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Abstract. When a real-time model checker detects the violation of a
timed reachability property for a given Timed Automata model it returns
a counterexample, here referred to as a Timed Diagnostic Trace (TDT).
In this paper, we present a TDT analysis that computes actual dynamic
causes in terms of delay ranges that can be considered causal for the
violation of the property. The determination of actual causes can help in
system analysis as well as design space exploration. The causal analysis is
based on counterfactual reasoning and encoded in linear real arithmetic.
We apply an implementation of the analysis in the tool CaTiRA to a
number of Timed Automata models taken from the literature.

1 Introduction

The analysis of causes for the violation of a desired property has various ap-
plications in the design of systems. We are particularly interested in developing
notions of causality and related analyses for models describing system compu-
tations. We have defined Causality Checking in [14] as a means to compute
actual causes [10] for the violation of reachability properties, relying on a coun-
terfactual [15] notion of causality inspired by the seminal works of Halpern and
Pearl [10].

The actual causes computed in this work rely on choices made during the
dynamic execution of the model, for instance, a non-deterministically chosen
interleaving of concurrent events during the execution of the model, and we
refer to this type of a cause as dynamic actual causes. In other work, we have
considered the syntactic repair of timed automata models based on an analysis
of timed diagnostic traces obtained in real-time model checking [12]. In that
work, syntactic features of the model are considered to be actual causes for the
violation of timed reachability properties, and we refer to this type of causes
as static actual causes. Both analyses are based on the counterfactual argument
and compare the alternative worlds that differ in the choice of delays or features
to find minimal sets of choices that lead to the effect. The analysis of both
static and dynamic actual causes can help in identifying possible modifications
to design-time models, establishing safety cases for those types of models, or
helping in forensic system failure analysis.



(a) TA client (b) TA db (c) TDT illustrated using a time-
interval annotated sequence diagram

Fig. 1. Network of Timed Automata - Running Example

Real-time model checking [3] is a well-established design space exploration
technique aiming at analyzing the real-time behavior of a system and its com-
pliance with non-functional real-time requirements. A commonly used model
of computation for real-time systems is that of Timed Automata [3]. Timed
Automata (TA) describe the real-time behavior of a system in terms of states,
labeled with invariant conditions referring to bounds on system clocks, and tran-
sition guards, labeled with clock constraints on the enabledness of transitions.
Properties of Timed Automata are typically expressed in timed CTL [3]. In this
paper, we restrict ourselves to timed reachability properties [3].

It is the objective of this paper to propose the first steps towards a framework
of dynamic actual causality in the analysis of timed reachability properties of
Timed Automata. We will focus on the question of whether the dynamic timing
of the model during system execution can be considered an actual cause, based
on a counterfactual argument, of the violation of a timed reachability property.
In Timed Automata, the time that the automaton spends in a certain loca-
tion can be non-deterministically chosen, as long as it complies with the timing
constraints specified in the model. The question is then whether there are tim-
ing choices that can be considered causal for the violation of a desired timed
reachability property.

We now illustrate the idea of our analysis on the time automata of a database
request represented in Figure 1. In the model, a client sends a request req to a
database db and expects to receive a response ser in the location serReceiving

in less than 4 time units. A clock x is reset with sending the request and measures
the time until the response is received with leaving location serReceiving. The
timed model checker UPPAAL [2] finds a property violation in this model and
returns a timed sequence of transitions leading to the property violation in the
form of a TDT. A TDT is an alternating sequence of delay transition δi, which
describe the time that a system remains in state i, and action transitions Θi. A
TDT for the example in Figure 1 is δ0, θ0 . . . δ3, θ3, δ4 with the action transitions
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θ0 = ((initial, reqAwaiting), ∅, τ, ∅, (reqCreate, reqAwaiting))

θ1 = ((reqCreate, reqAwaiting), ∅, τ, {x}, (reqSent, reqReceived))

θ2 = ((reqSent, reqReceived), {x ≥ 1}, τ, {y}, (reqSent, reqProc.))

θ3 = ((reqSent, reqProc.), {y ≥ 1}, τ, {z}, (serReceiving, reqAwait.)).

A TDT is symbolic in that it describes a set of executions where the time de-
lays before taking the next transition are represented by symbolic variables and
constrained by symbolic constraints. The TDT of the database example and the
possible time delays are depicted by the sequence diagram in Figure 1(c). For
the remainder of the paper, we use this TDT as a running example. A concrete
assignment of the delay values δ0...δ4 is a realization, and represents the real-
time characteristics of a concrete execution of the TDT S. A realization may, or
may not, violate the considered property. An assignment in which the minimal
possible values are assigned to all δj , in other words, the realization δ0 = 0,
δ1 = 0, δ2 = 1, δ3 = 1 and δ4 = 0, leads to a trace that does not violate the
considered property. Notice that the values of δ1 and δ3 are fixed. The values
of δ0, δ2 and δ4 in a concrete execution may be determined by environmental
effects, or by non-deterministic internal decisions of the two involved subsys-
tems, for instance as a result of task scheduling or memory management. If we
consider an alternate execution in which δ4 = 3, while all other delay values
remain as above, then this execution violates the considered property. Some as-
signments of values to the delays satisfy the property, while others violate the
property. This indicates that the cause for the property violation is to be found
in the value assignment of certain delays. We are interested in characterizing
value assignments to the δis that inevitably lead to a property violation using
linear constraints. We base the analysis on counterfactual causal reasoning [9]
and call such constraints causal ranges. The causal ranges for the example TDT
are 2 ≤ δ4 ≤ 3 and 3 ≤ δ2 + δ4 ≤ 5. It is the objective of this paper to present
automated algorithmic ways to compute such causal ranges.

Related Work. Causal reasoning for real-time systems is considered in [7,19] and
for reactive systems in [6]. In these three approaches, a system consists of several
components and the analysis searches for a causal set of faulty components,
whereas we are interested in constraints on a set of causal delays. There is
research on system analysis based on counterfactual causal reasoning [10], for
instance, in [1, 8, 10, 13]. We are not aware of any work to compute causal time
delays for a property violation in a TA.

Structure of the Paper. We exemplify our idea of timed causes in Section 2 and
discuss in Section 3 the foundations of our work. In Section 4, we present a
formal framework of dynamic trace analysis for causal delays and causal ranges,
and present an algorithm to compute causal ranges in Section 5. We evaluate
an implementation of the algorithm in the tool CaTiRA in Section 6 by com-
puting causal ranges for several Timed Automata models. In Section 7, we draw
conclusions and suggest future developments.
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2 A Motivating Example

We motivate our definition of a cause for delays and exemplify our proposed
causal analysis. A TDT contains all information regarding possible assignments
of the delay variables, in particular the constraints determining possible value
ranges for these assignments. As discussed above, these value assignments in a
concretization of a TDT determine whether a property is violated.

In keeping with standard practice in engineering science, we will use a coun-
terfactual argument [15] to establish when certain assignments of delay variables
constitute a cause for a property violation. This argument says that one phe-
nomenon is a cause of another phenomenon, called effect, if and only if

I. whenever the cause applies, the effect is observed (regularity argument),
II. when the cause does not apply, the effect will not be observed either (coun-

terfactual argument), and
III. no true subset of the cause ensures I. and II (minimality argument).

In order to establish a causal relation between an assignment of values to the
delay variables and the violation of a temporal reachability property, we develop
criteria for what we understand to be a cause. For a TA, a dynamic actual cause
is a constraint on delay assignments where every assignment that satisfies the
cause violates a given property (condition I). Our interpretation of II is that
several independent causes can result in a property violation but at least one
assignment exists that is not violating the property. III is a minimality argument
and removes from a cause any constraint that has no influence on whether an
assignment violates the property or not.

Applying this reasoning to the running example from Figure 1, choosing
either 2 ≤ δ4 ≤ 3 or 3 ≤ δ2+δ4 ≤ 5, with arbitrary but admissible values assigned
to all other δjs, means that the desired property is violated. Also a different
choice of the delay variables value not according to these two expression exists
where the property violation cannot be observed. We conclude that, following the
counterfactual argument, these two constraint expressions are to be considered
independent causes for the property violation.

We now illustrate the computation of a cause in the form of a causal range for
the running example. For a range expression, to be causal, the values for all δjs
in this range have to violate the considered property (I.). Furthermore, it needs
to satisfy the counterfactual argument (II.) which means that there is a different
assignment of values to at least one of the δjs such that this assignment violates
the range constraint and does not lead to a property violation. This means that
in order to check whether II. is satisfied overall we can test II. on every δj in
isolation. To illustrate this point, consider the realization δ0 = 1, δ1 = 0, δ2 = 1.5,
δ3 = 1, and δ4 = 1.5. The realization also violates the considered property with
any other value for δ0, while a decrease of the assigned values of δ2 or δ4 results
in a realization that satisfies the property. The assignment of δ0 has no impact on
the property since its satisfaction solely depends on the values of δ2, δ3 and δ4.
The values of δ1 and δ3 are fixed and, hence, they have no admissible alternative
assignment. We conclude that only δ2 and δ4 have the potential to prevent the
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violation of the property and, hence, satisfy II. We, therefore, call them causal
delay variables. Next, we determine the range in which δ2 and δ4 have realizations
that violate the considered property.

– A realization with an assignment of δ4 in the range [0, 1[ never violates the
property. On the other hand, any realization with an assignment of δ4 in the
range [2, 3] leads to a violation. For every of these realizations, a realization
exists that is identical, except for the value of δ4, that does not violate the
property. This means that I. and II. are satisfied and we conclude that the
constraint 2 ≤ δ4 ≤ 3 is a causal range.

– For any realization with an assignment of δ4 in the range [1, 2[, the violation
of the property depends on the assignment of the delay variable δ2. Hence, we
analyze which values can be assigned to δ2 so that this assignment is admis-
sible according to the constraints in the TDT. We then detect that for any
admissible assignment of δ2 in our running example, it conversely depends
on the assignment of δ4 whether a realization violates the property. Thus,
δ2 and δ4 need to jointly be considered when determining causal ranges. In
order to specify the interdependence of δ2 and δ4, we consider their sum. We,
hence, analyze the range of assigned values for which the sum of δ2 and δ4
violates the property. We see that any realization satisfying 3 ≤ δ2 + δ4 ≤ 5
violates the property and a realization not in this range exists that satisfies
the property. This means that I. and II. are satisfied and 3 ≤ δ2 + δ4 ≤ 5 is
a second causal range.

In the sequel of this paper, we will present an algorithmic way of determining
the constraints describing causal ranges.

3 Preliminaries

The Timed Automaton model that we use to represent models of timed systems
is adapted from [3]. Given a set of clocks C, we denote by B(C) the finite set of
all clock constraints over C, which are conjunctions of atomic clock constraints
of the form c ∼ n, where c ∈ C, ∼∈ {<,≤,=,≥, >} and n ∈ N+

0 .
A Timed Automaton (TA) T is a tuple T = (L, l0, C,Σ,Θ, I) where L is a

finite set of locations, l0 ∈ L is an initial location, C is a finite set of clocks,
Σ is a set of action labels, Θ ⊆ L × B(C) × Σ × 2C × L denotes the transition
relation, and I : L→ B(C) denotes a labeling of locations with clock constraints,
referred to as location invariants. For θ ∈ Θ with θ = (l, g, a, r, l′), we refer to
g as the guard of θ, to a as the action label and to r as its clock resets. An
urgent location is a location that has to be left again without any delay in
time [4]. Urgent locations are syntactic sugar of Uppaal and can be expressed
as an additional clock p which is reset with entering the location and a location
invariant p = 0.

The operational semantics of TAs [3] is given via the definition of action and
delay transitions. Action transitions take the TA from a location l to a location
l′, execute an action from Σ, reset a subset of the clocks in C while the clock
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assignments comply with the clock constraints on transition guards and location
invariants. Delay transitions only advance the value of all clocks in C by a non-
deterministically chosen delay satisfying the invariant condition in the location
in which they occur.

The type of properties that we are interested in are time bounded reachability
properties, i.e., properties that state that a certain state will (or will not) be
reached while a certain clock is satisfying a given bound. When a real-time model
checker such as UPPAAL is noticing a violation of such a property, it produces
a TDT which we represent symbolically as a symbolic timed trace (STT) [12]. A
STT is a sequence of actions S = θ0, . . . , θn−1. A realization of S is a sequence of

delay values δ0, . . . , δn such that there exist states s0, . . . , sn, sn+1 with si
δi−→ θi−→

si+1 for all i ∈ [0, n) and sn
δn−→ sn+1.

We encode the symbolic semantics of the TDT in linear real arithmetic as
a timed diagnostic trace constraint system (TDTCS) [12]. A TDTCS T encodes
every transition θj = (lj , gj , a, rj , lj+1) in the TDT and is a conjunction of the
following constraints:

C0 ≡
∧
c∈C

c0 = 0 (clock initialization)

A ≡
∧

j∈[0,n]

δj ≥ 0 (time advancement)

R ≡
∧
c∈rj ,

cj+1 = 0 (clock resets)

D ≡
∧
c/∈rj

cj+1 = cj + δj (sojourn time)

I ≡
∧

(c∼β)∈I(lj)

c ∼ β ∧ c+ δj ∼ β (location invariants)

G ≡
∧

(c∼β)∈gj

c+ δj ∼ β (transition guards)

L ≡ @ln ∧
∧
l 6=ln

¬@l (location predicates)

A model satisfies the TDTCS iff the sequence of the delay values δ0, ..., δn in the
model is a realization of the STT [12]. We denote a realization by T [δ0...δn].
A TDTCS is convex since it is a conjunction of constraints [17]. The clock
variables are syntactic sugar and can be removed from the TDTCS by replacing
all occurrences of a clock variable cj with Σj′≤i≤jδi where j′ = 0 or the index of
the last transition with a reset of clock c before cj . A partial realization δ = δ0...δj
of T with 0 ≤ j ≤ n is a realization of a TDTCS Tj , where Tj encodes only the
first j transitions of a given TDT. A suffix blocking partial realization δ′0...δ

′
j is

a partial realization that satisfies Tj [δ′0...δ′j ] while T [δ′0...δ
′
j ] is unsatisfiable.

We also logically encode a given timed safety property Π as a property
constraint system φ. The original property Π contains location constraints and
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time constraints for a clock set C. A location predicate @l ∈ L is satisfied when
the Timed Automaton is in location l. Let φ ≡ Π[cn+1/c] where Π[cn+1/c] is
obtained from property Π by substituting the location constraints by location
predicates and all occurrences of clocks c ∈ C by cn+1. This substitution replaces
a clock c referred to in property Π by the variable referring to the clock cn+1 in
the final location n of the TDT. The logical encoding of the property in Figure 1
is ¬@client.serReceiving ∨ x5 < 4.

4 Formalizations to Compute Causal Ranges

We first introduce the notion of a delay set, which is a subset of the indices of
the delay variables δ0, . . . , δn occurring in the STT. For instance, the set {δ2, δ4}
is represented by the delay set {2, 4}. The aim of this section is to define a causal
range as a range of values for a given delay set D where any value satisfies the
regularity argument (I.), the counterfactual argument (II.) and the minimality
argument (III.).

Before we define a causal range, we need to determine a delay set D. Any
delay variable δj in D shall be causal, thus, a realization δ exists where the value
assignment of δj matters whether δ violates or satisfies the property. In case δ
exists, we call δj a causal delay variable. Whether δ satisfies or violates the prop-
erty can interdepend on the value assignment of several causal delay variables
as we have seen before. In this case, a realization δ exists such that a different
value assignment of any δj in D can results in a realization that satisfies the
property. We formally define the existence of δ for a delay set D in Definition 1.
CV1 in Definition 1 ensures that a realization δ exists for a value v where the
sum of the delay assignments with an index in D is equivalent to v =

∑
j∈D δj .

This δ violates a given property φ and this satisfies the regularity argument (I.).
CV2 ensures II. by requiring the existence of an alternate assignment for every
delay variable with an index in D, resulting in a realization δ′ that does not vio-
late the property. δ′ can also be a suffix blocking partial realization δ0 . . . δj−1δ

′
j

which cannot be completed to a full realization in a way that would violate the
property. For instance, consider a TDT with a guard on a transition that leads
to an immediate property violation and where the guard is enabled for an as-
signment δj < 2 and disabled for an assignment δj ≥ 2. Thus, assigning δj = 2
prevents the property violation to be reachable. In conclusion, a causal value
satisfies I. and II. for a realization δ, and witnesses that any δj in D is a causal
delay variable.

Definition 1 (Causal Value). Assume a TDTCS T for a TDT of length n, a
delay set D of T and a property constraint system φ. A causal value is a value v
in a delay set constraint v =

∑
j∈D δj where δj ∈ R+

0 that satisfies:

CV1 There exists a realization δ = δ0...δn with delay values δj ∈ R+
0 for 0 ≤

j ≤ n that satisfies v =
∑
j∈D δj and violates φ.

CV2 For every delay value δj with j ∈ D, a different delay value δ′j with δj 6= δ′j
exists that either δ0 . . . δj−1δ

′
j is a suffix blocking partial realization or

δ0 . . . δj−1δ
′
jδj+1 . . . δn satisfies T and φ.
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In the TDT in the example from Figure 1(c), a causal value of the delay set {4}
is every value in the range [1, 3], of the delay set {2} every value in the range
[1, 2] and of the delay set {2, 4} is every value in the range [3, 4].

Not all values from a causal range are causal values. For instance, in the
TDT in Figure 1(c), the value v = 5 is part of the causal range 3 ≤ δ2 + δ4 ≤ 5,
and has a realization with the assignments δ2 = 2 and δ4 = 3 that violates
the property φ, thus satisfying conditions CV1 and I. CV2 requires that an
alternative assignment for each of δ2 and δ4 exists that prevents the property
violation. Such an assignment does not exist for δ2 but for δ4 with the assignment
δ4 = 0. Thus, v = 5 is not a causal value since it violates CV2, even though it
satisfies II. The purpose of a causal value is different from a causal range. A causal
value ensures that the assignment of every delay variable in D influences for at
least one realization whether the realization violates the property. In difference,
a causal range is a cause and ensures that for every realization that satisfies the
cause a different assignment exists that satisfies the property.

Next, we define a causal range for a delay set D in Definition 2. A causal range
is a constraint of the form l ∼

∑
j∈D δj ∼ u with a lower bound l and an upper

bound u. Every value v in a causal range has to satisfy the causal arguments I
and II. Condition CR1 in Definition 2 claims that every value v in the causal
range has a realization with v =

∑
j∈D δj . CR2 ensures the regularity argument

I that any realization which satisfies the causal range violates the property.
Also, a partial realization δ0 . . . δm can satisfy the causal range constraints when
all delays in D are assigned a value m ≥ max(D) where max(D) returns the
maximal value of all elements in D. In order to satisfy causal condition I, this
partial realization is not allowed to be a suffix blocking partial realization that
prevents the property violation. CR2 refers to all partial realizations. Notice
that in particular a partial realization with m = n satisfies T and violates the
property φ. We conclude that any realization that satisfies the causal range
constraint violates the property, and CR2 actually ensures I. Condition CR3
ensures that a causal value vc in the range exists that is not a causal value for
a true subset of D. We interpret the causal minimality argument III such that
we require the number of delay variables that are part of a causal range to be
minimal. When vc is already part of a causal range r′ for a true subset of the
variables in D, then we conclude that r′ is a more concise cause for the violation
of property φ, thus satisfying III. The existence of vc, as required by CR3, will
be used in the proof of Theorem 1. Condition CR4 claims that the causal range
r is maximal in the sense that there is no truly larger range encompassing r
which satisfies CR1 to CR3. We include this constraint on the assumption that
an analysis result consisting of fewer causal ranges is easier to interpret than one
with more causal ranges.

Definition 2 (Causal Range). Assume a TDTCS T for a TDT of length n
and a property constraint system φ. A causal range r is a constraint for a delay
set D of the form l ∼

∑
j∈D δj ∼ u and ∼∈ {<,≤}, where l, u ∈ R≥0, delay

values δj ∈ R+
0 and the following conditions hold:

CR1 Every value v ∈ [l, u] has a realization δ0 . . . δn with v =
∑
j∈D δj.
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CR2 For every partial realization δ0 . . . δm where max(D) ≤ m ≤ n and the
value v =

∑
j∈D δj is in [l, u], there exists a realization δ0 . . . δm . . . δn that

violates φ.
CR3 At least one value vc in the causal range is a causal value of D, and vc is

not a causal value for a true subset of D.
CR4 The range r is maximal, that means any lower bound l′ < l and any higher

bound u′ > u will not satisfy CR1 to CR3.

As an example, the constraint 2 ≤ δ4 ≤ 3 and the constraint 3 ≤ δ2 + δ4 ≤ 5
satisfy the definition of a causal range for the example in Figure 1(c).

A causal range is only a cause when it satisfies the counterfactual argument
(II.) and is ensured by Theorem 1. CR2 ensures that every realization r with
value v violates a given property φ. The counterfactual argument is satisfied for
v when for every r a different value assignment only of the delay variables in D
exists such that the resulting realization satisfies φ.

Theorem 1. For every value in a causal range, the counterfactual argument II.
is satisfied.

Proof. Assume a causal range r with a delay set D that satisfies conditions CR1
to CR4 in Definition 2 and an arbitrary value v in r. Condition CR3 ensures that
a realization δ′ for a causal value exists that satisfies the property. We now prove
that a realization δ with value v exists for which δ′ witnesses II. δ′ has a value v′

and witnesses that an assignment of the delay variables with index in D exists
where the sum is v′. Condition CR1 ensures that a realization exists where the
sum of the delay assignment with index in D is v. Since a delay assignment for
v′ and v exists and the TDTCS is convex, an assignment of the delay variables
with index in D exists for every value between v′ and v. II. allows changing the
assignment of delays with an index in D to another admissible assignment. We
now either continuously increase or continuously decrease the assignment of a
delay with an index in D for δ′ until we arrive at a realization δ that has value
v. δ has a value v in the causal range. Since condition CR2 holds, δ violates the
property. In summary, a δ with the value v that violates the property φ has to
exist, and a different assignment of delays with an index in D can result in δ′.
This proves II. ut

We have argued above that CR2 ensures the regularity argument I. and CR3
ensures the minimality argument III. In combination with Theorem 1, we con-
clude that a causal range represents a cause for the property violation according
to the definition in Section 2.
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5 Causal Range Algorithm

Fig. 2. Control Flow Diagram of
Causal Range Algorithm

We present the Causal Range Algorithm to
compute a set of causal ranges for a given
TDT T and a given property φ. The input
of the algorithm is a TDTCS T derived from
T and a property constraint φ created for the
considered property. The output of the algo-
rithm is a set of causal ranges, where any
causal range is characterized by a real valued
lower bound, a real valued upper bound and
a delay set taken from the power set of the
TDT delay variables. The algorithm performs
the search for causal ranges by solving three
satisfiability problems. These problems are de-
picted in the control flow diagram given in Figure 2. By solving the problem P1
the algorithm starts to iteratively compute the causal delay variables for T . For
every computed causal delay variable it creates a delay set. Next, the algorithm
computes for every delay set D a causal range by solving the problem P2. After
the range computation of a delay set D, the algorithm solves problem P3 to
check whether another causal delay variable δk depends on D. In case δk exists,
the algorithm found a new delay set D′ = D ∪ {k}. The algorithm solves P2
and P3 for every delay set. We encode the problems P1 to P3 in linear real
arithmetic as follows:

Problem P1: Existence of a Causal Value. The algorithm first checks for every
delay variable δj in the TDT whether it is a causal delay variable. A delay
variable δj is causal when a causal value for D = {δj} exists. We encode the
conditions that CV1 and CV2 in Definition 1 specify for a causal value in the
constraint Cj (1). The constraint ensures that a realization δ = δ0, . . . , δn with
δj and value v = δj exists. δ is a realization when it satisfies T , and has to
violate φ in order to satisfy CV1 in Definition 1. The constraint Cj also ensures
that CV2 is satisfied. It is satisfiable when an assignment δ′j that is different
from δj exists, such that either δ′ = δ0 . . . δj−1δ

′
j is a suffix blocking partial

realization, or δ[δj/δ
′
j ] is a realization that satisfies φ. When δ′ is a suffix blocking

partial realization, it satisfies T ∗ (2). T ∗ ensures that δ′ satisfies the constraint
Tj for a partial realization and no assignment of δ′j+1 to δ′n exists such that
δ0 . . . δj−1δ

′
jδ
′
j+1, . . . , δ

′
n is a realization that satisfies T .

Cj ≡ (∃δ0, . . . , δn, δ′j)(T ∧ ¬φ ∧ (T ∗[δ0 . . . δj−1δ′j ] ∨ (T [δj/δ
′
j ] ∧ φ[δj/δ

′
j ]))) (1)

T ∗[δ0 . . . δj−1δ′j ] ≡ Tj [δ0 . . . δj−1δ′j ]∧¬(∃δ′j+1, . . . δ
′
n)(T [δ0 . . . δj−1δ

′
j . . . δ

′
n]) (2)

By iteratively determining the satisfiability of the constraint Cj for all delay
variables δj occurring in T , the algorithm checks whether these δjs actually are
causal delay variables. In the implementation of the algorithm, we combine all
Cj into one linear constraint system C of the form

∧
0≤j≤n ¬cj ∨ Cj in which
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we add a fresh Boolean variable cj for every occurring δj . These cj are defined
such that if some Cj is unsatisfiable, then ¬cj holds. We use a MaxSMT solver
in order to determine the minimum number of cj = true assertions that need
to be violated in order to render C satisfiable. A delay variable δj is causal if
and only if cj is true in the solution to the MaxSMT problem. Subsequently,
for every computed causal delay variable δj the algorithm adds a delay set {δj}
to a first-in-first-out queue X. This queue stores every computed delay set and
will be handed over to the algorithm addressing problem P2, which computes a
causal range for every element of X. For the example in Figure 1(c), the queue
passed on to P2 is X = {{4}, {2}}.

Problem P2: Existence of a Causal Range. The algorithm solving problem P2
removes a delay set D from queue X and computes the causal ranges of D.
We encode the computation of a causal range as a satisfiability problem. We
formalize the conditions CR1 to CR3 in Definition 2 as individual constraints
R1 to R3. The satisfiability of this conjunction yields an answer to problem
P2 and computes causal ranges if they exist. CR1 claims that every value t in
the causal range [l, u] has a realization. If Rb1 is satisfiable, then there exists a
realization of T with a value b =

∑
j∈D δj . We now check whether Rb1[b/l] and

Rb1[b/u] are satisfiable, respectively. If both are satisfiable, due to the convexity
of T we can conclude that Rb1[b/t] is satisfiable for any value t ∈ [l, u].

Rb1 ≡ (∃δ0 . . . δn)(T ∧ b =
∑

j∈D
δj) (3)

CR2 claims that for every partial realization δ0 . . . δj which satisfy l ≤
∑
j∈D δj ≤

u there exists δ0 . . . δjδj+1 . . . δn that violates the property φ. We formalize CR2
as follows:

R2 ≡
∧

max(D)≤j≤n
(∀δ0 . . . δj)(Tj [δ0 . . . δj ] ∧ (l ≤

∑
j∈D

δj ≤ u)

⇒ (∃δj+1 . . . δn)(T ∧ ¬φ))
(4)

We project a realization δ = δ0 . . . δn to a single value v with the formula v =∑
j∈D δj . If v ∈ [l, u] we say that δ is contained in [l, u]. Constraint R3 (5)

ensures that a realization δ contained in [l, u] exists and δ is not contained in
any causal range [li, ui] of a subset Di of D. When this δ exists, CR3 is fulfilled.
Notice that the subset Di is not necessarily a true subset of D and therefore
ignores previously found causal ranges contained in D. If for D further causal
ranges exist then these causal ranges will also be computed by the algorithm
solving P2.

R3 ≡ ∃δ0 . . . δn.T ∧ l ≤
∑
j∈D

δj ≤ u ∧
∧

Di⊆D

(
∑
i∈Di

δi < li) ∨ (ui <
∑
i∈Di

δi) (5)

A satisfying assignment for the conjunction of Rl1, Ru1 , R2, and R3 contains a
causal range [l, u] which is not necessarily maximal. The algorithm takes advan-
tage of the optimization possibilities of the SMT solver Z3 [16] to minimize l
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and to maximize u in the conjunction in order to ensure a maximal range (c.f.
CR4). In the example of Figure 1(c) for the delay set D = {4}, the algorithm
computes the causal range 2 ≤ δ4 ≤ 3. Since no further causal range is found,
then the algorithm proceeds with extending D by solving problem P3.

Problem P3: Existence of a Dependent Delay. A delay variable δk is dependent
on a delay set D when the delay set D′ = D ∪ {k} has a causal value. The
algorithm solving P3 extends a delay set D with the index of a delay variable δk
depending on D. We encode the question whether a causal value for D′ exists
as the problem whether constraint Ck (6) is satisfiable. The satisfiability of Ck
yields an answer to problem P3. A satisfying model then yields the dependent
delays δk, if any exist. Ck ensures that there exists a realization δ = δ0 . . . δn
with value v that violates the property φ. For every index j in the delay set D′

a realization exists that differs from δ only in the assignment of δj and does not
violate φ, thus satisfying CV2 in Definition 1.

Ck ≡ ∃δ0, . . . , δn.T ∧ ¬φ ∧
∧
j∈D′

∃δ′j .T ∗[δ0 . . . δj−1δ′j ] ∨ (T [δj/δ
′
j ] ∧ φ[δj/δ

′
j ]) (6)

For every causal delay variable δk with k 6∈ D for which Ck is satisfiable, the
algorithm adds D′ = D ∪ {k} to the queue X. To illustrate this step, for the
TDT in Figure 1(c) and the delay set D = {4}, Ck is satisfiable for k = 2 and
the queue X = {{2}} is extended to X = {{2}, {4, 2}}. The algorithm proceeds
with removing the next delay set from X, solving problems P2 and P3 for this
delay set, and terminates when X is empty.

Correctness of the Algorithm. The theorems below show that the algorithm to
compute causal ranges is correct with respect to soundness and completeness.

Theorem 2 (Soundness of Causal Range Computation). Every causal
range returned by the Causal Range Algorithm for a TDTCS T and a delay set
D satisfies CR1 to CR4.

Proof. Assume a causal range [l, u] returned by the Causal Range Algorithm for
a TDTCS T and a delay set D that is not satisfying one of the conditions CR1 to
CR4. The algorithm returns [l, u] for a satisfying assignment of the conjunction
of Rl1, Ru1 , R2 and R3.

A first case to consider is that CR1 is not satisfied. A violation of CR1
means that a value v ∈ [l, u] has no realization. By checking satisfiability of
Rl1 and Ru1 the algorithm ensures that realizations δl with l =

∑
j∈D δj and

δu with u =
∑
j∈D δj exist. The existence of these realizations combined with

the convexity of T imply that a delay assignment exists for every value in [l, u].
Thus, a realization for every value in the causal range has to exist and CR1
cannot be violated.

As a second case, consider that CR2 is not satisfied. Thus, a suffix blocking
partial realization or a realization with a value v in [l, u] exists that satisfies the

12



property. This (partial) realization contradicts that [l, u] satisfies R2. We see
that CR2 has to hold.

The third case to consider is that CR3 is violated. As a consequence, [l, u]
contains no causal value or only causal values that are contained in causal ranges
of true subsets of D. This contradicts that R3 is satisfied and thus, CR3 holds.

In the fourth case to consider is that CR4 is violated since [l, u] is not max-
imal. Thus, either a smaller lower bound l′ exists with a causal range [l′, u] or
an upper bound with a higher value u′ exists with a causal range [l, u′]. Both
extended ranges would contradict that the algorithm uses optimization and re-
turns the minimal lower bound and maximal upper bound. Thus, l′ and u′ cannot
exist.

In all four cases, the causal range [l, u] has to satisfy the conditions CR1
to CR4 of a causal range, and this contradicts the assumption that one of the
conditions does not hold. ut

Theorem 3 (Completeness of Causal Range Computation). The Causal
Range Algorithm returns every maximal causal range for any given TDT.

Proof. Assume a maximal causal range [l̂, û] with a delay set D̂ that is not
returned by the Causal Range Algorithm for a TDTCS T . This means that it
either misses to create the delay set D̂, or misses to compute [l̂, û] for D̂.

Consider first the case that the algorithm misses a delay set D̂. D̂ consists
either only of one causal delay variable δj and would be found since Cj is satisfi-

able, or D̂ contains several causal delay variables. A D̂ with several causal delay
variables is found by the algorithm, when Ck is satisfiable for every subset D̂′ of
D̂. Since CR3 holds for the causal range [l, u], a causal value v in [l̂, û] has to
exist. v witnesses that Ck has a satisfying model for D̂. Notice that the constraint
C′k for a subset D̂′ of D̂, is a conjunction of a subset of the constraints in Ck.
Thus, C′k is a relaxation of Ck. Since Ck is satisfiable, C′k is satisfiable for every

subset D̂′ of D̂. We see D has to be found by the algorithm, which establishes a
contradiction to the assumption.

Next, consider the only alternative case that D̂ is created by the algorithm,
but [l̂, û] is not found for D̂. The causal range [l̂, û] satisfies CR1 to CR4 in

Definition 2 by assumption. The algorithm does not compute [l̂, û] when one

of the constraints Rl1, Ru1 , R2 or R3 is not satisfiable for [l̂, û]. Rl1, Ru1 are
satisfiable otherwise no realization exists with value l or u and this would violate
CR1. When R2 is unsatisfiable, a partial realization with a value in the range
[l, u] exists that is a suffix blocking partial realization or satisfies the property.
This partial realization would violate CR2. Hence, R3 is unsatisfiable. In this
case, any value in [l̂, û] is contained in a causal range of a subset of D̂ but this

violates CR3. Every constraint has to be satisfiable, otherwise, [l̂, û] is not a

causal range as assumed. Additionally, [l̂, û] is maximal (CR4) by assumption,

thus, the algorithm returns [l̂, û].

We conclude that the algorithm computes D̂ and the causal range [l̂, û]. This

contradict the assumption that the algorithm does not return [l̂, û]. ut
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(a) TA (b) Sequence Diagram

Fig. 3. Fischer’s protocol

6 Evaluation

We implemented the Causal Range Algorithm in a tool that we call Causal
Timed Range Analyser (CaTiRA) and evaluated the tool by computing causal
ranges for several case studies taken from the literature.

Evaluation Methodology. CaTiRA is intended to be used at design time to sup-
port design space exploration based on causal information regarding the dynamic
timing behavior. We foresee a usage of CaTiRA at an intermediate design stage
when a considered preliminary model does not yet satisfy all required proper-
ties. The objective of the analysis is to point the designer to variations in the
delay timings at certain locations in a TDT, which may motivate changes in, for
instance, timing bounds in the model. Such preliminary design models are not
available for experimentation. Therefore, it is necessary that we use published,
correct models and revert them to a preliminary state by seeding syntactic code
variations. We emphasize that the objective is not to locate these code vari-
ations, or even propose repairs to syntactic elements, but to illustrate to the
designer what ranges of delay variations contribute to avoiding the observed
property violation. The designer can then decide to perform syntactic changes
to the model in order to constrain the timing of the system in such a way that
property violations will be avoided.

Database Example [12]. For the running example in Figure 1, the analysis found
the causal delays δ2 and δ4, and the causal ranges 2 ≤ δ4 ≤ 3 and 3 ≤ δ2+δ4 ≤ 5.

Fischer’s protocol [18]. The purpose of Fischer’s protocol is to ensure mutual
exclusion. The TA in Figure 3 is a process of the protocol with a unique id pid
and requests for the critical section cs. The global variable id controls the access
to the critical section and allows a process only to enter the critical location cs
when id = pid. In order to request access to the critical section, a process checks
the transition guard id == 0 to check that no other process currently requests
access to the critical section, and subsequently enters the location req. Afterwards

14



the process enters the location wait within 3 time units for the critical section
and overwrites id with its unique pid. The process has to wait for 2 time units
to ensure that when another process also requests access to the critical section,
then this process will have left the location req. In this model, the timing is not
correct and it is possible that a process enters location cs and the other process
is in location req. We reverted the model to a preliminary state by replacing
the invariant x ≤ 2 as in [18] by x ≤ 3. We checked mutual exclusion of this
model with UPPAAL and obtained a TDT depicted by the sequence diagram in
Figure 3(b).

For this TDT, the causal range analysis by CaTiRA finds the causal delays
δ1 to δ3, and the causal ranges 2 < δ1 ≤ 3, 0 ≤ δ2 < 1, 2 < δ3 ≤ 3, and
0 ≤ δ1 + δ2 < 1. Notice that the TDT of Fischer’s protocol has no realization
that satisfies the property. The causal ranges were computed because the Causal
Range Algorithm also considers suffix blocking partial realization to satisfy the
counterfactual argument (II.).

The causal ranges with the causal delay variables δ1, δ2 and δ3 are reasonable
since during these time delays the TDT is in the location req, labeled with the
seeded constraint x ≤ 3. During the time delay δ4, the TDT is also in location req.
However, δ4 is not a causal delay variable since no different delay assignment
exists for it that prevents the property violation. The interval of the causal
ranges 2 < δ1 ≤ 3 and 2 < δ3 ≤ 3 is identical to the seeded faulty extension
of the constraint. The choice of delay assignments that satisfies 0 ≤ δ2 < 1
and 0 ≤ δ1 + δ2 < 1 ensures that TA P1 leaves location req early enough that
the extension of the constraint comes into effect and the property violation will
be reached. We see that the causal ranges actually express the choices of delay
assignments that will lead to a property violation.

Camel Transporter (adapted from [5]) In this model, in every location load1 to
load4 a worker loads a bag on a camel. The weight of a bag is between 1 and
4 units and is modeled by the time that the worker stays in a location. The
camel will only arrive at the destination when the weight is not more than 7
units. The worker checks the payload of the camel with loading the third bag
on the camel but is in a rush and does not check the payload after loading
the fourth bag. A verification of the model with UPPAAL results in a TDT
depicted in the Figure 4(b). We manually computed the possible assignments
of the delay variables and added them in red to the diagram. For this TDT,
CaTiRA computes the causal delays δ0 to δ3, and the causal ranges 7 < δ0+δ3 ≤
8, 7 < δ1 + δ3 ≤ 8, 7 < δ2 + δ3 ≤ 8, 7 < δ0 + δ1 + δ3 ≤ 11, 7 < δ0 + δ2 + δ3 ≤ 11,
7 < δ1 + δ2 + δ3 ≤ 11, and 7 < δ0 + δ1 + δ2 + δ3 ≤ 11.

All causal ranges contains the delay variable δ3 of the location load4. This is
reasonable since an overload of the camel is checked in location load3. The load
limit of 7 can only be exceeded in a combination of at least two delay assignments
since the maximal delay assignment is 4 for every delay variable. Also, even two
variable assignments can already result in an overload of the camel, every delay
assignment has an impact on whether the camel is overloaded. This becomes
obvious by the realization δ0 = 2, δ1 = 2, δ3 = 2, δ4 = 2 that is contained only
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(a) TA (b) Sequence Diagram

Fig. 4. Camel Transporter

Model TUP Ln #CD #CR T M #Cn #Vr TZ3 MZ3

database [12] 0.010 4 2 2 0.420 13.2 66 19 0.020 6.7
Fischer’s protocol [18] 0.010 6 3 4 0.626 26.5 78 23 0.040 6.9
Camel Transporter [5] 0.008 3 4 7 4.724 35.9 138 105 0.350 7.1

Pacemaker [11] 0.015 7 2 1 0.587 33.5 226 114 0.080 7.3

Table 1. Quantitative experimental results.

by the causal range 7 < δ0 + δ1 + δ2 + δ3 ≤ 11. In this realization, every delay
assignment contributes to the overload of the camel but no subset of the delay
assignments can overload the camel. We see that the causal ranges express the
dynamic timing behavior that leads to the property violation.

The Pacemaker Model [11] that we consider originally satisfies all properties. We
analyze this model since it is a realistic model and of a reasonable size. A modified
version of the model, which contains a property violation, is analyzed in [12].
The violated property expresses that the time delay between two ventricular
heartbeats is not too high. For the TDT illustrating the property violation,
CaTiRA computes the causal delays δ0 and δ6, and the causal range 150 <
δ6 < 350.

The results can be interpreted as follows. After the time delay of δ0, the
first heartbeat happens and a timer starts to measure the time delay until the
next ventricular heartbeat. For some realization of the TDT that violate the
property, an increase of the value assignment of δ0 can prevent the property
violation, thus, δ0 is a causal delay variable. However, no causal range with δ0
exists since each of these realizations is already contained by the causal range
150.0 < δ6 < 350.0. Only during the time delay δ6, the TDT is in the location in
which a constraint was altered when reverting the model. The modification of the
constraint corresponded to an increase of 1200 time units of a bound. However,
the possible assignments in this location that lead to a property violation are
in the range from [150, 350]. Thus, only the increase of the constraint bound by
the first 200 time units has an impact on the possible execution. We see that the
causal range shows the erroneous timing behavior of the TDT.

Quantitative Results. The quantitative results of every model are represented in
Table 1. For every model, we indicate the time TUP that UPPAAL needed to
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compute a TDT for the model and the length Ln of the TDT. For a given TDT,
CaTiRA computes a number #CD of causal delay variables and a number #CR
of causal ranges. The computation of the causal ranges takes in total a time T in
seconds and consumes at most an amount M of memory in megabytes. Z3 solves
constraint systems with at most a count #Cn of clauses and at most a number
#Vr of variables. Z3 needs at most the time TZ3 in seconds to solve a constraint
system with a maximal memory usage of MZ3 in megabytes.

All experiments were performed with the SMT-solver Z3 (Version 4.8.3) on
a computer with an i7-6700K CPU (4.00GHz), 60GB of RAM and a Linux
operating system. For the considered models, we found a total of 11 causal
delay variables and 14 causal ranges. The highest computation effort for a causal
range computation can be observed in the camel transporter TDT with 35.9 MB
memory consumption and 4.724s computation time. In line with this, Z3 has
the highest computation effort in time (0.350s) with this model. The intrinsic
complexity of this TDT seems to be high since with 138 clauses it has fewer
clauses than the TDT of the Pacemaker model with 226 clauses.

The most complex model is the Pacemaker model since it takes the most
time (0.015) for UPPAAL to compute the TDT. Also, its TDT is the longest
with 7 transitions. With 226 the encoding of the analysis has the most clauses
and with 114 the most variables. Even so, the computation effort of the causal
ranges is moderate with 0.587s and 33.5 MB. In conclusion, the analyses results
show that the causal range analysis requires a reasonable computation effort.

7 Conclusion

We have presented the Causal Range Algorithm and its implementation in the
tool CaTiRA. Based on a counterfactual causality argument, the Causal Range
Algorithm performs an analysis to determine dynamic causes for timed reachabil-
ity property violations in the timing behavior of a timed system as documented
by TDTs. Using various case studies we have shown that the analysis is both
efficient and effective. In particular, our work shows that using interpretations
of counterfactual causal reasoning can lead to precise and intuitive explanations
for dynamic timing behaviors.

In future work, we plan to generalize our findings to the analysis of hybrid
systems. Another direction of research is to develop causal analyses that do not
just rely on a single execution, as given by a TDT, but on the full structure of
a Timed Automaton model.
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