
An Algorithm to Compute a Strict Partial
Ordering of Actions in Action Traces

Martin Kölbl and Stefan Leue

University of Konstanz, Germany

Abstract. Causality Checking [LL13] computes a causal explanation in
the form of minimal action traces that lead to the violations of a reach-
ability property. Causality Checking is implemented in the tool Quan-
tUM [LFL11] that currently only depicts in a fault tree the causal actions
in the action traces that lead to a property violation, but not the possi-
ble order of these actions. We present an analysis to compute the strict
partial order of actions in action traces and succinctly depict these or-
ders by a fault tree. We implemented the analysis in the tool QuantUM.
We assess the performance of our algorithm by applying it to several
models of different size. The results show that the analysis can compute
the action order for thousands of action traces.

1 Motivation

Model-driven development is an efficient way to deal with the complexity of
modern systems. A model is a high-level abstraction of a system and can support
the development of a correct system. Before the implementation of a system, a
model checker can verify a model of the system to ensure that the system behaves
according to its specification. For the verification, the specification of a model
is given as a property. An initial design typically has shortcomings and violates
the property. When a model checker finds a violation of a property, it returns
a counterexample in the form of an execution that leads to the violation. An
execution contains an ordered sequence of actions that we call an action trace.
We proposed Causality Checking in [LL13] that analyzes the counterexamples
of a model based on the counterfactual argument [Lew01] and results in a set of
action traces that are considered to be causal, according to the counterfactual
actual cause definition given in [LL13]. When a system execution contains one of
the action traces the property will be violated. A system execution that contains
none of the action traces will not violate the property.

We implemented Causality Checking in the tool QuantUM. The input of
QuantUM is a reachability property and a model in SysML [Obj17]. QuantUM
converts the SysML model into the model checking language Spin [Hol04] and
executes Causality Checking based on a systematic state space exploration to
find every causal action trace in the model. Afterwards, QuantUM pools the
causal action traces with the same set of actions to a causality class. The dis-
junction of the different causality classes constitutes the cause of the property



start

Car Ca

Car Cc

Train Ta

Train Tc

Car Ca

Train Ta

Car Cc

Train Tc

Train Ta

Car Ca

Car Cc

Train Tc

(a) Railroad Crossing (RC) Traces (b) RC Fault
Tree

(c) RC Ordered
Fault Tree

Fig. 1. Railroad example

violation and will be displayed as a fault tree [KL19]. Currently, QuantUM de-
picts the set of actions in a causality class by a fault tree without indicating
the order of the contained actions. In previous work, amongst others we applied
Causality Checking to the architecture of a self-driving car [KL19], and showed
that Causality Checking supports the safety assessment in the development of a
safety-critical system.

We now illustrate the analysis performed during causality checking by ap-
plying it to the model of a railroad crossing, which we will refer to as a run-
ning example throughout the paper. In this model, a train approaches a cross-
ing (Train Ta), then enters the crossing (Train Tc) and leaves the crossing
(Train Tl). A car also approaches at the crossing (Car Ca), then enters the
crossing (Car Cc) and leaves the crossing (Car Cl). The crossing is unguarded
and has no gate. The car will not enter the crossing when the train is already
in the crossing. A hazard in this system occurs when a state can be entered in
which both the train and the car are in the crossing at the same time, which has
the potential to lead to a fatal accident. We, therefore, state the property that
such a state can not be reached.

Causality Checking computes causes for the violation of such a reachability
property in case it is violated in the model. The result of this cause computation
is a number of what is referred to as causality classes. The action traces in one
causality class are all formed over the same set of actions, and only vary in the
order in which these actions occur. For the railroad crossing example, Causality
Checking computes just one causality class over the set {Train Ta, Train Tc,
Car Ca, Car Cc} of actions. It contains 3 action traces, depicted in Figure 1(a).
Notice that for systems of realistic size, a causality class may contain a much
higher number of action traces. For reasons of convenience and since QuantUM
is primarily used in the area of safety-critical system analysis, causality classes
are depicted as fault trees. The fault tree in Figure 1(b) depicts the causality
class computed for the Railroad Crossing example. The top-level event Train-
CarHazard is valid when one of the causality classes is valid. Thus, an or-gate

2



is connected to the single causality class Class 0. A causality class is valid when
every contained basic event Car Ca, Car Cc, Train Ta and Train Tc occurred,
which means that an action trace is obtained from the system that contains
exactly these events in a given order. The basic events can occur in the model in
different orders. These basic events are combined by an and-gate that requires
all of them to occur without imposing a particular order on the occurrence. This
fault tree returned by QuantUM does not currently depict these different action
orders, even though the ordering information is contained in the set of action
traces that form the causality class. Assume, in the example above, that the train
enters the crossing before the car, then the car will never enter the crossing, as
per the model definition, and the hazard state will not be reached.

We describe the necessity of an action to occur before another action to reach
a property violation by a dependency relation. For this dependency relation, the
following properties hold.

– An action can not depend on itself, otherwise, the action can never occur
(irreflexivity).

– When an action b depends on another action a, then a cannot also depend
on b (antisymmetricity). Assume two actions would mutually dependent on
another, then these actions could never occur.

– When an action c depends on b and b depends on a then c depends also on
a (transitivity).

A strict partial order has exactly these properties. It differs from a (general)
partial order only in the property of irreflexivity. We use a strict partial order
to describe the dependencies of the actions in action traces.

In this paper, we propose an analysis that computes the strict partial orders of
actions in action traces and depicts the computed order in a fault tree. In order
to depict the action orders, we introduce the ordered-and-gate into the Fault
Tree notation. It is depicted as an and-gate labeled with a triangle. It is satisfied
when the actions connected to the gate occur from left to right. For the running
example, the analysis results in the fault tree depicted in Figure 1(c) which
represents all orders of the action traces given in Figure 1(a) that correspond
to the causality criteria defined in Causality Checking. The order in the fault
tree depicts, for instance, that Tc occurs always after the other actions, and the
action Ta is independent of action Ca and action Car Cc.

Contributions. In this paper, we present an analysis that computes and depicts
the order of actions in the action trace set belonging to a causality class. We
also implement this analysis in QuantUM.

Structure. In Section 2 we discuss the foundations of our work. In Section 3 we
present an algorithm to compute the strict partial order for the action traces of
a causality class. We evaluate and compare an implementation of the algorithms
in Section 4. In Section 5 we draw conclusions and suggest future developments.

3



Related Work A Mazurkiewicz trace [DR95] describes a set of traces by a se-
quence t of actions and a dependence relation D. The D is symmetric which
means when (a, b) is in D then (b, a) is in D. Two in t neighboured actions a
and b can be reordered when (a, b) is not in D. In contrast, the strict partial
order that our analysis computes is antisymmetric. In the context of causality,
either a depends on b then b occurs before a in an action trace, or b depends on
a then a occurs before b but both dependencies are not possible at once.

Lamport’s happen-before describes strict partial orders for messages in an
asynchronous system [Lam78]. In contrast, we compute the strict partial order
of actions in a set of action traces.

A (strict) partial order is usually depicted by a Hasse diagram which is an
undirected acyclic graph where lower vertices connected to vertices above have
to happen first [ES13]. In the context of QuantUM, we prefer to use Fault Trees
to depict causality classes and the orders that they represent since they are a
notation that is well known to engineers of safety-critical systems.

We are not aware of any work that computes a strict partial order for a set
of action traces.

2 Preliminaries

The model of a system is given in form of a transition system [BK08]. A transition
system (TS) is a tuple (S, Act, →, I, AP, L) where S is a finite set of states,
Act is a finite set of actions, → ⊆ S×Act×S is a transition relation, I ⊆ S is a set
of initial states, AP is a set of atomic propositions, and L ∶ S → 2AP is a labeling
function. An execution p of the transition system TS is an alternating sequence
of states s ∈ S and actions a ∈ Act ∶ p = s0a1s1a2 . . . such that (si, ai+1, si+1) ∈→
for all i ≥ 0. The behavior of a system is described by the executions of the
TS. For an invariant property φ, a finite execution s0a0s1 . . . sn−1an−1sn where
sn /⊧ φ is called a counterexample.

An action trace a0a1 . . . is the projection of an execution s0a0s1a1 . . . on Act.
An action trace set is a set of action traces T where every action trace t in T has
the same alphabet A ⊆ Act and every action of the alphabet occurs in t exactly
once. Thus, every action trace in an action trace set has the same length n = ∣A∣.
Notice that a causality class is an action trace set. An action trace t of a TS can
contain an action a several times. In this case, we substitute every occurrence a
in t with ai where the index i is the number of occurrences of a up to the current
action in t, and add ai to the alphabet.

A directed graph G is a pair (V,E) of a set of vertices V and a set of edges
E ⊆ V × V where V ∩E = ∅ [CLF05]. A walk of G is a finite sequence of states
u0, u1, . . . , un where for 0 ≤ i ≤ n, ui ∈ V and for 0 ≤ i ≤ n − 1, (ui, ui+1) ∈ E.
A cycle is a nontrivial walk u0 . . . un with u0 = un. A vertex v is connected in
G to a vertex u when a walk v...u exists. A graph is connected when for every
two vertices v and u in V either a walk v..u or a walk u..v exists. A directed
acyclic graph (DAG) is a directed graph without a cycle. A tree is an acyclic

4



connected graph [CLF05]. The transitive closure (V,E∗
) of a directed graph

(V,E) contains an edge (v, u) in E∗ for every walk v...u in (V,E).
In concurrent systems, the order in which events can occur is often deter-

mined by a partial order relation.

Definition 1 (Partial Order [SRH18]). A homogeneous relation ⪯ ⊆ A ×A
is called a partial order over set A if, and only if

– ∀a ∈ A.a ⪯ a (reflexive)
– ∀a, b ∈ A.a ⪯ b and b ⪯ a then a = b (antisymmetric)
– ∀a, b, c ∈ A.a ⪯ b and b ⪯ c then a ⪯ c (transitive)

A strict partial order is a partial order that is irreflexive, which means that
∀a ∈ A.a â a holds. We use the sign ≺ to denote a strict partial order.

The function it(a) returns the index of an action a in an action trace t. For
an action trace set T , we say that an action b depends on a when in every action
trace t ∈ T the index of a is smaller than the index of b. Formally, a depends on
b if ∀t ∈ T.it(a) < it(b) holds. We express dependencies by a strict partial order.
A dependency of action a on action b is denoted by a ≺ b. When a ≺ b holds,
we say that a is a precondition for b. When neither a ≺ b nor b ≺ a holds, we
say a and b are independent.

The action set A has a number ∣A∣ of actions. For some given causality class
over an action set A, we represent the dependencies of the actions in this causality
class in a Boolean matrix M of dimension ∣A∣ × ∣A∣. An entry (a, b) in M has the
value true when b depends on a in the corresponding causality class.

3 Algorithm to Analyze Action Orders in Action Traces

In this section, we present an algorithm that we refer to as Algorithm 1, which
is designed to compute the strict partial order of the actions in a set of action
traces. We also define an algorithm called Algorithm 2, which translates this
strict partial order into a fault tree.

The input to Algorithm 1 is an action trace set defining a causality class.
For instance, in the railroad example the action trace set in Figure 1(a) is the
action trace set forming the causality class computed for the railroad model.
This action trace set is built over the action set {Car Ca, Car Cc, Train Ta,
Train Tc}. Algorithm 1 computes the strict partial order of the actions in an
action trace set and stores it in a DAG which is accomplished in the following
way. The strict partial order a ≺ b holds for an action trace in which an
action a occurs before an action b. In the railroad model, for instance, Train Tc
occurs in every action trace after Car Cc and Car Ca. Thus, Car Cc ≺ Train Tc
and Car Ca ≺ Car Cc holds in every action trace. Since Car Cc ≺ Train Tc
holds in every action trace in Figure 1(a), we deduce that Train Tc depends on
Car Cc occurring first in order to reach a property violation. In the same way,
Car Cc also depends on Car Ca and Train Tc depends on Car Ca. In the DAG
for the railroad example, the algorithm only needs to store the information that

5



Train Tc depends on Car Cc and that Car Cc depends on action Car Ca because
Train Tc also transitively depends on Car Ca. We define the direct dependency
relation in Definition 2 that removes transitive dependency relations.

Definition 2 (Direct Dependency Relation ≺̂). An action b directly de-
pends on action a, written as a ≺̂ b, in an action trace set T with an action set
A when a ≺ b holds and ¬∃a′ ∈ A.a ≺ a′ ∧ a′ ≺ b.

For instance, in the running example, the direct dependency relations
Car Ca ≺̂ Car Cc and Car Cc ≺̂ Train Tc holds and imply the dependency rela-
tion Car Ca ≺ Train Tc but Car Ca ⊀̂ Train Tc because Car Cc has a direct
dependency with Car Ca and Train Tc.

The DAG in which the algorithm stores the dependencies is a DDAG G
defined in Definition 3. A DDAG has no superfluous edge e that can be implied
by transitivity, formally (E/e)∗ = E∗, and stores this transitive reduction of the
strict partial order.

Definition 3 (Dependency DAG (DDAG)). A dependency DAG (DDAG)
is a DAG (V,E) that stores a strict partial order ≺ over a set A with V = A and
(a, b) ∈ E for any actions a, b ∈ A where a ≺̂ b holds.

An action trace t = a0 . . . an satisfies G when for every vertex v ∈ V there exists
an action ai ∈ t, and any two vertices ai and aj in t with a walk ai...aj in G
satisfy 0 ≤ i < j ≤ n.

G is the input for Algorithm 2, which computes a causal tree as defined
in Definition 4. The causal tree represents the strict partial order in G. In the
context of Causality Checking, a causal tree is the part of a fault tree that
represents a single causality class. A causal tree consists of basic events that
represent the actions in a causality class, ordered-and-gates where a connected
event on the right side depends on every event on the left side, and and-gates
where the connected events are independent. The fault tree in Figure 1(c) depicts
the basic events Car Ca, Car Cc, Train Ta and Train Tc. In the fault tree, an
ordered-and-gate specifies that Car Cc depends on Car Ca to occur first, and a
regular and-gate specifies that Train Ta and Car Cc are independent.

Definition 4 (Causal Tree). A causal tree CT is a connected DAG where a
vertex v is a basic event for an action, or is a gate. Any vertex v can have an
edge (v, g) to a gate g. A gate g is either an ordered-and-gate, where the vertices
v0...vj with edges (vi, g) are ordered by increasing index i from left to right, or
is an and-gate that does not impose an order of the vertices attached to it.

An action trace t = a0...an satisfies the action order imposed by a causal tree
CT when every vertex of CT is valid as defined in the following:

– A basic event v for an action a is valid by t when ∃0 ≤ i ≤ n.t[i] = a exists
and the validity of v at index i does not contradict the order of an ordered-
and-gate in CT .

– An order-and-gate og is valid when the vertices v0...vj become valid in the
order ∀0 ≤ i < i′ ≤ j.vi ≺ vi′ .

6



– An and-gate g is valid when every vertex v with an edge (v, g) to g is valid.

In order to compute a fault tree, we compute a causal tree for every causality
class and combine the obtained causal trees with an or-gate. For the railroad ex-
ample, the result of these computations is the fault tree depicted in Figure 1(c). It
contains one causal tree which is the subgraph below and including the ordered-
and-gate, denoted by the and gate symbol labeled with a triangle.

Algorithm 1 computes the strict partial order of the actions in an action trace set
and stores the resulting strict partial order relation in a DDAG. The functions
given in Listing 1 compute a DDAG with the strict partial order for a given action
trace set T built from an action set A. The function createPreconditionMap

preprocesses the action trace set and returns for any two actions a and b whether
the relation it(a) < it(b) holds in an action trace t∈T. These relations are stored
in a map aM that returns for every action b in A the set of actions that occurred
in an action trace directly before b. The function iterates in lines 3 to 5 through
every action t[i] in every action trace t and adds the action t[i-1] occurring
before t[i] to the set of t[i] in aM.

The function createDAG obtains the map aM as an input and computes a
DDAG representing the strict partial order of a given action trace set T. The
algorithm uses aM as an input in line 8 to create a dependency matrix m of size
∣A∣ × ∣A∣. For any actions a and b, an entry (a, b) in m is true when it(a) < it(b)
holds in an action trace t of T . Hence, (a, b) is true when an action a is in aM[b].
Next, the algorithm ensures that the properties of a strict partial order hold for
the relation stored in m. In line 10, the algorithm computes the transitive closure
of m and stores it in m. In line 12, the algorithm removes symmetries in m by
setting (a, b) and (b, a) to false since, as we argue above, symmetrically ordered
actions cannot be dependent on each other. In line 13, the algorithm removes
reflexive transitions when for an action a the relation a ≺ a holds.

1 Map <Action , Set <Action >> aM;

2 function createPreconditionMap(Set <ActionTrace > T)

3 for ActionTrace t in T

4 for i: 1 ... t.length - 1

5 aM.get(t[i]). add(t[i -1]);

6

7 function createDAG(Map <Action , List <Action >> aM)

8 Matrix m = createDependencyMatrix(aM);

9 // transitive closure: a1 < a2 && a2 < a3 => a1<a3

10 m = ensureTransitivity(m);

11 // antisymmetric: a1 <a2 && a2<a1 => independent(a1, a2)

12 m = ensureAntisymmetricity(m);

13 m = removeReflexivity(m);

14 m = removeTransitiveDependencies(m);

15 return getDAG(m);

Listing 1. Pseudocode of Algorithm 1 to Compute DAG.

7



m now contains a strict partial order for T. In line 14, the algorithm removes
the transitive relations from m in order to compute a DDAG that contains only
direct dependencies. The algorithm removes transitive relations starting with an
action that has the most precondition actions and then iterating in decreasing
order over the other actions in A. In order to remove the transitive relations for
an action c, the algorithm checks for any actions b and a whether valid entries
(b, c) and (a, b) exists in m, in which case it sets the entry (a, c) to false.

In line 15, m is converted into a DDAG G. Every action is a vertex in G. For
any two actions a and b where the entry (a, b) is valid in m, the algorithm adds
an edge (a, b) to the DDAG. This DDAG is returned by the function getDAG.

Algorithm 2 uses the DDAG G returned by function getDAG as an input and
computes a causal tree. In lines 4 to 6 in Listing 2, the algorithm first iterates
through every action p in G where p is a precondition of another action a. It
stores this property of p using a Boolean variable Used for p in a map m. In lines
7 to 9, we search for every action that is not a precondition of another action.
These actions are independent of any other action. For every independent action
a, we call the recursive function createTree in line 10 in order to create a tree
that represents the dependencies of a. The function createTree creates a tree

1 Map <Action , (Tree , Used)> m;

2 Set <Tree > indep;

3 function createCausalTree(DDAG G)

4 for Action a in G

5 for p in a.getPre ()

6 m(p).Used = true

7 for Action a in G

8 if m(a).Used

9 continue;

10 indep.add(createTree(a));

11 return and(indep);

12

13 function createTree(Action a)

14 if(m(a).Tree)

15 return m(a).Tree;

16 Tree t, t’;

17 Tree e = createBasicEvent(a);

18 Set <Action > pL = a.getPre ();

19 if pL.size() = 0 then t = e;

20 else

21 if pL.size() = 1

22 t’ = createTree(pL[0]);

23 else // combine set of preconditions

24 t’ = and(foreach p in pL : createTree(p))

25 t = orderedAnd(t’, e); // preconditions before e

26 m.put(a, t);

27 return t;

Listing 2. Pseudocode of Algorithm 2 to Compute Causal Tree.

8



for the dependencies of an action a. In line 14, the algorithm checks whether the
tree of an action a was previously created. In case, this tree for a is stored in m,
the function createTree returns this tree. Otherwise, the algorithm creates the
tree for a and stores it in variable t. The algorithm first creates a basic event e
for a in line 17. In line 18, the algorithm gets the set pL of actions on which a

depends. In case a depends on no other action, e is the tree with the dependencies
of a and the algorithm stores e in t. In case pL contains only a single action
stored in pL[0], the algorithm creates the tree t’ with the dependencies for the
action in pL[0] in line 22. In case pL has several actions, the algorithm creates a
tree for every action in pL in line 24 and combines these trees with an and-gate
t’. g’ depicts the precondition actions for a, thus, the algorithm combines g’

and a in line 25 in this sequence with an ordered-and-gate. This ordered-and
gate is stored in t. t is stored in m for the action a in line 24 and in line 25
returned by the function. The function createTree is called in line 10 for every
independent action. The trees of these actions are stored in a set indep. After all
trees are created, they are combined by an and-gate in line 11 and this and-gate
is the causal tree that we wanted to compute.

It is possible to optimize the algorithm in the following way. An ordered-
and gate in the causal tree can be connected to another ordered-and gate. For
instance, when a1 occurs before a2 and a2 occurs before a3 then the presented
algorithm creates two ordered-and-gates instead of one with all three actions.
The implementation of line 22 and 25 in Listing 2 combines several ordered-and-
gates to a single one when possible and returns it.

Correctness of the Algorithms. We now prove that the presented algorithms to
compute a causal tree that depicts a strict partial order for an action trace set
T is correct with respect to completeness and soundness.

A DDAG G computed by Algorithm 1 is complete according to Definition 5
when every action trace in T corresponds to a valid ordering of the actions
according to the dependencies stored in G.

Definition 5 (Completeness DDAG Construction). Assume a DDAG G
computed for an action set T . G is complete when any action trace t ∈ T is an
action trace satisfying G.

Theorem 1 (Completeness of Algorithm 1). Algorithm 1 computes a com-
plete DDAG according to Definition 5.

Proof. Assume a DDAG G computed by Algorithm 1 for an action trace set
T and an action trace t in T that is not satisfying G. Since t is not satisfying
G two actions a and b exist that satisfy it(b) < it(a) but in G the dependency
relation a ≺ b holds. Since a ≺ b holds in G by construction of G another trace
t′ in T exists that satisfies it′(a) < it′(b). For t and t′, Algorithm 1 would store
the relations it(b) < it(a) and it′(a) < it′(b) in matrix m (line 8) and removes
them (line 12) afterwards since these relations contradict antisymmetricity. Thus,
either a ≺ b cannot hold in G or t /∈ T . Both cases contradict our assumptions.

⊓⊔

9



A DDAG G computed by Algorithm 1 could be considered sound when any
action trace that satisfies G is in T . However, as we shall see, this definition of
soundness is too strict. Assume, a set with two action traces a, b, c and c, a,
b. Then, Algorithm 1 computes a strict partial order a ≺ b. This strict partial
order allows the action trace t3 = a, c, b but t3 is not in the original action trace
set. This observation was considered further in [Wei19]. For G, we therefore use a
different soundness criterium based on pairs of actions. Notice that in an action
trace that satisfies G, only the order of independent actions can be changed
while preserving its satisfaction of G. As mentioned above, two actions a and b
are independent when neither a ≺ b nor b ≺ a holds in G. a ≺ b does not hold
when a trace t with it(b) < it(a) exists, and b ≺ a does not hold when a trace
t′ with it′(a) < it′(b) exists. G is sound according to Definition 6 when for any
two independent action in G the action traces t and t′ exist.

Definition 6 (Soundness DDAG Construction). Assume a DDAG G com-
puted for an action set T . G is sound when for any two independent action a and
b in G, an action trace t ∈ T satisfying it(b) < it(a) exists and another action
trace t′ ∈ T satisfying it′(a) < it′(b) exists.

Theorem 2 (Soundness of the Algorithm 1). Algorithm 1 computes a
sound DDAG according to Definition 6.

Proof. Assume a DDAG G computed by Algorithm 1 for an action trace set T
and two actions a and b that are independent in G and a ≠ b. Two actions are
independent in G when no walk a...b and no walk b..a exists. By construction
of G, a walk a...b does not exist when a trace t with it(b) < it(a) and a walk
b...a does not exist when a trace t′ with it′(a) < it′(b) exists. We now show by
contradiction that the action traces t and t′ are in T .

In a first case, we assume that no action trace t exists that satisfies it(b) <
it(a). Thus, the relation a ≺ b is not removed in line 12 in Listing 1. In this
case, either a ≺̂ b and the algorithm creates an edge (a, b) (line 15) or actions
a1, ..., an with a ≺ a1 ≺ ... ≺ an ≺ b exists and the algorithm creates edges
(a, a1)(a1, a2) . . . (an, b) in G. Both, the single edge and the sequence of edges
represents a walk a...b. This walk contradicts the assumption that a and b are
independent.

In a second case, we assume that no action trace t′ exists that satisfies
it(b) < it(a). This case is equivalent to the first case since a and b are only
substituted with another. Thus, the reasoning that t′ has to exist is similar to
the argumentation for t.

We see that every case contradicts its assumption. Thus, when a and b are
independent then t and t′ have to exists. ⊓⊔

We now discuss whether Algorithm 1 terminates. Algorithm 1 iterates over
actions and their relations. Since the number of action traces in T is finite, the
actions and the action relation are also finite. We conclude that Algorithm 1
terminates.

Assume that Algorithm 2 computes a causal tree CT for a DDAG G. Algo-
rithm 2 is sound when for any two actions a and b where a ≺ b holds in CT ,

10



a ≺ b holds in G, and the algorithm is complete when a ≺ b holds in G then
a ≺ b holds in CT . Remember that action b depends on a does not imply that
b directly depends on a, formally ¬∀a, b. a ≺ b ⇒ a ≺̂ b. In G, a ≺ b holds
when a walk a . . . b exists. In CT , the dependencies of actions are depicted by
ordered-and-gates. a ≺ b holds in CT when an ordered-and-gate gb with edges
(vx, gb) and (b, gb), where vx ≺ b, and a walk a...vxgb exist. Definition 7 ensures
that an action b depends on an action a in G iff b depends on a in CT .

Definition 7 (Correctness of Causal Tree Construction). Assume a
causal tree CT computed for a DDAG G with an action set A. CT is sound
when any two action a, b ∈ A that satisfy a ≺ b in CT also satisfy a ≺ b in G.
CT is complete when any two action a, b ∈ A that satisfy a ≺ b in G also satisfy
a ≺ b in CT . CT is correct when it is sound and complete.

Theorem 3 (Correctness of Algorithm 2). Algorithm 2 computes a correct
causal tree according to Definition 7.

Proof. Assume a causal tree CT computed by the Algorithm 2 for a DDAG G,
and two actions a and b in G. In a first case ⇒, we assume that a ≺ b holds in G
and will show that a ≺ b holds in CT , and in a second case ⇐, we assume that
a ≺ b holds in CT and will show that a ≺ b holds in G. In line 25 of Listing 2,
an ordered-and-gate gb is created for b when b directly depends on at least one
other action in G. Thus, when b depends on another action, gb exists and when
gb exists, b depends on another action. By the construction of gb, b is its most
right vertex and so for any walk a..vxgb in CT , vx ≺ b holds.

⇒ We assume that a ≺ b holds in G but not in CT . Because a ≺ b holds in G,
a walk a0...an with a0 = a and an = b in G has to exist. This walk witnesses
that every action ai with 0 < i ≤ n has a precondition. Thus, Algorithm 2
creates an ordered-and-gate for every ai with i ≥ 1(line 25 in Listing 2), and
for i > 1 either an edge (gi−1, gi) when ai has a single precondition (line 22),
or creates an and-gate g′i and the edges (gi−1, g

′

i) and (g′i, gi) (line 24). We
see a walk g1...gn has to exist in CT . Action a can also have a precondition
then similar to the other actions a walk ag0g1...gn exists in CT . Otherwise,
a has no precondition (line 19) and a walk ag1...gn exists. Since gn = gb
both walks ag0g1...gn and ag1...gn witness that a walk a..gb exists in CT .
We conclude that a ≺ b holds in CT . This contradicts the assumption that
a ≺ b does not hold in CT .

⇐ We assume that a ≺ b holds in CT . Thus, an ordered-and-gate gb with edge
(b, gb) and a walk a...gb exists in CT . We now construct a walk a...b in G.
In CT, an edge (a, g) is either an edge from a basic event to a gate or from
a gate to another gate. Hence, a is the only basic event in the walk a...gb
and we know that the other vertices g0, ..., gb are gates. Every gate gi in
g0...gb is an and-gate or an ordered-and-gate. By construction (line 25 and
17), every ordered-and-gate gi is created for an action ax in G and has an
edge (gi, ax) in CT . An and-gate gi is created (line 24) when ax has several
preconditions and depicts independence. We can remove every and-gate and

11



substitute every ordered-and-gate gi with its action ax in ag0...gb and result
in a walk aa1...b. Thus, we found a walk a...b in G that ensures a ≺ b in G.

Since both cases hold, we conclude that a ≺ b holds in G iff a ≺ b holds in CT .
⊓⊔

Algorithm 2 executes only finite loops over the actions in G in the function
createCausalTree and creates at most once a dependency tree for every action
in G. Since the actions in G are finite, Algorithm 2 will terminate.

Theorem 1 and Theorem 2 show that according to our correctness criteria,
Algorithm 1 computes a DDAG G with the dependencies contained in an action
trace set T . Theorem 3 shows that Algorithm 2 computes a causal tree CT
for G that depicts the action dependencies in G. In summary, a causal tree
CT computed by Algorithm 1 and Algorithm 2 correctly depicts the action
dependencies in T .

Complexity. In the following, we analyze the worst-case complexity of Algo-
rithm 1 and Algorithm 2.

The worst-case complexity of Algorithm 1 is determined by the size ∣T ∣ of
the action trace set T and the size ∣A∣ of its alphabet A. Algorithm 1 has several
computation steps of different complexity. First, Algorithm 1 iterates over every
action trace in T and every action in an action trace (line 3-5), which has a
complexity in O(∣A∣ ⋅ ∣T ∣). In the next computation step in line 8, a lookup is
executed for every tuple of two actions in A×A to create the dependency matrix
m. Thus, the complexity to create m is in O(∣A∣

2
). The worst-case-complexity

to compute the transitive closure is in O(∣A∣
3
) [OO73]. For every action in A,

irreflexivity is ensured in line 13 and this has a complexity in O(∣A∣). Next,
the transitive dependencies are removed in line 14. Therefore, the actions are
ordered by the number of their preconditions, which has a complexity in O(∣A∣

2
)

to count the number of preconditions, and a lookup happens for every triple of
three different actions in A ×A ×A which results in a complexity of O(∣A∣

3
). In

summary, the most complex computation steps are in O(∣A∣
3
+ ∣A∣ ⋅ ∣T ∣) and this

is the worst-case complexity of Algorithm 1.

Algorithm 2 first determines the independent actions in G in O(∣A∣
2
). Af-

terwards, function CreateTree is called for every action a in G to depict the
dependencies of a. Notice that a depends on at most ∣A∣−1 other actions. For ev-
ery a, CreateTree creates at most one and-gate (line 24), one ordered-and-gate
(line 25), and ∣A∣ + 1 edges. One edge starts in every action on which a depends
and one edge starts in every gate that is created. This computation to depict
the dependencies of a is executed at most once since the result is stored in the
map m. We see, CreateTree is called ∣A∣ times where every call is in O(∣A∣))

which results in an overall worst-case complexity in O(∣A∣
2
). In summary, the

worst-case-complexity of Algorithm 2 is in O(∣A∣
2
).

12



Model States Transitions #Causality Classes #Traces #Actions Time Memory

Railroad 92 231 1 3 4 4ms 0.605MB
Railroad gate 143 373 4 20 10 28ms 2.438MB

Airbag 3,456 14,257 5 252 9 28ms 2.622MB
TrainOdometer 4,032 19,624 3 5 5 34ms 2.590MB

FFU ECU 9,728 30,209 19 80 6 40ms 9.660MB
FFU Star 207,052 964,695 16 80 6 27ms 17.038MB

ASR 680,897 3,745,635 2 61,920 29 4ms 14.864MB

Table 1. Quantitative experimental results.

4 Case Study

We implemented Algorithm 1 and Algorithm 2 in the tool QuantUM. We qualita-
tively evaluate the algorithms in that we assess whether they can jointly analyze
the strict partial order in a given set of action traces. In the quantitative as-
sessment, we measure the computing resources needed by the algorithms when
analyzing a set of models. All experiments were performed on a computer with
an i7-6700K CPU (4.00GHz), 60GB of RAM and a Linux operation system.

Qualitative Results and Interpretation. The resulting fault tree of the running
example is given in Figure 1(c). In [KL19], we analyzed a slightly different model
of the railroad crossing example which includes the functionality of a gate. With-
out the use of the algorithms proposed in the current paper, QuantUM computes
the fault tree in Figure 2 in [KL19] that does not depict the order of the ac-
tions. When using the proposed algorithms, QuantUM computes the fault tree
in Figure 3. It depicts the order of the actions in a causality class as we defined
it above. Both fault trees contain the causality classes Class0 to Class3. In both
fault trees, all actions of Class0 are contained in Class2 and all actions of Class1
are contained in Class3. It is not clear from the fault tree in [KL19] why Class2
and Class3 contain minimal counterexamples which is a necessary condition for
a cause [KL19]. In the fault tree in Figure 3, we see that in Class0 and Class2
the gate has a failure caused by event Gate fail. In Class0, the gate is stuck open
and in Class2 the gate first closes and then opens in error. Thus, both times the
train and the car can be in the crossing at the same time, and therefore incur an
accident. In the fault tree in Figure 3, we see the difference between Class0 and
Class2 in the order of the actions. This fault tree also depicts the difference be-
tween Class1 and Class3. In Class1, the car crosses the railroad and meanwhile,
the gate closes and the train enters the crossing. In Class3, two trains enter the
crossing subsequently, but the signal gate open to open the gate is late. Thus,
the gate opens when the second train is already in the crossing. The car can then
enter, leading to the hazard. In Class1 and Class3 the system behaves without a
failure of the system but the order of the actions causes the hazard. We conclude
that the ordering of the actions helps to understand causes for the occurrence
of the hazards.

Quantitative Results and Interpretation We now want to analyze the perfor-
mance of the causal tree computation by Algorithm 1 and Algorithm 2. There-

13



Fig. 2. Time to Compute a Causal Tree in Relation to #Actions in a Causality Class.

fore, we applied the algorithms to several models of different size, in terms of the
number of states and transitions that they encompass, taken from [Lei15]. The
quantitative results are given in Table 1. The complexity of a model is given in
terms of the number of its states and transitions. For every model, we indicate
the number of causality classes and the maximal number of traces and actions in
one of the causality classes. The columns Time and Memory indicate the max-
imal computation time and memory consumption that the analysis required in
order to compute a fault tree of a model including the action order as per the
proposed algorithms.

For every model, QuantUM produces a fault tree where the causality classes
are depicted with the strict partial order of the actions. We had a detailed look
at all the fault trees and according to this manual inspection, every fault tree
depicts the strict partial orders of its causality classes.

The diagram in Figure 2 gives the time in microseconds (µs) that is nec-
essary to compute a causal tree for every causality class in every model. For
a model with several causality classes, the diagram depicts several data-points.
The worst-case complexity to compute a causality class is the combined worst-
case complexity of Algorithm 1 and Algorithm 2 and is in O(∣A∣

3
). We let IBM

SPSS [IBM20] analyzed the cubic relation between the time to compute a causal-
ity class and the number of actions and IBM SPSS automatically fits the function
31.583 + 13.583x − 1.057x2 + 0.057x3 which is depicted as a black in line in the
diagram. The distance of the points to the function can be measured by the
coefficient of determination R2 which is the quadrate of the correlation. The
value range of R2 is [0,1] where R2

= 1 would be a perfect fit. The function
in the diagram has a R2

= 0.985. This function fits nearly perfectly to the data

14



points, which supports that the runtime of the proposed order analysis has a
cubic complexity.

While the time to compute a causal tree is given in Figure 2 in microseconds,
the overall time to compute a fault tree is in Table 1 in the area of milliseconds.
We wondered about this gap of factor 100 and detected that Java, which was
used for the implementation of QuantUM and the proposed algorithms, has an
offset time in the area of milliseconds to load and create a class when the class
is instantiated the first time. This implies that the overall computation times
given in Table 1 consists primarily of the time for loading classes and not of the
time for computing the causal trees.

Our proposed algorithms computed the strict partial orders within at most
40 milliseconds and at most 17.038MB of memory. This seems reasonable and is
acceptable for QuantUM since a causality class in the analyzed models contains
up to 61,920 traces of 29 actions.

5 Conclusion

In this work, we present an algorithm that computes a strict partial order of the
actions occurring in an action traces set and represents this strict partial order as
a fault tree. We implemented the algorithm in the tool QuantUM and computed
fault trees for several models. We showed that a representation of the action order
can be computed using a reasonable amount of computing resources, and that
the computed results provide helpful insight into the causes for a reachability
property violation.

In future research, we plan to further explore the considerations in [Wei19]
and to integrate the rewrite-logic based approach pursued in that work with the
algorithm described here. Another direction of research is to extend causality
checking as well as the computation of event orders in causality classes to the
violation of general ω−regular temporal properties.

15



Fig. 3. Fault Tree of Railroad Crossing with Gate with Action Order

16



References

BK08. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

CLF05. Gary Chartrand and Linda Lesniak-Foster. Graphs & digraphs. Chapman and
Hall/CRC, Boca Raton [u.a.], 4. edition, 2005.

DR95. Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

ES13. David Eppstein and Joseph A. Simons. Confluent hasse diagrams. J. Graph
Algorithms Appl., 17(7):689–710, 2013.

Hol04. Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

IBM20. IBM Corp. IBM SPSS Statistics for Windows, Version 27, 2020. https:

//www.ibm.com/analytics/spss-statistics-software.
KL19. Martin Kölbl and Stefan Leue. An efficient algorithm for computing causal

trace sets in causality checking. In ATVA, volume 11781 of Lecture Notes in
Computer Science, pages 171–186. Springer, 2019.

Lam78. Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

Lei15. Florian Leitner-Fischer. Causality Checking of Safety-Critical Software and
Systems. PhD thesis, University of Konstanz, Germany, 2015.

Lew01. David Lewis. Counterfactuals. Wiley-Blackwell, 2001.
LFL11. Florian Leitner-Fischer and Stefan Leue. Quantum: Quantitative safety anal-

ysis of uml models. In Mieke Massink and Gethin Norman, editors, QAPL,
volume 57 of EPTCS, pages 16–30, 2011.

LL13. Florian Leitner-Fischer and Stefan Leue. Causality checking for complex sys-
tem models. In VMCAI, volume 7737 of Lecture Notes in Computer Science,
pages 248–267. Springer, 2013.

Obj17. Object Management Group. OMG Systems Modeling Language, Specification
1.5, 2017. http://www.omg.org/spec/SysML.

OO73. Patrick E. O’Neil and Elizabeth J. O’Neil. A fast expected time algorithm for
boolean matrix multiplication and transitive closure. Inf. Control., 22(2):132–
138, 1973.

SRH18. Bernhard Steffen, Oliver Rüthing, and Michael Huth. Mathematical Foun-
dations of Advanced Informatics, Volume 1: Inductive Approaches. Springer,
2018.

Wei19. Jannis Weiser. Derivation of a minimal representation of incomplete partial
orders from event sequences. Master’s thesis, University of Konstanz, 2019.

17

https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
http://www.omg.org/spec/SysML

	An Algorithm to Compute a Strict Partial Ordering of Actions in Action Traces
	Motivation
	Preliminaries
	Algorithm to Analyze Action Orders in Action Traces
	Case Study
	Conclusion


