
Clock Bound Repair for Timed Systems

Martin Kölbl1, Stefan Leue1, and Thomas Wies2

1 University of Konstanz, Konstanz, Germany
{Martin.Koelbl,Stefan.Leue}@uni-konstanz.de

2 New York University, New York, NY, USA
wies@cs.nyu.edu

Abstract. We present algorithms and techniques for the repair of timed system
models, given as networks of timed automata (NTA). The repair is based on an
analysis of timed diagnostic traces (TDTs) that are computed by real-time model
checking tools, such as UPPAAL, when they detect the violation of a timed safety
property. We present an encoding of TDTs in linear real arithmetic and use the
MaxSMT capabilities of the SMT solver Z3 to compute possible repairs to clock
bound values that minimize the necessary changes to the automaton. We then
present an admissibility criterion, called functional equivalence, that assesses
whether a proposed repair is admissible in the overall context of the NTA. We
have implemented a proof-of-concept tool called TARTAR for the repair and ad-
missibility analysis. To illustrate the method, we have considered a number of
case studies taken from the literature and automatically injected changes to clock
bounds to generate faulty mutations. Our technique is able to compute a feasible
repair for 91% of the faults detected by UPPAAL in the generated mutants.

Keywords: Timed Automata · Automated repair · Admissibility of repair · TAR-
TAR tool.

1 Introduction

The analysis of system design models using model checking technology is an important
step in the system design process. It enables the automated verification of system prop-
erties against given design models. The automated nature of model checking facilitates
the integration of the verification step into the design process since it requires no further
intervention of the designer once the model has been formulated and the property has
been specified.

Often it is sufficient to abstract from real time aspects when checking system prop-
erties, in particular when the focus is on functional aspects of the system. However,
when non-functional properties, such as response times or the timing of periodic be-
havior, play an important role, it is necessary to incorporate real time aspects into the
models and the specification, as well as to use specialized real-time model checking
tools, such as UPPAAL [6], Kronos [31] or opaal [11] during the verification step.

Next to the automatic nature of model checking, the ability to return counterexam-
ples, in real-time model checking often referred to as timed diagnostic traces (TDT), is
a further practical benefit of the use of model checking technology. A TDT describes a
timed sequence of steps that lead the design model from the initial state of the system

2 M. Kölbl et al.

into a state violating a real-time property. A TDT neither constitutes a causal explana-
tion of the property violation, nor does it provide hints as to how to correct the model.

In this paper we describe an automated method that computes proposals for possi-
ble repairs of a network of timed automata (NTA) that avoid the violation of a timed
safety property. Consider the TDT depicted as a time annotated sequence diagram [5]
in Figure 1. This scenario describes a simple message exchange where the process
dbServer sends a message req to process db which, after some processing steps
returns a message ser to dbServer. Assume a requirement on the system to be that
the time from sending req to receiving ser is not to be more than 4 time units. Assume
that the timing interval annotations on the sequence diagram represent the minimum and
maximum time for the message transmission and processing steps that the NTA, from
which the diagram has been derived, permits. It is then easy to see that it is possible to
execute the system in such a way that this property is violated.

Fig. 1. TDT represented as a Sequence Diagram
with Timing Annotations

Various changes to the underlying
NTA model, depicted in Figure 2, may
avoid this property violation. For instance,
the maximum time it takes to transmit
the req and ser messages can be con-
strained to be at most 1 time unit, re-
spectively. Alternatively, it may be pos-
sible to avoid the property violation by
reducing two of the three timings by 0.5
time units. In any case, proposing such
changes to the model may either serve to
correct clerical mistakes made during the
editing of the model, or point to necessary
changes in the dimensioning of its time re-
sources, thus contributing to improved de-
sign space exploration.

The repair method described in this
paper relies on an encoding of a TDT as a
constraint system in linear real arithmetic. This encoding provides a symbolic abstract
semantics for the TDT by constraining the sojourn time of the NTA in the locations
visited along the trace. The constraint system is then augmented by auxiliary model
variation variables which represent syntactic changes to the NTA model, for instance
the variation of a location invariant condition or a transition guard. We assert that the
thus modified constraint system implies the non-reachability of a violation. At the same
time, we assert that the model variation variables have a value that implies that no
change of the NTA model will occur, for instance by setting a clock bound variation
variable to 0. This renders the resulting constraint system unsatisfiable.

In order to compute a repair, we derive a partial MaxSMT instance by turning the
constraints that disable any repair into soft constraints. We solve this MaxSMT instance
using the SMT solver Z3 [25]. If the MaxSMT instance admits a solution, the resulting
model provides values of the model variation variables. These values indicate a repair

Clock Bound Repair for Timed Systems 3

of the NTA model which entails that along the sequence of locations represented by the
TDT, the property violation will no longer be reachable.

In a next step it is necessary to check whether the computed repair is an admissi-
ble repair in the context of the full NTA. This is important since the repair was com-
puted locally with respect to only a single given TDT. Thus, it is necessary to define
a notion of admissibility that is reasonable and helpful in this setting. To this end, we
propose the notion of functional equivalence which states that as a result of the com-
puted repair, neither erstwhile existing functional behavior will be purged, nor will new
functional behavior be added. Functional behavior in this sense is represented by lan-
guages accepted by the untimed automata of the unrepaired and the repaired NTAs.
Functional equivalence is then defined as equivalence of the languages accepted by
these automata. We propose a zone-based automaton construction for implementing the
functional equivalence test that is efficient in practice.

We have implemented our proposed method in a proof-of-concept tool called TAR-
TAR3. Our evaluation of TARTAR is based on several non-trivial NTA models taken
from the literature, including the frequently considered Pacemaker model [19]. For each
model, we automatically generate mutants by injecting clock bound variations which we
then model check using UPPAAL and repair using TARTAR. The evaluation shows that
our technique is able to compute an admissible repair for 91% of the detected faults.

Related Work. There are relatively few results available on a formal treatment of TDTs.
The zone based approach to real-time model checking, which relies on a constraint-
based abstraction of the state space, is proposed in [14]. The use of constraint solving to
perform reachability analysis for NTAs is described in [30]. This approach ultimately
leads to the on-the-fly reachability analysis algorithm used in UPPAAL [7]. [12] de-
fines the notion of a time-concrete UPPAAL counterexample. Work documented in [27]
describes the computation of concrete delays for symbolic TDTs. The above cited ap-
proaches address neither fault analysis nor repair for TDTs. Our use of MaxSMT solvers
for computing minimal repairs is inspired by the use MaxSAT solvers for fault local-
ization in C programs, which was first explored in the BugAssist tool [20, 21]. Our
approach also shares some similarities with syntax-guided synthesis [2, 28], which has
also been deployed in the context of program repair [22]. One key difference is how we
determine the admissibility of a repair in the overall system, which takes advantage of
the semantic restrictions imposed by timed automata.

Structure of the Paper. We will introduce the automata and real-time concepts needed
in our analysis in § 2. In § 3 we present the logical formalization of TDTs. The repair
and admissibility analyses are presented in § 4 and 5, respectively. We report on tool
development, experimental evaluation and case studies in § 6 and § 7 concludes.

2 Preliminaries

The timed automaton model that we use in this paper is adapted from [7]. Given a
set of clocks C, we denote by B(C) the set of all clock constraints over C, which are

3 TARTAR and links to all models used in this paper can be found at
URL https://github.com/sen-uni-kn/tartar.

https://github.com/sen-uni-kn/tartar

4 M. Kölbl et al.

conjunctions of atomic clock constraints of the form c ∼ n, where c ∈ C, ∼∈ {<,≤
,=,≥, >} and n ∈ N. A timed automaton (TA) T is a tuple T = (L, l0, C,Σ,Θ, I)
where L is a finite set of locations, l0 ∈ L is an initial location, C is a finite set of
clocks, Σ is a set of action labels, Θ ⊆fin L×B(C)×Σ × 2C × L is a set of actions,
and I : L → B(C) denotes a labeling of locations with clock constraints, referred to
as location invariants. For θ ∈ Θ with θ = (l, g, a, r, l′) we refer to g as the guard of θ
and to r as its clock resets.

The operational semantics of T is given by a timed transition system consisting of
states s = (l, u) where l is a location and u : C → R+ is a clock valuation. The initial
state s0 is (`, u0) where u0 maps all clocks to 0. For a clock constraint B we write
u |= B iff B evaluates to true in u. There are two types of transitions. An action tran-
sition models the execution of an action whose guard is satisfied. These transitions are
instantaneous and reset the specified clocks. The passing of time in a location is mod-
eled by delay transitions. Both types of transitions guarantee that location invariants are
satisfied in the pre and post state. Formally, we have (l, u)

t−→ (l′, u′) iff

– (action transition) t = (l, g, a, r, l′) ∈ Θ, u |= I(l) ∧ g, u′ |= I(l′) and for all
clocks c ∈ C, u′(c) = 0 if c ∈ r and u′(c) = u(c) otherwise; or

– (delay transition) t ∈ R+, u |= I(l), u′ |= I(l) and u′ = u+ t.

Definition 1. A symbolic timed trace (STT) of T is a sequence of actions S = θ0, . . . ,
θn−1. A realization of S is a sequence of delay values δ0, . . . , δn such that there exists

states s0, . . . , sn, sn+1 with si
δi−→ θi−→ si+1 for all i ∈ [0, n) and sn

δn−→ sn+1. We
say that a STT is feasible if it has at least one realization.

Property Specification. We focus on the analysis of timed safety properties, which we
characterize by an invariant formula that has to hold for all reachable states of a TA.
These properties state, for instance, that there are certain locations in which the value of
a clock variable is not above, equal to or below a certain (integer) bound. Formally, let
T = (L, l0, C,Σ,Θ, I) be a TA. A timed safety propertyΠ is a Boolean combination of
atomic clock constraints and location predicates @l where l ∈ L. A location predicate
@l holds in a state (l′, u) of T iff l′ = l. We say that a STT S witnesses a violation of
Π in T if there exists a realization of S whose induced final state does not satisfy Π .
We refer to such an STT as a timed diagnostic trace of T for Π .

T satisfies Π iff all its reachable states satisfy Π . This problem can be decided us-
ing model checking tools such as Kronos [31] and UPPAAL [6]. UPPAAL in particular
computes a finite abstraction of the state space of an NTA using a zone graph con-
struction. Reachability analysis is then performed by an on-the-fly search of the zone
graph. If the property is violated, the tool generates a feasible TDT that witnesses the
violation. The objective of our work is to analyze TDTs and to propose repairs for the
property violation that they represent. We use TDTs generated by the UPPAAL tool in
our implementation, but we maintain that our results can be adapted to any other tool
producing TDTs.

We further note that UPPAAL takes a network of timed automata (NTA) as in-
put, which is a CCS [24] style parallel composition of timed automata T1 | . . . | Tn.

Clock Bound Repair for Timed Systems 5

Since our analysis and repair techniques focus on timing-related errors rather than syn-
chronization errors, we use TAs rather than NTAs in our formalization. However, our
implementation works on NTAs.

Example 1. The running example that we use throughout the paper consists of an NTA
of two timed automata, depicted in Figure 2. As alluded to in the introduction, the TAs
dbServer and db synchronize via the exchange of messages modeled by the pairs of
send and receive actions req! and req?, respectively, ser! and ser?. The trans-
mission time of the req message is controlled by the clock variable x and can range
between 1 and 2 time units. This is achieved by the location invariant x<=2 on the
reqReceived location in db together with the transition guard x>=1 on the tran-
sition from reqReceived to reqProcessing. A similar mechanism using clock
variable z is used to constrain the timing of the transfer of message ser to be within
1 and 2 time units. The processing time in dbServer is constrained to exactly 1 time
unit by the location invariant y<=1 and the transition guard y>=1. In dbServer, a
transition to location timeout can be triggered when the guard z==2 is satisfied in
location serReceiving. The clock variable x, which is not reset until the next req
message is sent, is recording the time that has elapsed since sending req and is used
in location serReceiving in order to verify if more than 4 time units have passed
since req was sent. The timed safety property that we will consider for our example
is Π = ¬@dbServer.serReceiving ∨ (x < 4). For the violation of this property,
UPPAAL produces the TDT S = θ0 . . . θ3 where

θ0 = ((initial,reqAwaiting), ∅, τ, ∅, (reqCreate,reqAwaiting))
θ1 = ((reqCreate,reqAwaiting), ∅, τ, {x}, (reqSent,reqReceived))
θ2 = ((reqSent,reqReceived), {x ≥ 1}, τ, {y}, (reqSent,reqProc.))
θ3 = ((reqSent,reqProc.), {y ≥ 1}, τ, {z}, (serReceiving,reqAwait.)).

3 Logical Encoding of Timed Diagnostic Traces

Our analysis relies on a logical encoding of TDTs in the theory of quantifier-free linear
real arithmetic. For the remainder of this paper, we fix a TA T = (L, l0, C,Σ,Θ, I)
with a safety property Π and assume that S = θ0, . . . , θn−1 is an STT of T . We use
the following notation for our logical encoding where j ∈ [0, n + 1] is a position in a
realization of S and c ∈ C is a clock:

– lj denotes the location of the pre state of θj for j < n and the location of the post
state of θj−1 for j = n.

– cj denotes the value of clock variable c when reaching the state at position j.
– δj denotes the delay of the delay transition leaving the state at position j ≤ n.
– resetj denotes the set of clock variables that are being reset by action θj for j < n.
– ibounds(c, l) denotes the set of pairs (β,∼) such that the atomic clock constraint
c ∼ β appears in the location invariant I(l).

– gbounds(c, θ) denotes the set of pairs (β,∼) such that the atomic clock constraint
c ∼ β appears in the guard of action θ.

6 M. Kölbl et al.

(a) Timed Automaton dbServer (b) Timed Automaton db

Fig. 2. Network of Timed Automata - Running Example

To illustrate the use of ibounds, assume location l to be labeled with invariants
x > 2 ∧ x ≤ 4 ∧ y ≤ 1, then ibounds(x, l) = {(2, >), (4,≤)}. The usage of gbounds
is accordingly.

Definition 2. The timed diagnostic trace constraint system associated with STT S is the
conjunction T of the following constraints:

C0 ≡
∧
c∈C

c0 = 0 (clock initialization)

A ≡
∧

j∈[0,n]

δj ≥ 0 (time advancement)

R ≡
∧

c∈resetj ,

cj+1 = 0 (clock resets)

D ≡
∧

c/∈resetj

cj+1 = cj + δj (sojourn time)

I ≡
∧

(β,∼)∈ibounds(c,lj)

cj ∼ β ∧ cj + δj ∼ β (location invariants)

G ≡
∧

(β,∼)∈gbounds(c,θj)

cj + δj ∼ β (transition guards)

L ≡ @ln ∧
∧
l 6=ln

¬@l (location predicates)

Let further Φ ≡ Π[cn+1/c] where Π[cn+1/c] is obtained from Π by substituting all
occurrences of clocks c ∈ C with cn+1. Then the Π-extended TDT constraint system
associated with S is defined as T Π = T ∧ ¬Φ.

Clock Bound Repair for Timed Systems 7

To illustrate the encoding consider the transition Θ3 of the TDT in Example 1 corre-
sponding to the transition from state (reqSent, reqProcessing) to state
(serReceiving, reqAwaiting) while resetting clock z in the NTA of Figure 2.
The encoding for the constraints on the clocks x, y and z is as following: y3 + d3 ≥ 1,
z4 = 0, x4 = x3 + d3 and y4 = y3 + d3.

Lemma 1. δc0, . . . , δcn is a realization of an STT S iff there exists a satisfying variable
assignment ι for T such that for all j ∈ [0, n], ι(δj) = δcj .

Theorem 1. An STT S witnesses a violation of Π in T iff T Π is satisfiable.

4 Repair

We propose a repair technique that analyzes the responsibility of clock bound values
occurring in a single TDT for causing the violation of a specification Π . The analysis
suggests possible syntactic repairs. In a second step we define an admissibility test
that assesses the admissibility of the repair in the context of the complete TA model.
Throughout this section, we assume that S is a TDT for T and Π .

Clock Bound Variation. We introduce bound variation variables v that stand for correc-
tion values that the repair will add to the clock bounds occurring in location invariants
and transition guards. The values are chosen such that none of the realizations of S in
the modified automaton still witnesses a violation of Π . This is done by defining a new
constraint system that captures the conditions on the variable v under which the viola-
tion of Π will not occur in the corresponding trace of the modified automaton. Using
this constraint system, we then define a maximum satisfiability problem whose solution
minimizes the number of changes to T that are needed to achieve the repair.

Recall that the clock bounds occurring in location invariants and in transition guards
are represented by the ibounds and gbounds sets defined for the TDT S. Notice that
each clock variable c may be associated with mc,l different clock bounds in the loca-
tion invariant of l, denoted by the set ibounds(c, l) = {(βc,l1 ,∼c,l1), . . . , (βc,lmc,l ,∼

c,l
mc,l

)}.
Similarly, we enumerate the bounds in gbounds(c, θ) as (βc,θk ,∼c,θk). To reduce nota-
tional clutter, we let the meta variable r stand for the pairs of the form c, l or c, θ. We
then introduce bound variation variables vrk describing the possible static variation in
the TA code for the clock bound βrk and modify the TDT constraint system accordingly.
A variation of the bounds only affects the location invariant constraints I and the tran-
sition guard constraints G. We thus define an appropriate invariant variation constraint
Ibv and guard variation constraint Gbv that capture the clock bound modifications:

Ibv ≡
∧

(βrk,∼
r
k)∈ibounds(c,lj)

cj ∼rk (βrk + vrk) ∧ cj + δj ∼rk (βrk + vrk)

Gbv ≡
∧

(βrk,∼
r
k)∈gbounds(c,θj)

cj + δj ∼rk (βrk + vrk)

8 M. Kölbl et al.

We also need constraints ensuring that the modified clock bounds remain positive:

Zbv ≡
∧

(βrk,∼
r
k)∈ibounds(c,lj) ∪ gbounds(c,θj)

βrk + vrk ≥ 0

Putting all of this together we obtain the bound variation TDT constraint system

T bv ≡ C0 ∧ A ∧R ∧D ∧ Ibv ∧ Gbv ∧ Zbv ∧ L

which captures all realizations of S in TAs T bv that are obtained from T by modifying
the clock bounds βrk by some semantically consistent variations vrk .

Consider the bound variation for the guard y ≥ 1 of transitionΘ3 in Example 1. The
modified guard constraint, a conjunct in Gbv, is y3 + d3 ≥ 1 + vy3 . The corresponding
non-negativity constraint from Zbv is 1 + vy3 ≥ 0.

Repair by Bound Variation Analysis. The objective of the bound variation analysis is
to provide hints to the system designer regarding which minimal syntactic changes to
the considered model might prevent the violation of property Π . Minimality here is
considered with respect to the number of clock bound values in invariants and guards
that need to be changed.

We implement this analysis by using the bound variation TDT constraint system T bv

to derive an instance of the partial MaxSMT problem whose solutions yield candidate
repairs for the timed automaton T . The partial MaxSMT problem takes as input a finite
set of assertion formulas belonging to a fixed first-order theory. These assertions are
partitioned into hard and soft assertions. The hard assertions FH are assumed to hold
and the goal is to find a maximizing subset F ′ ⊆ FS of the soft assertions such that
F ′ ∪ FH is satisfiable in the given theory.

For our analysis, the hard assertions consist of the conjunction

Fbv
H ≡ (∃δj , cj . T bv) ∧ (∀δj , cj . T bv ⇒ Φ).

Note that the free variables of Fbv
H are exactly the bound variation variables vrk . Given

a satisfying assignment ι for Fbv
H , let Tι be the timed automaton obtained from T by

adding to each clock bound βrk the according variation value ι(vrk) and let Sι be the
TDT corresponding to S in Tι. Then Fbv

H guarantees that

1. Sι is feasible, and
2. Sι has no realization that witnesses a violation of Π in Tι.

We refer to such an assignment ι as a local clock bound repair for T and S. To obtain a
minimal local clock bound repair, we use the soft assertions given by the conjunction

Fbv
S ≡

∧
(βrk,)∈ibounds(c,lj) ∪ gbounds(c,θj)

vrk = 0.

Clearly Fbv
H ∧ Fbv

S is unsatisfiable because T bv ∧ Fbv
S is equisatisfiable with T , and

T ∧ ¬Φ is satisfiable by assumption. However, if there exists at least one local clock
bound repair for T and S, then Fbv

H alone is satisfiable. In this case, the MaxSMT

Clock Bound Repair for Timed Systems 9

instance Fbv
H ∪ Fbv

S has at least one solution. Every satisfying assignment of such a
solution corresponds to a local repair that minimizes the number of clock bounds that
need to be changed in T .

Note that hard and soft assertions remain within a decidable logic. Using an SMT
solver such as Z3, we can enumerate all the optimal solutions for the partial MaxSMT
instance and obtain a minimal local clock bound repair from each of them.

Example 2. We have applied the bound variation repair analysis to the TDT from Ex-
ample 1, using TARTAR, which calls Z3. The following repairs were computed:

1. vz,l51 = −1. This corresponds to a variation of the location invariant regarding clock
z in location 5 of the TDT, corresponding to location
dbServer.serReceiving, to read z ≤ 1 instead of z ≤ 2. This indicates
that the violation of the bound on the total duration of the transaction, as indicated
by a return to the serReceiving location and a value greater than 4 for clock x,
can be avoided by ensuring that the time taken for transmitting the ser message to
the dbServer is constrained to take exactly 1 time unit.

2. A further computed repair is vx,l21 = −1. Interpreting this variation in the context
of Example 1 means that location db.reqReceived will be left when the clock
x has value 1. In other words, the transmission of the message req to the db takes
exactly one time unit, not between 1 and 2 time units as in the unrepaired model.

3. Another possible repair implies the modification of two clock bounds. This is no
longer an optimal solution and no further optimal solution exists. Notice that even
non-optimal solutions might provide helpful insight for the designer, for instance if
optimal repairs turn out not to be implementable, inadmissible or leading to a prop-
erty violation. It is therefore meaningful to allow a practical tool implementation to
compute more than just the optimal repairs.

5 Admissibility of Repair

The synthesized repairs that lead to a TA Tι change the original TA T in fundamen-
tal ways, both syntactically and semantically. This brings up the question whether the
synthesized repairs are admissible. In fact, one of the key questions is what notion of
admissibility is meaningful in this context.

A timed trace [7] is a sequence of timed actions ξ = (t1, a1), (t2, a2), . . . that is
generated by a run of a TA, where ti ≤ ti+1 for all i ≥ 1. The timed language for a TA
T is the set of all its timed traces, which we denote by LT (T). The untimed language of
T consists of words over T ’s alphabet Σ so that there exists at least one timed trace of
T forming this word. Formally, for a timed trace ξ = (t1, a1), (t2, a2) . . . , the untime
operator µ(ξ) returns an untimed trace ξµ = a1a2... . We define the untimed language
Lµ(T) of the TA T as Lµ(T) = {µ(ξ) | ξ ∈ LT (T)}.

LetB be a Büchi automaton (BA) [10] over some alphabetΣ. We writeL(B) ⊆ Σω

for the language accepted by B. Similarly, we denote by Lf (B) ⊆ Σ∗ the language
accepted by B if it is interpreted as a nondeterministic finite automaton (NFA). Further,
we write pref(L(B)) to denote the set of all finite prefixes of words in L(B).

10 M. Kölbl et al.

For a given NFA or BAM , the closure cl(M) denotes the automaton obtained from
M by turning all of its states into accepting states. We call M closed iff M = cl(M).
Notice that a Büchi automaton accepts a safety language if and only if it is closed [1].

Admissibility Criteria. From a syntactic point of view the repair obtained from a sat-
isfying assignment ι of the MaxSMT instance ensures that Tι is a syntactically valid
TA model by, for instance, placing non-negativity constraints on repaired clock bounds.
In case repairs alter right hand sides of clock constraints to rational numbers, this can
easily be fixed by normalizing all clock constraints in the TA.

From a semantic perspective, the impact of the repairs is more profound. Since the
repairs affect time bounds in location invariants and transition guards, as well as clock
resets, the behavior of Tι may be fundamentally different from the behavior of T .

– First, the computed repair for one property Π may render another property Π ′

violated. To check admissibility of the synthesized repair with respect to the set of
all properties Π̂ in the system specification, a full re-checking of Π̂ is necessary.

– Second, a repair may have introduced zenoness and timelock [4] into Tι. As dis-
cussed in [4], there exists both an over-approximating static test for zenoness as
well as a model checking based precise test for timelocks that can be used to verify
whether the repair is admissible in this regard.

– Third, due to changes in the possible assignment of time values to clocks, reachable
locations in the TA T may become unreachable in Tι, and vice versa. On the one
hand, this means that some functionalities of the system may no longer be provided
since part of the actions in T will no longer be executable in Tι, and vice versa.
Further, a reduction in the set of reachable locations in Tι compared to T may
mean that certain locations with property violations in T are no longer reachable in
Tι, which implies that certain property violations are masked by a repair instead of
being fixed. On the other hand, the repair leading to locations becoming reachable
in Tι that were unreachable in T may have the effect that previously unobserved
property violations become visible and that Tι possesses functionality that T does
not have, which may or may not be desirable.

It should be pointed out that we assess admissibility of a repair leading to Tι with respect
to a given TA model T , and not with respect to a correct TA model T ∗ satisfying Π .

Functional Equivalence. While various variants of semantic admissibility may be con-
sidered, we are focusing on a notion of admissibility that ensures that a repair does not
unduly change the functional behavior of the modeled system while adhering to the
timing constraints of the repaired system. We refer to this as functional equivalence.
The functional capabilities of a timed system manifest themselves in the sets of action
or transition traces that the system can execute. For TAs T and Tι this means that we
need to consider the languages over the action or transition alphabets that these TAs de-
fine. Considering the timed languages of T and Tι, we can state that LT (T) 6= LT (Tι)
since the repair forces at least one timed trace to be purged from LT (T). This means
that equivalence of the timed languages cannot be an admissibility criterion ensuring
functional equivalence. At the other end of the spectrum we may relate the de-timed

Clock Bound Repair for Timed Systems 11

languages of T and Tι. The de-time operator α(T) is defined such that it omits all tim-
ing constraints and resets from any TA T . Requiring L(α(T)) = L(α(Tι)) is tempting
since it states that when eliminating all timing related features from T and from the
repaired Tι, the resulting action languages will be identical.

However, this admissibility criterion would be flawed, since the repair in Tι may
imply that unreachable locations in T will be reachable in Tι, and vice versa. This may
have an impact on the untimed languages, and even thoughL(α(T)) = L(α(Tι)) it may
be that Lµ(T) 6= Lµ(Tι). To illustrate this point, consider the running example in Fig. 2
and assume the invariant in location dbServer.reqReceiving to be modified
from z ≤ 2 to z ≤ 1 in the repaired TA Tι. Applying the de-time operator to Tι implies
that the location dbServer.timeout, which is unreachable in Tι, becomes reach-
able in the de-timed model. Since dbServer.timeout is reachable in T , the TA T
and Tι are not functionally equivalent, even though their de-timed languages are identi-
cal. Notice that for the untimed languages Lµ(T) 6= Lµ(Tι) holds since no timed trace
in LT (Tι) reaches location timeout, even though such a timed trace exists in LT (T).
In detail,Lµ(Tι) contains the the untimed traceΘ0Θ1Θ2Θ3Θ4 that is missing inLµ(T)
and where Θ4 is the transition towards the location dbServer.timeout. As con-
sequence, we resort to considering the untimed languages of T and Tι and require
Lµ(T) = Lµ(Tι). It is easy to see that Lµ(T) = Lµ(Tι) ⇒ L(α(T)) = L(α(Tι)). In
other words, the equivalence of the untimed languages ensures functional equivalence.

Admissibility Test. Designing an algorithmic admissibility test for functional equiv-
alence is challenging due to the computational complexity of determining the equiv-
alence of the untimed languages Lµ(T) and Lµ(Tι). While language equivalence is
decidable for languages defined by Büchi Automata, it is undecidable for timed lan-
guages [3]. For untimed languages, however, this problem is again decidable [3]. The
algorithmic implementation of the test for functional equivalence that we propose pro-
ceeds in two steps.

– First, the untimed languages Lµ(T) and Lµ(Tι) are constructed. This requires an
untime transformation of T and Tι yielding Büchi automata representing Lµ(T)
andLµ(Tι). While the standard untime transformation for TAs [3] relies on a region
construction, we propose a transformation that relies on a zone construction [14].
This will provide a more succinct representation of the resulting untimed languages
and, hence, a more efficient equivalence test.

– Second, it needs to be determined whether Lµ(T) = Lµ(Tι). As we shall see, the
obtained Büchi automata are closed. Hence, we can reduce the equivalence problem
for these ω-regular languages to checking equivalence of the regular languages
obtained by taking the finite prefixes of the traces inLµ(T) andLµ(Tι). This allows
us to interpret the Büchi automata obtained in the first step as NFAs, for which the
language equivalence check is a standard construction [15].

Automata for Untimed Languages. The construction of an automaton representing an
untimed language, here referred to as an untime construction, has so far been proposed
based on a region abstraction [3]. The region abstraction is known to be relatively inef-
ficient since the number of regions is, among other things, exponential in the number of

12 M. Kölbl et al.

clocks [4]. We therefore propose an untime construction based on the construction of
a zone automaton [14] which in the worst case is of the same complexity as the region
automaton, but on the average is more succinct [7].

Definition 3 (Untimed Büchi Automaton). Assume a TA T and the corresponding
zone automaton JT KZ = (SZ , s

0
Z , ΣZ , ΘZ). We define the untimed Büchi automaton

as the closed BA BT = (S,Σ,→, S0, F) obtained from JT KZ such that S = SZ ,
Σ = ΣZ \ {δ} and S0 = {s0Z}. For every transition in ΘZ with a label a ∈ Σ we add

a transition to→ created by the rule (l,z)
δ
;(l,z↑)

a
;(l′,z′)

(l,z)
a−→(l′,z′)

with z↑ = {v + d|v ∈ z, d ∈

R≥0}. In addition, we add self-transitions (l, z) τ−→ (l, z) to every state (l, z) ∈ SB .

The following observations justify this definition:

– A timed trace of T may remain forever in the same location after a finite number of
action transitions. In order to enable B to accept this trace, we add a self-transition
labeled with τ to → for each state s ∈ S in BT , and later define s as accepting.
These τ -self-transitions extend every finite timed trace t leading to a state in Sτ to
an infinite trace t.τω .

– The construction of the acceptance set F is more intricate. Convergent traces are
often excluded from consideration in real-time model checking [4]. As a conse-
quence, in the untime construction proposed in [3], only a subset of the states in S
may be included in F . A repair may render a subgraph of the location graph of T
that is only reachable by divergent traces, into a subgraph in Tι that is only reach-
able by convergent traces. However, excluding convergent traces is only meaning-
ful when considering unbounded liveness properties, but not when analyzing timed
safety properties, which in effect are safety properties. As argued in [7], unbounded
liveness properties appear to be less important than timed safety properties in timed
systems. This is due to the observation that divergent traces reflect unrealistic be-
havior in the limit, but finite prefixes of infinite divergent traces, which only need
to be considered for timed safety properties, correspond to realistic behavior. This
observation is also reflected in the way in which, e.g., UPPAAL treats reachabil-
ity by convergent traces. In conclusion, this justifies our choice to define the zone
automaton in the untime construction as a closed BA, i.e., F = S.

Theorem 2 (Correctness of Untimed Büchi Automaton Construction). For an un-
timed Büchi automaton BT derived from a TA T according to Definition 3 it holds that
L(BT) = Lµ(T).

Equivalence Check for Untimed Languages. Given that the zone automaton construc-
tion delivers closed BAs we can reduce the admissibility test Lµ(T) = Lµ(Tι) defined
over infinite languages to an equivalence test over the finite prefixes of these languages,
represented by interpreting the zone automata as NFAs. The following theorem justifies
this reduction.

Theorem 3 (Language Equivalence of Closed BA). Given closed Büchi automata B
and B′, if Lf(B) = Lf(B

′) then L(B) = L(B′).

Clock Bound Repair for Timed Systems 13

Discussion. One may want to adapt the admissibility test so that it only considers di-
vergent traces, e.g., in cases where only unbounded liveness properties need to be pre-
served by a repair. This can be accomplished as follows. First, an overapproximating
non-zenoness test [4] can be applied to T and Tι. If it shows non-zenoness, then one
knows that the respective TA does not include convergent traces. If this test fails, a more
expensive test needs to be developed. It requires a construction of the untimed Büchi
automata using the approach from [3], and subsequently a language equivalence test of
the untimed languages accepted by the untimed BAs using, for instance, the automata-
theoretic constructions proposed in [9].

6 Case Studies and Experimental Evaluation

We have implemented the repair computation and admissibility test in a proof-of-concept
tool called TARTAR. We present the architecture of TARTAR and then evaluate the pro-
posed method by applying TARTAR to several case studies.

Tool Architecture. The control loop of TARTAR, depicted in Figure 3, computes repairs
for a given UPPAAL model and a given property Π using the following steps:

1. Counterexample Creation. TARTAR calls UPPAAL with parameters to compute
and store a shortest symbolic TDT in XML format, in case Π is violated.

2. Diagnostic Trace Creation. Parsing the model and the TDT, TARTAR creates Fbv
H ∧

Fbv
S as defined in Section 4 . Z3 can only solve the MaxSMT problem for quantifier-

free linear real arithmetic. Hence, TARTAR first performs a quantifier elimination
on the constraints ∀δj , cj . T bv ⇒ Φ of Fbv

H .
3. Repair Computation. Next, TARTAR attempts to compute a repair, by using Z3 to

solve the generated quantifier-free MaxSMT instance. In case no solution is found,
TARTAR terminates. Otherwise, TARTAR returns the repair that has been computed
from the model of the MaxSMT solution.

4. Admissibility Check. Using adapted routines provided by the opaal model
checker [11], TARTAR checks the admissibility of the computed repair. To do so,
TARTAR modifies the constraints of the considered UPPAAL model as indicated
by the computed repair. It calls opaal in order to compute the timed transition sys-
tem (TTS) of the original and the repaired UPPAAL model. TARTAR then checks
whether the two TTS have equivalent untimed languages, in which case the repair
is admissible. This check is implemented using the library AutomataLib included
in the package LearnLib [16],

5. Iteration. TARTAR is designed to enumerate all repairs, starting with the minimal
ones, in an iterative loop. To accomplish this, at the end of each iteration i a new
Vbv
i+1 is generated by forcing the bound variation variables that were used in the i-th

repair to 0. This excludes the repair computed in iteration i from further consider-
ation. Using Vbv

i+1, TARTAR iterates back to Step 3 to compute another repair.

14 M. Kölbl et al.

Fig. 3. Control Loop of TARTAR

Evaluation Strategy. The evaluation of
our analysis is based on ideas taken from
mutation testing [18]. Mutation testing
evaluates a test set by systematically mod-
ifying the program code to be tested and
computing the ratio of modifications that
are detected by the test set. Real-time
system models that contain violations of
timed safety properties are not available in
significant numbers. We therefore need to
seed faults in existing models and check
whether those can be found by our automated repair. An objective of mutation testing is
that testing a proportion of the possible modification yields satisfactory results [18].
In order to evaluate repairs for erroneous clock bounds in invariants and transition
guards we seed modifications to all bounds of clock constraints by the amount of
{−10,−1,+1,+0.1·M,+M}, where M is the maximal bound a clock is compared
against in a given model. If a thus seeded modification leads to a syntactically invalid
UPPAAL model, then UPPAAL returns an exception and we ignore this modification.
In analogy to mutation testing, we compute the count of TDTs for which our analysis
finds an admissible repair.

Experiments. We have applied this modification seeding strategy to eight UPPAAL
models (see Table 1). Not all of the models that we considered have been published
with a property that can be violated by mutating a clock constraint. For those models, we
suggest a suitable timed safety property specifying an invariant condition. In particular,
we add a property to the Bando [29] model which ensures that, for as long as the sender
is active, its clock never exceeds the value of 28,116 time units. In the FDDI token
ring protocol [29], the property that we use checks whether the first member of the ring
never remains for more than 140 time units in any given state. The Viking model is
taken from the set of test models of opaal [26]. For this model we use a property that
checks whether one of the Viking processes can only enter a safe state during the first
60 time units. Note that all of these properties are satisfied by the unmodified models.

The results of the clock bound repair computed by TARTAR for all considered mod-
els are summarized in Table 1. The seeded modifications are characterized quantita-
tively by the count #Seed of analyzed modified models, the count #TDT of modified
models that return a TDT for the considered property, the maximal time TUP UPPAAL
needs to create a TDT per analyzed model, and the length Len. of the longest TDT
found. For the computation of a repair we give the count #Rep. of all repairs that were
computed, the count #Adm. of computed admissible repairs, the count of TDTs #Sol. for
which an admissible repair was found, the maximal time TQE that the quantifier elimina-
tion required, the average time effort TR to compute a repair, the standard deviation SDR

for the computation time of a repair, the time effort TAdm for an admissibility check, the
maximal count of variables #Var, and the maximal count of constraints #Con. used in
Vbv
i+1. The maximal memory consumption was at most 17MB for the repair analysis and

478MB for the admissibility test. We performed all experiments on a computer with an
i7-6700K CPU (4.0GHz), 60GB of RAM and a Linux operating system.

Clock Bound Repair for Timed Systems 15

We found 60 TDTs by seeding violations of the timed safety property and TARTAR
returned 204 repairs for these TDTs. TARTAR proposed an admissible repair for 55
(91%) TDTs and at least one repair for 57 (95%) TDTs. For 3 out of the total of 14 TDTs
found for the SBR model no repair was computed since the timeout of the quantifier
elimination was reached after 2 minutes. For all other models, no timeout occurred.

Space limitations do not permit us to describe all models and computed repairs in
detail, we therefore focus on the pacemaker case study. One of the modification in-
creases a location invariant of this model that controls the minimal heart period from
400 to 1,600. The modification allows the pacemaker to delay an induced ventricular
beat for too long so that this violates the property that the time between two ventricular
beats of a heart is never longer than the maximal heart period of 1,000. TARTAR finds
three repairs. Two repairs reduce the maximal time delay between two ventricular or ar-
ticular heart beats of the patient. The repairs are classified as inadmissible. In the model
context this appears to be reasonable since the repairs would restrict the environment of
the pacemaker, and not the pacemaker itself. The third repair is admissible and reduces
the bound modified during the seeding of bound modifications by 600.5. The minimal
heart period is then below or equal to the maximal heart period of 1,000.

Result Interpretation. Our repair strategy minimizes the number of repairs but does
not optimize the computed value. For instance, in the pacemaker model the computed
repair of 600.5 would be a correct and admissible repair even if the value was reduced
to 600, which would be the minimal possible repair value.

A comparison of the values TQE and TR reveals that, perhaps unsurprisingly, the
quantifier elimination step is computationally almost an order of magnitude more ex-
pensive than the repair computation. Overall, the computational cost (TQE + TR) corre-
lates with the number of variables in the constraint system, which depends in turn on
the length of the TDT and the number of clocks referenced along the TDT. Consider,
for instance, that the pacemaker model has a TDT of maximal length 9 with 116 vari-
ables, and the repair requires 0.193s and 2.070MB. On the other hand, the Bando model
produces a longer maximal TDT of length 279 with 1,156 variables and requires 6.555s
and 16.650MB. The impact of the number of clock constraints and clock variables on
the computation costs can be seen, for instance, in the data for the pacemaker and FDDI
models. While the pacemaker model has a shorter TDT than the Viking model (9 vs.
18), the constraint counts (294 vs. 140) of the pacemaker model are higher than for the

Model # Seed # TDT TUP Len. # Rep. # Adm. # Sol. TQE TR SDR TAdm # Var. # Con.

repaired db Fig. 2 35 6 0.006s 4 12 12 6 0.042s 0.023s 0.001 2.329s 25 40
CSMA/CD [17] 90 6 0.012s 2 36 16 6 0.020s 0.021s 0.000 3.060s 16 36

Elevator [8] 35 3 0.004s 1 6 6 3 0.071s 0.028s 0.005 2.374s 6 16
Viking 85 3 0.009s 18 6 6 3 0.032s 0.042s 0.002 2.821s 120 140

Bando [29] 740 12 0.259s 279 26 24 12 17.227s 6.555s 1.776 4.067s 1,156 2,441
Pacemaker [19] 240 7 0.044s 9 34 16 7 0.670s 0.193s 0.021 3.389s 116 294

SBR [23] 65 14 0.066s 81 42 26 9 20.776s 2.568s 0.441 34.120s 256 410
FDDI [29] 100 9 0.025s 5 42 30 9 0.046s 0.029s 0.001 2.493s 59 93

Table 1. Experimental Results for Clock Bound Repair Computation using TARTAR

16 M. Kölbl et al.

Viking model, which coincides with a higher computation time (0.193s vs. 0.042s) and
a higher memory consumption (2.070MB vs. 0.910MB) compared to the Viking model.

We analyzed for every TDT the relationship between the length of the TDT and the
computation time for a repair (Tr = TQE + TR), as well as the relationship between #Var
and Tr by estimating Kendall’s tau [13]. Kendall’s tau is a measurement for the ordinal
association between two measured quantities. A correlation is considered significant
if the probability p that there is actually no correlation in a larger data set is below a
certain threshold. The length of a TDT is significantly related (τ1 = 0.673, p < .001)
to Tr. Also #Var is significantly related (τ2 = 0.759, p < .001) to Tr. #Var contains
clocks for every step of a TDT, hence the combination of trace length and clock count
tends to correlate higher than the trace length on its own. This supports our conjecture
that the computation time of a repair depends on the trace length and the clock count.

The admissibility test appears to be quite efficient, with a maximum computation
time of 34.120s for the SBR model, which is one of the more complex models that
were considered. We observed that most models were action-deterministic, which has a
positive influence on the language equivalence test used during admissibility checking.

7 Conclusion

We have presented an approach to derive minimal repairs for timed reachability prop-
erties of TA and NTA models from TDTs in order to facilitate fault localization and
debugging of such models during the design process. Our approach includes a for-
malization of TDTs using linear real arithmetic, a repair strategy based on MaxSMT
solving, the definition of an admissibility criterion and test for the computed repairs,
the development of a prototypical analysis and repair tool, and the application of the
proposed method to a number of case studies of realistic complexity. To the best of our
knowledge, this is the first rigorous treatment of counterexamples in real-time model
checking. We are also not aware of any existing repair approaches for TA or NTA mod-
els. This makes a comparative experimental evaluation impossible. We have nonetheless
observed that our analysis computes a significant number of admissible repairs within
realistic computation time bounds and memory consumption.

Future research will address the development and implementation of repair strate-
gies for further syntactic features in TAs and NTAs, including false comparison op-
erators in invariants and guards, erroneous clock variable references, superfluous or
missing resets for clocks, and wrong urgent state choices. We will furthermore address
the interplay between different repairs and develop refined strategies to determine their
admissibility. Finally, we plan to extend the approach developed in this paper to derive
criteria for the actual causation of timing property violations in NTA models based on
the counterfactual reasoning paradigm for causation.

Acknowledgments. We wish to thank Nikolaj Bjorner and Zvonimir Pavlinovic for ad-
vice on the use of Z3. We are grateful to Sarah Stoll for helping us with the statistical
evaluation of the experimental results. This work is in part supported by the National
Science Foundation (NSF) under grant CCF-1350574.

Clock Bound Repair for Timed Systems 17

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2(3),
117–126 (1987)

2. Alur, R., Bodı́k, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit, H., Madhusu-
dan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A., Singh, R., Solar-Lezama,
A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series, D: Information and Communication
Security, vol. 40, pp. 1–25. IOS Press (2015). https://doi.org/10.3233/978-1-61499-495-4-1,
https://doi.org/10.3233/978-1-61499-495-4-1

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
5. Ben-Abdallah, H., Leue, S.: Timing constraints in message sequence chart specifications. In:

FORTE. IFIP Conference Proceedings, vol. 107, pp. 91–106. Chapman & Hall (1997)
6. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for

automatic verification of real-time systems. In: Hybrid Systems. Lecture Notes in Computer
Science, vol. 1066, pp. 232–243. Springer (1995)

7. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Lectures on
Concurrency and Petri Nets. Lecture Notes in Computer Science, vol. 3098, pp. 87–124.
Springer (2003)

8. Tiage Brito: Uppaal elevator example. https://github.com/tfbrito/UPPAAL
(2015), accessed: 2019-01-20

9. Clarke, E.M., Draghicescu, I.A., Kurshan, R.P.: A unified approach for showing language in-
clusion and equivalence between various types of omega-automata. Inf. Process. Lett. 46(6),
301–308 (1993)

10. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking.
Springer (2018)

11. Dalsgaard, A.E., Hansen, R.R., Jørgensen, K.Y., Larsen, K.G., Olesen, M.C., Olsen, P., Srba,
J.: opaal: A lattice model checker. In: NASA Formal Methods. Lecture Notes in Computer
Science, vol. 6617, pp. 487–493. Springer (2011)

12. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed
automata. In: FORMATS. Lecture Notes in Computer Science, vol. 4763, pp. 114–129.
Springer (2007)

13. Field, A.: Discovering statistics using IBM SPSS statistics: and sex and drugs and rock ’n’
roll, 4th Edition. Sage (2013)

14. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. Inf. Comput. 111(2), 193–244 (1994)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation,
Second Edition. Addison-Wesley (2000)

16. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib - A framework for active au-
tomata learning. In: CAV (1). Lecture Notes in Computer Science, vol. 9206, pp. 487–495.
Springer (2015)

17. Jensen, H.E., Larsen, K.G., Skou, A.: Modelling and analysis of a collision avoidance pro-
tocol using spin and uppaal. In: The Spin Verification System. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 32, pp. 33–50. DIMACS/AMS (1996)

18. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Software Eng. 37(5), 649–678 (2011)

19. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of
a dual chamber implantable pacemaker. In: TACAS. Lecture Notes in Computer Science,
vol. 7214, pp. 188–203. Springer (2012)

https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.3233/978-1-61499-495-4-1
https://github.com/tfbrito/UPPAAL

18 M. Kölbl et al.

20. Jose, M., Majumdar, R.: Bug-assist: Assisting fault localization in ANSI-C programs. In:
CAV. Lecture Notes in Computer Science, vol. 6806, pp. 504–509. Springer (2011)

21. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability.
In: PLDI. pp. 437–446. ACM (2011)

22. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and semantic-guided re-
pair synthesis via programming by examples. In: Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE 2017. pp. 593–604. ACM (2017).
https://doi.org/10.1145/3106237.3106309, https://doi.org/10.1145/3106237.
3106309

23. Liu, S.: Analysing Timed Traces using SMT Solving. Master’s thesis, University of Konstanz
(2018)

24. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer Science,
vol. 92. Springer (1980)

25. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer (2008)

26. opaal: opaal test folder. http://opaal-modelchecker.com/opaal-ltsmin/
(2011), accessed: 2018-11-08

27. Polsen, D.B., van Vliet, J.: Concrete Delays for Symbolic Traces. Master’s the-
sis, Department of Computer Science, Aalborg University (2010), available from
https://projekter.aau.dk/projekter/files/32183338/report.pdf

28. Reynolds, A., Kuncak, V., Tinelli, C., Barrett, C., Deters, M.: Refutation-based synthesis
in smt. Formal Methods in System Design (Feb 2017). https://doi.org/10.1007/s10703-017-
0270-2, https://doi.org/10.1007/s10703-017-0270-2

29. Uppaal: Uppaal benchmarks. http://www.it.uu.se/research/group/darts/
uppaal/benchmarks/#benchmarks (2017), accessed: 2019-01-20

30. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communicat-
ing systems by constraint-solving. In: FORTE. IFIP Conference Proceedings, vol. 6,
pp. 243–258. Chapman & Hall (1994), full version of the paper is available from
http://www.it.uu.se/research/group/darts/papers/texts/wpd-forte94-full.pdf

31. Yovine, S.: KRONOS: A verification tool for real-time systems. STTT 1(1-2), 123–133
(1997)

https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
http://opaal-modelchecker.com/opaal-ltsmin/
https://doi.org/10.1007/s10703-017-0270-2
https://doi.org/10.1007/s10703-017-0270-2
https://doi.org/10.1007/s10703-017-0270-2
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#benchmarks
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#benchmarks

	Clock Bound Repair for Timed Systems
	Introduction
	Preliminaries
	Logical Encoding of Timed Diagnostic Traces
	Repair
	Admissibility of Repair
	Case Studies and Experimental Evaluation
	Conclusion

