of rcfgx,z ;(p || q) are as follows:1109

(h)

(rcfgx,z)
(rcfgx,z ;(p || q), H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′)1110

As demonstrated in (g) and (h), both of the terms (rcfgx,z; p)Tq and rcfgx,z ;(p || q)1111

initially only afford the rcfg(x, z) transition and they converge to the same expression1112

after taking this transition:1113

((rcfgx,z; p)Tq, H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′)

(rcfgx,z ;(p || q), H, H ′) rcfg(x,z)−−−−−−→ (p || q, H, H ′)
(74)1114

Therefore, by (71), (72), (73) and (74) it is straightforward to conclude that the following1115

holds:1116

((a; p)Tq) ∼ (a ;(p || q)) (75)1117

1118

Axiom under consideration:1119

(p⊕ q)Tr ≡ (pTr)⊕ (qTr) (A11) (76)1120

for p, q, r ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are1121

the possible transitions that can initially occur in the terms (p⊕ q)Tr and (pTr)⊕ (qTr):1122 {
(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(2) (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
1123

1124

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)1125

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)1126

1127

The derivations of (p⊕ q)Tr are as follows:1128

(a)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (p′, H1, H ′

1)
(T)

((p⊕ q)Tr, H0, H ′
0) γ−→ (p′ || r, H1, H ′

1)

1129

The derivations of (pTr)⊕ (qTr) are as follows:1130

(b)

(T)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(pTr, H0, H ′
0) γ−→ (p′ || r, H1, H ′

1)
(cpol_⊕)

((pTr)⊕ (qTr), H0, H ′
0) γ−→ (p′ || r, H1, H ′

1)

1131

:38 DyNetKAT: An Algebra of Dynamic Networks

As demonstrated in (a) and (b), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then both of the1132

terms (p⊕ q)Tr and (pTr)⊕ (qTr) converge to the same expression with the γ transition:1133

((p⊕ q)Tr, H0, H ′
0) γ−→ (p′ || r, H1, H ′

1)

((pTr)⊕ (qTr), H0, H ′
0) γ−→ (p′ || r, H1, H ′

1)
(77)1134

Case (2): (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)1135

1136

The derivations of (p⊕ q)Tr are as follows:1137

(c)

(cpol⊕_)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(T)

((p⊕ q)Tr, H0, H ′
0) γ−→ (q′ || r, H1, H ′

1)

1138

The derivations of (pTr)⊕ (qTr) are as follows:1139

(d)

(T)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(qTr, H0, H ′
0) γ−→ (q′ || r, H1, H ′

1)
(cpol⊕_)

((pTr)⊕ (qTr), H0, H ′
0) γ−→ (q′ || r, H1, H ′

1)

1140

As demonstrated in (c) and (d), if (q, H0, H ′
0) γ−→ (q′, H1, H ′

1) holds then both of the1141

terms (p⊕ q)Tr and (pTr)⊕ (qTr) converge to the same expression with the γ transition:1142

((p⊕ q)Tr, H0, H ′
0) γ−→ (q′ || r, H1, H ′

1)

((pTr)⊕ (qTr), H0, H ′
0) γ−→ (q′ || r, H1, H ′

1)
(78)1143

Therefore, by (77) and (78) it is straightforward to conclude that the following holds:1144

((p⊕ q)Tr) ∼ ((pTr)⊕ (qTr)) (79)1145

1146

Axiom under consideration:1147

(p⊕ q) | r ≡ (p | r)⊕ (q | r) (A13) (80)1148

for p, q, r ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are1149

the possible transitions that can initially occur in the terms (p⊕ q) | r and (p | r)⊕ (q | r):1150 
(1) (p, H, H ′) x!z−−→ (p′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)
(2) (p, H, H ′) x?z−−→ (p′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)
(3) (q, H, H ′) x!z−−→ (q′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)
(4) (q, H, H ′) x?z−−→ (q′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)

1151

1152

1153

Case (1): (p, H, H ′) x!z−−→ (p′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)1154

1155

The derivations of (p⊕ q) | r are as follows:1156

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :39

(a)

(cpol_⊕)
(p, H, H ′) x!z−−→ (p′, H, H ′)

(p⊕ q, H, H ′) x!z−−→ (p′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)
(|!?)

(p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)

1157

The derivations of (p | r)⊕ (q | r) are as follows:1158

(b)

(|!?)
(p, H, H ′) x!z−−→ (p′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)

(p | r, H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)
(cpol_⊕)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)

1159

As demonstrated in (a) and (b), if (p, H, H ′) x!z−−→ (p′, H, H ′) and (r, H, H ′) x!z−−→ (r′,1160

H, H ′) hold then both of the terms (p⊕ q) | r and (p | r)⊕ (q | r) converge to the same1161

expression with the rcfg(x, z) transition:1162

((p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)
(81)1163

Case (2): (p, H, H ′) x?z−−→ (p′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)1164

1165

The derivations of (p⊕ q) | r are as follows:1166

(c)

(cpol_⊕)
(p, H, H ′) x?z−−→ (p′, H, H ′)

(p⊕ q, H, H ′) x?z−−→ (p′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)
(|?!)

(p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)

1167

The derivations of (p | r)⊕ (q | r) are as follows:1168

(d)

(|?!)
(p, H, H ′) x?z−−→ (p′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)

(p | r, H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)
(cpol_⊕)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)

1169

As demonstrated in (c) and (d), if (p, H, H ′) x!z−−→ (p′, H, H ′) and (r, H, H ′) x?z−−→ (r′,1170

H, H ′) hold then both of the terms (p⊕ q) | r and (p | r)⊕ (q | r) converge to the same1171

expression with the rcfg(x, z) transition:1172

((p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)
(82)1173

Case (3): (q, H, H ′) x!z−−→ (q′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)1174

1175

The derivations of (p⊕ q) | r are as follows:1176

:40 DyNetKAT: An Algebra of Dynamic Networks

(e)

(cpol⊕_)
(q, H, H ′) x!z−−→ (q′, H, H ′)

(p⊕ q, H, H ′) x!z−−→ (q′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)
(|!?)

(p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)

1177

The derivations of (p | r)⊕ (q | r) are as follows:1178

(f)

(|!?)
(q, H, H ′) x!z−−→ (q′, H, H ′) (r, H, H ′) x?z−−→ (r′, H, H ′)

(q | r, H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)
(cpol⊕_)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)

1179

As demonstrated in (e) and (f), if (q, H, H ′) x!z−−→ (q′, H, H ′) and (r, H, H ′) x!z−−→ (r′, H, H ′)1180

hold then both of the terms (p⊕q) | r and (p | r)⊕ (q | r) converge to the same expression1181

with the rcfg(x, z) transition:1182

((p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)
(83)1183

Case (4): (q, H, H ′) x?z−−→ (q′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)1184

1185

The derivations of (p⊕ q) | r are as follows:1186

(g)

(cpol⊕_)
(q, H, H ′) x?z−−→ (q′, H, H ′)

(p⊕ q, H, H ′) x?z−−→ (q′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)
(|?!)

(p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (p′ || r′, H, H ′)

1187

The derivations of (p | r)⊕ (q | r) are as follows:1188

(h)

(|?!)
(q, H, H ′) x?z−−→ (q′, H, H ′) (r, H, H ′) x!z−−→ (r′, H, H ′)

(q | r, H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)
(cpol⊕_)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)

1189

As demonstrated in (g) and (h), if (q, H, H ′) x?z−−→ (q′, H, H ′) and (r, H, H ′) x!z−−→ (r′,1190

H, H ′) hold then both of the terms (p⊕ q) | r and (p | r)⊕ (q | r) converge to the same1191

expression with the rcfg(x, z) transition:1192

((p⊕ q) | r, H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)

((p | r)⊕ (q | r), H, H ′) rcfg(x,z)−−−−−−→ (q′ || r′, H, H ′)
(84)1193

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :41

Therefore, by (81), (82), (83) and (84) it is straightforward to conclude that the following1194

holds:1195

((p⊕ q) | r) ∼ ((p | r)⊕ (q | r)) (85)1196

1197

Axiom under consideration:1198

p | q ≡ q | p (A14) (86)1199

for p, q ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are1200

the possible transitions that can initially occur in the terms p | q and q | p:1201 {
(1) (p, H, H ′) x!z−−→ (p′, H, H ′) (q, H, H ′) x?z−−→ (q′, H, H ′)
(2) (p, H, H ′) x?z−−→ (p′, H, H ′) (q, H, H ′) x!z−−→ (q′, H, H ′)

1202

1203

1204

Case (1): (p, H, H ′) x!z−−→ (p′, H, H ′) (q, H, H ′) x?z−−→ (q′, H, H ′)1205

1206

The derivations of p | q are as follows:1207

(a)

(|!?)
(p, H, H ′) x!z−−→ (p′, H, H ′) (q, H, H ′) x?z−−→ (q′, H, H ′)

(p | q, H, H ′) rcfg(x,z)−−−−−−→ (p′ || q′, H, H ′)
1208

The derivations of q | p are as follows:1209

(b)

(|?!)
(q, H, H ′) x?z−−→ (q′, H, H ′) (p, H, H ′) x!z−−→ (p′, H, H ′)

(q | p, H, H ′) rcfg(x,z)−−−−−−→ (q′ || p′, H, H ′)
1210

As demonstrated in (a) and (b), if (p, H, H ′) x!z−−→ (p′, H, H ′) and (q, H, H ′) x?z−−→ (q′,1211

H, H ′) hold then both of the terms p | q and q | p are able to perform the rcfg(x, z)1212

transition:1213

(p | q, H, H ′) rcfg(x,z)−−−−−−→ (p′ || q′, H, H ′)

(q | p, H, H ′) rcfg(x,z)−−−−−−→ (q′ || p′, H, H ′)
(87)1214

Observe that the terms evolve into different expressions and we would now need to check if1215

these terms are bisimilar. According to the axiom (A6), the “||” operator is commutative.1216

Hence, the following holds:1217

(p′ || q′) ∼ (q′ || p′) (88)1218

Case (2): (p, H, H ′) x?z−−→ (p′, H, H ′) (q, H, H ′) x!z−−→ (q′, H, H ′)1219

1220

The derivations of p | q are as follows:1221

(c)

(|?!)
(p, H, H ′) x?z−−→ (p′, H, H ′) (q, H, H ′) x!z−−→ (q′, H, H ′)

(p | q, H, H ′) rcfg(x,z)−−−−−−→ (p′ || q′, H, H ′)
1222

:42 DyNetKAT: An Algebra of Dynamic Networks

The derivations of q | p are as follows:1223

(d)

(|?!)
(q, H, H ′) x!z−−→ (q′, H, H ′) (p, H, H ′) x?z−−→ (p′, H, H ′)

(q | p, H, H ′) rcfg(x,z)−−−−−−→ (q′ || p′, H, H ′)
1224

As demonstrated in (c) and (d), if (p, H, H ′) x!z−−→ (p′, H, H ′) and (q, H, H ′) x?z−−→ (q′,1225

H, H ′) hold then both of the terms p | q and q | p are able to perform the rcfg(x, z)1226

transition:1227

(p | q, H, H ′) rcfg(x,z)−−−−−−→ (p′ || q′, H, H ′)

(q | p, H, H ′) rcfg(x,z)−−−−−−→ (q′ || p′, H, H ′)
(89)1228

Observe that the terms evolve into different expressions and we would now need to check if1229

these terms are bisimilar. According to the axiom (A6), the “||” operator is commutative.1230

Hence, the following holds:1231

(p′ || q′) ∼ (q′ || p′) (90)1232

Therefore, by (87), (88), (89) and (90) it is straightforward to conclude that the following1233

holds:1234

(p | q) ∼ (q | p) (91)1235

1236

Axiom under consideration:1237

p | q ≡ ⊥ [owise] (A15) (92)1238

for p, q ∈ DyNetKAT. Observe that the [owise] condition implies that p cannot be of1239

shape x?z ; r when q is of shape x!z ; r′, as otherwise the axiom (A12) would become1240

applicable (or vice versa due to commutativity of |). Furthermore, note that if p or q1241

contains operators other than sequential composition (;), that is the operators “⊕”, “T”1242

and “||”, then the axioms such as (A8), (A10) and (A13) would become applicable and1243

hence the [owise] condition would not be met. The axiom (A15) can be written explicitly1244

as follows:1245

(z ; p) | q ≡⊥ (93)1246

(x?z ; p) | (x′?z′ ; q) ≡⊥ (94)1247

(x!z ; p) | (x′!z′ ; q) ≡⊥ (95)1248

(x?z ; p) | (x′!z′ ; q) ≡⊥ if x ̸= x′ or z ̸= z′ (96)1249

(rcfgx,z ; p) | q ≡⊥ (97)1250
1251

for z, z′ ∈ NetKAT−dup. Observe that the term ⊥ does not afford any transition and1252

none of the terms on the left hand side of the equivalences above afford any transition as1253

well. Therefore, the following holds if the [owise] condition is met:1254

(p | q) ∼ ⊥ (98)1255

1256

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :43

Axiom under consideration:1257

δL(⊥) ≡ ⊥ (δ⊥) (99)1258

Observe that according to the semantic rules of DyNetKAT, the terms δL(⊥) and ⊥ do1259

not afford any transition. Hence, the following trivially holds:1260

(δL(⊥)) ∼ ⊥ (100)1261

1262

Axiom under consideration:1263

δL(at ; p) ≡ at ; δL(p) if at ̸∈ L (δ;) (101)1264

for at ∈ {α ·π, x?z, x!z, rcfgx,z}, z ∈ NetKAT−dup and p ∈ DyNetKAT. In the following,1265

we make a case analysis on the shape of at and show that the terms δL(at ; p) and at ; δL(p)1266

are bisimilar. In our analysis we always assume that the condition at ̸∈ L is satisfied, as1267

otherwise this axiom is not applicable.1268

Case (1): at ≜ α · π1269

1270

Consider an arbitrary but fixed network packet σ, let Sαπ ≜ Jα ·πK(σ::⟨⟩). The derivations1271

of δL((α · π) ; p) are as follows:1272

(a)

For all σ′ ∈ Sαπ : (cpol✓_ ;)
((α · π) ; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)

(δ)
(δL((α · π) ; p), σ :: H, H ′) (σ,σ′)−−−−→ (δL(p), H, σ′ :: H)

1273

The derivations of (α · π) ; δL(p) are as follows:1274

(b)

For all σ′ ∈ Sαπ : (cpol✓_ ;)
((α · π) ; δL(p), σ :: H, H ′) (σ,σ′)−−−−→ (δL(p), H, σ′ :: H ′)1275

As demonstrated in (a) and (b), both of the terms δL((α ·π) ; p) and (α ·π) ; δL(p) initially1276

afford the same set of transitions of shape (σ, σ′) and they converge to the same expression1277

after taking these transitions:1278

(δL((α · π) ; p), σ :: H, H ′) (σ,σ′)−−−−→ (δL(p), H, σ′ :: H ′)

((α · π) ; δL(p), σ :: H, H ′) (σ,σ′)−−−−→ (δL(p), H, σ′ :: H ′)
(102)1279

Case (2): at ≜ x?z1280

1281

The derivations of δL(x?z ; p) are as follows:1282

(c)

(cpol?)
(x?z ; p, H, H ′) x?z−−→ (p, H, H ′)

(δ)
(δL(x?z ; p), H, H ′) x?z−−→ (δL(p), H, H ′)

1283

:44 DyNetKAT: An Algebra of Dynamic Networks

The derivations of x?z ; δL(p) are as follows:1284

(d)

(cpol?)
(x?z ; δL(p), H, H ′) x?z−−→ (δL(p), H, H ′)1285

As demonstrated in (c) and (d), both of the terms δL(x?z ; p) and x?z ; δL(p) initially1286

only afford the x?z transition and they converge to the same expression after taking this1287

transition:1288

(δL(x?z ; p), H, H ′) x?z−−→ (δL(p), H, H ′)

(x?z ; δL(p), H, H ′) x?z−−→ (δL(p), H, H ′)
(103)1289

Case (3): at ≜ x!z1290

1291

The derivations of δL(x!z ; p) are as follows:1292

(e)

(cpol!)
(x!z ; p, H, H ′) x!z−−→ (p, H, H ′)

(δ)
(δL(x!z ; p), H, H ′) x!z−−→ (δL(p), H, H ′)

1293

The derivations of x!z ; δL(p) are as follows:1294

(f)

(cpol!)
(x!z ; δL(p), H, H ′) x!z−−→ (δL(p), H, H ′)1295

As demonstrated in (e) and (f), both of the terms δL(x!z ; p) and x!z ; δL(p) initially1296

only afford the x!z transition and they converge to the same expression after taking this1297

transition:1298

(δL(x!z ; p), H, H ′) x!z−−→ (δL(p), H, H ′)

(x!z ; δL(p), σ :: H, H ′) x!z−−→ (δL(p), H, H ′)
(104)1299

Case (4): at ≜ rcfgx,z1300

1301

The derivations of δL(rcfgx,z ; p) are as follows:1302

(g)

(rcfgx,z)
(rcfgx,z ; p, H, H ′) rcfg(x,z)−−−−−−→ (p, H, H ′)

(δ)
(δL(rcfgx,z ; p), H, H ′) rcfg(x,z)−−−−−−→ (δL(p), H, H ′)

1303

The derivations of rcfgx,z ; δL(p) are as follows:1304

(h)

(rcfgx,z)
(rcfgx,z ; δL(p), H, H ′) rcfg(x,z)−−−−−−→ (δL(p), H, H ′)1305

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :45

As demonstrated in (g) and (h), both of the terms δL(rcfgx,z ; p) and rcfgx,z ; δL(p)1306

initially only afford the rcfg(x, z) transition and they converge to the same expression1307

after taking this transition:1308

(δL(rcfgx,z ; p), H, H ′) rcfg(x,z)−−−−−−→ (δL(p), H, H ′)

(rcfgx,z ; δL(p), H, H ′) rcfg(x,z)−−−−−−→ (δL(p), H, H ′)
(105)1309

Therefore, if at ̸∈ L, by (102), (103), (104) and (105) it is straightforward to conclude1310

that the following holds:1311

(δL(at ; p)) ∼ (at ; δL(p)) (106)1312

1313

Axiom under consideration:1314

δL(at ; p) ≡ ⊥ if at ∈ L (δ⊥
;) (107)1315

Observe that according to the semantic rules of DyNetKAT, the term ⊥ do not afford1316

any transition. Furthermore, if the condition at ∈ L is satisfied, then the term δL(at ; p)1317

also does not afford any transition. Therefore, if at ∈ L, the following trivially holds:1318

δL(at ; p) ∼ ⊥ (108)1319

1320

Axiom under consideration:1321

δL(p⊕ q) ≡ δL(p)⊕ δL(q) (δ⊕) (109)1322

for p, q ∈ DyNetKAT. According to the semantic rules of DyNetKAT, the following are1323

the possible transitions that can initially occur in the terms δL(p⊕ q) and δL(p)⊕ δL(q):1324 {
(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(2) (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
1325

1326

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)1327

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)1328

1329

The derivations of δL(p⊕ q) are as follows:1330

(a)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (p′, H1, H ′

1)
(δ)

(δL(p⊕ q), H0, H ′
0) γ−→ (δL(p′), H1, H ′

1)

1331

The derivations of δL(p)⊕ δL(q) are as follows:1332

(b)

(δ)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(δL(p), H0, H ′
0) γ−→ (δL(p′), H1, H ′

1)
(cpol_⊕)

(δL(p)⊕ δL(q), H0, H ′
0) γ−→ (δL(p′), H1, H ′

1)

1333

:46 DyNetKAT: An Algebra of Dynamic Networks

As demonstrated in (a) and (b), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then both of the1334

terms δL(p⊕ q) and δL(p)⊕ δL(q) converge to the same expression with the γ transition:1335

(δL(p⊕ q), H0, H ′
0) γ−→ (δL(p′), H1, H ′

1)

(δL(p)⊕ δL(q), H0, H ′
0) γ−→ (δL(p′), H1, H ′

1)
(110)1336

Case (2): (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)1337

1338

The derivations of δL(p⊕ q) are as follows:1339

(c)

(cpol⊕_)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(δ)

(δL(p⊕ q), H0, H ′
0) γ−→ (δL(q′), H1, H ′

1)

1340

The derivations of δL(p)⊕ δL(q) are as follows:1341

(d)

(δ)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(δL(q), H0, H ′
0) γ−→ (δL(q′), H1, H ′

1)
(cpol⊕_)

(δL(p)⊕ δL(q), H0, H ′
0) γ−→ (δL(q′), H1, H ′

1)

1342

As demonstrated in (c) and (d), if (q, H0, H ′
0) γ−→ (q′, H1, H ′

1) holds then both of the1343

terms δL(p⊕ q) and δL(p)⊕ δL(q) converge to the same expression with the γ transition:1344

(δL(p⊕ q), H0, H ′
0) γ−→ (δL(q′), H1, H ′

1)

(δL(p)⊕ δL(q), H0, H ′
0) γ−→ (δL(q′), H1, H ′

1)
(111)1345

Therefore, by (110), and (111) it is straightforward to conclude that the following holds:1346

(δL(p⊕ q)) ∼ (δL(p)⊕ δL(q)) (112)1347

1348

Axiom under consideration:1349

π0(p) ≡ ⊥ (Π0) (113)1350

for p ∈ DyNetKAT. Observe that according to the semantic rules of DyNetKAT, the1351

terms π0(p) and ⊥ do not afford any transition. Hence, the following trivially holds:1352

π0(p) ∼ ⊥ (114)1353

1354

Axiom under consideration:1355

πn(⊥) ≡ ⊥ (Π⊥) (115)1356

for n ∈ N. Observe that according to the semantic rules of DyNetKAT, the terms π0(⊥)1357

and ⊥ do not afford any transition. Hence, the following trivially holds:1358

πn(⊥) ∼ ⊥ (116)1359

1360

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :47

Axiom under consideration:1361

πn+1(at ; p) ≡ at ; πn(p) (Π;) (117)1362

for at ∈ {α · π, x?z, x!z, rcfgx,z}, z ∈ NetKAT−dup, n ∈ N and p ∈ DyNetKAT. In the1363

following, we make a case analysis on the shape of at and show that the terms πn+1(at ; p)1364

and at ; πn(p) are bisimilar.1365

Case (1): at ≜ α · π1366

1367

Consider an arbitrary but fixed network packet σ, let Sαπ ≜ Jα ·πK(σ::⟨⟩). The derivations1368

of πn+1((α · π) ; p) are as follows:1369

(a)

For all σ′ ∈ Sαπ : (cpol✓_ ;)
((α · π) ; p, σ :: H, H ′) (σ,σ′)−−−−→ (p, H, σ′ :: H ′)

(π)
(πn+1((α · π) ; p), σ :: H, H ′) (σ,σ′)−−−−→ (πn(p), H, σ′ :: H)

1370

The derivations of (α · π) ; πn(p) are as follows:1371

(b)

For all σ′ ∈ Sαπ : (cpol✓_ ;)
((α · π) ; πn(p), σ :: H, H ′) (σ,σ′)−−−−→ (πn(p), H, σ′ :: H ′)1372

As demonstrated in (a) and (b), both of the terms πn+1((α · π) ; p) and (α · π) ; πn(p)1373

initially only afford the same set of transitions of shape (σ, σ′) and they converge to the1374

same expression after taking these transitions:1375

(πn+1((α · π) ; p), σ :: H, H ′) (σ,σ′)−−−−→ (πn(p), H, σ′ :: H ′)

((α · π) ; πn(p), σ :: H, H ′) (σ,σ′)−−−−→ (πn(p), H, σ′ :: H ′)
(118)1376

Case (2): at ≜ x?z1377

1378

The derivations of πn+1(x?z ; p) are as follows:1379

(c)

(cpol?)
(x?z ; p, σ :: H, H ′) x?z−−→ (p, H, H ′)

(π)
(πn+1(x?z ; p), H, H ′) x?z−−→ (πn(p), H, H ′)

1380

The derivations of x?z ; δL(p) are as follows:1381

(d)

(cpol?)
(x?z ; πn(p), H, H ′) x?z−−→ (πn(p), H, H ′)1382

As demonstrated in (c) and (d), both of the terms πn+1(x?z ; p) and x?z ; πn(p) initially1383

only afford the x?z transition and they converge to the same expression after taking this1384

transition:1385

(πn+1(x?z ; p), H, H ′) x?z−−→ (πn(p), H, H ′)

(x?z ; πn(p), H, H ′) x?z−−→ (πn(p), H, H ′)
(119)1386

:48 DyNetKAT: An Algebra of Dynamic Networks

Case (3): at ≜ x!z1387

1388

The derivations of πn+1(x!z ; p) are as follows:1389

(e)

(cpol!)
(x!z ; p, H, H ′) x!z−−→ (p, H, H ′)

(π)
(πn+1(x!z ; p), H, H ′) x!z−−→ (πn(p), H, H ′)

1390

The derivations of x!z ; πn(p) are as follows:1391

(f)

(cpol!)
(x!z ; πn(p), H, H ′) x!z−−→ (πn(p), H, H ′)1392

As demonstrated in (e) and (f), both of the terms πn+1(x!z ; p) and x!z ; πn(p) initially1393

only afford the x!z transition and they converge to the same expression after taking this1394

transition:1395

(πn+1(x!z ; p), H, H ′) x!z−−→ (πn(p), H, H ′)

(x!z ; πn(p), H, H ′) x!z−−→ (πn(p), H, H ′)
(120)1396

Case (4): at ≜ rcfgx,z1397

1398

The derivations of πn+1(rcfgx,z ; p) are as follows:1399

(g)

(rcfgx,z)
(rcfgx,z ; p, H, H ′) rcfg(x,z)−−−−−−→ (p, H, H ′)

(δ)
(πn+1(rcfgx,z ; p), H, H ′) rcfg(x,z)−−−−−−→ (πn(p), H, H ′)

1400

The derivations of rcfgx,z ; πn(p) are as follows:1401

(h)

(rcfgx,z)
(rcfgx,z ; πn(p), H, H ′) rcfg(x,z)−−−−−−→ (πn(p), H, H ′)1402

As demonstrated in (g) and (h), both of the terms πn+1(rcfgx,z ; p) and rcfgx,z ; πn(p)1403

initially only afford the rcfg(x, z) transition and they converge to the same expression1404

after taking this transition:1405

(πn+1(rcfgx,z ; p), H, H ′) rcfg(x,z)−−−−−−→ (πn(p), H, H ′)

(rcfgx,z ; πn(p), H, H ′) rcfg(x,z)−−−−−−→ (πn(p), H, H ′)
(121)1406

Therefore, if at ̸∈ L, by (118), (119), (120) and (121) it is straightforward to conclude1407

that the following holds:1408

(πn+1(at ; p)) ∼ (at ; πn(p)) (122)1409

1410

G. Caltais, H. Hojjat, M. Mousavi, H. C. Tunç :49

Axiom under consideration:1411

πn(p⊕ q) ≡ πn(p)⊕ πn(q) (π⊕) (123)1412

for p, q ∈ DyNetKAT. Observe that if n = 0, then both of the terms do not afford any1413

transition and bisimilarity holds trivially. If n > 0, according to the semantic rules of1414

DyNetKAT, the following are the possible transitions that can initially occur in the terms1415

πn(p⊕ q) and πn(p)⊕ πn(q):1416 {
(1) (p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(2) (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
1417

1418

γ ::= (σ, σ′) | x!z | x?z | rcfg(x, z)1419

Case (1): (p, H0, H ′
0) γ−→ (p′, H1, H ′

1)1420

1421

The derivations of πn(p⊕ q) are as follows:1422

(a)

(cpol_⊕)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (p′, H1, H ′

1)
(π)

(πn(p⊕ q), H0, H ′
0) γ−→ (πn−1(p′), H1, H ′

1)

1423

The derivations of πn(p)⊕ πn(q) are as follows:1424

(b)

(π)
(p, H0, H ′

0) γ−→ (p′, H1, H ′
1)

(πn(p), H0, H ′
0) γ−→ (πn−1(p′), H1, H ′

1)
(cpol_⊕)

(πn(p)⊕ πn(q), H0, H ′
0) γ−→ (πn−1(p′), H1, H ′

1)

1425

As demonstrated in (a) and (b), if (p, H0, H ′
0) γ−→ (p′, H1, H ′

1) holds then both of the1426

terms πn(p⊕ q) and πn(p)⊕ πn(q) converge to the same expression with the γ transition:1427

1428

(πn(p⊕ q), H0, H ′
0) γ−→ (πn−1(p′), H1, H ′

1)

(πn(p)⊕ πn(q), H0, H ′
0) γ−→ (πn−1(p′), H1, H ′

1)
(124)1429

Case (2): (q, H0, H ′
0) γ−→ (q′, H1, H ′

1)1430

1431

The derivations of πn(p⊕ q) are as follows:1432

(c)

(cpol⊕_)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(p⊕ q, H0, H ′
0) γ−→ (q′, H1, H ′

1)
(π)

(πn(p⊕ q), H0, H ′
0) γ−→ (πn−1(q′), H1, H ′

1)

1433

The derivations of πn(p)⊕ πn(q) are as follows:1434

:50 DyNetKAT: An Algebra of Dynamic Networks

(d)

(π)
(q, H0, H ′

0) γ−→ (q′, H1, H ′
1)

(πn(q), H0, H ′
0) γ−→ (πn−1(q′), H1, H ′

1)
(cpol⊕_)

(πn(p)⊕ πn(q), H0, H ′
0) γ−→ (πn−1(q′), H1, H ′

1)

1435

As demonstrated in (c) and (d), if (q, H0, H ′
0) γ−→ (q′, H1, H ′

1) holds then both of the1436

terms πn(p⊕ q) and πn(p)⊕ πn(q) converge to the same expression with the γ transition:1437

1438

(πn(p⊕ q), H0, H ′
0) γ−→ (πn−1(q′), H1, H ′

1)

(πn(p)⊕ πn(q), H0, H ′
0) γ−→ (πn−1(q′), H1, H ′

1)
(125)1439

Therefore, by (124) and (125) it is straightforward to conclude that the following holds:1440

(πn(p⊕ q)) ∼ (πn(p)⊕ πn(q)) (126)1441

	1 Introduction
	1.1 Running Examples
	1.2 Our Contributions
	1.3 Structure of Paper

	2 Language Design
	2.1 Brief Overview of NetKAT
	2.2 Design Decisions
	2.3 DyNetKAT Syntax
	2.4 DyNetKAT Semantics

	3 Semantic Results
	3.1 An Axiom System for DyNetKAT Bisimilarity
	3.1.1 Soundness and Completeness

	4 A Framework for Safety
	4.1 Sugars for Safety

	5 Implementation
	6 Conclusions
	A Soundness Proofs

