
ATVA

EASY TO USE

C
O

NSIS
TENT

DOCUMENTED

C
O

M
PLETE

R
EPLIC

A
B

LE

Artifact

*

*

*

APPROVED

An Efficient Algorithm for Computing
Causal Trace Sets in Causality Checking

Martin Kölbl and Stefan Leue

University of Konstanz, Germany

Abstract. Causality Checking [LL13a] has been proposed as a finite
state space exploration technique which computes ordered sequences of
events that are considered to cause the violation of a reachability prop-
erty. A crucial point in the implementation of Causality Checking is the
computation and storage of all minimal counterexamples found during
state space exploration. We refer to the set of all minimal counterexam-
ples as a causal trace set. However, the Duplicate State Prefix Matching
(DSPM) Algorithm that is currently used in Causality Checking only
under-approximates the causal trace set. As we argue, without the ap-
proximation the DSPM algorithm is inefficient. We propose the, to the
best of our knowledge, first efficient algorithm that precisely computes a
causal trace set, avoiding approximation, called Causal Trace Backward
Search (CTBS). We compare the DSPM and CTBS algorithms with re-
spect to their worst case complexities, and by applying them to several
case studies.

1 Introduction

Causality Checking [LL13a] has been proposed as a finite state space exploration
technique which computes sets of minimal ordered sequences of events that are
considered to be causal for the violation of a reachability property. The notion
of causality used in Causality Checking is an adaptation of the counterfactual
causal analysis proposed in the seminal work by Halpern and Pearl on actual
causation [HP05, Hal15] to a trace-based model of computation. The sets are
referred to as causality classes and are computed in an automated fashion. The
union of all causality classes, corresponding to their logical disjunction, is referred
to as an actual cause. A causal trace is minimal when none of its non-contiguous
subtraces leads to a property violation.

Causality Checking has been implemented in the SpinCause tool [LL14],
which computes actual causes for SPIN [Hol04] models. More comprehensively,
the QuantUM tool [LL11] implements Causality Checking in order to compute
causes for the reachability of hazardous system states in SysML [Obj17] models.
QuantUM represents actual causes as formulae in event order logic [LL13b] and
visualizes them in the form of Fault Trees [VGRH02], which can then be used as
evidence in safety cases for safety-critical systems. We illustrate the application
of QuantUM to safety analyses for automotive autonomous driving architectures
in [KL18].

In this paper we restrict ourselves to considering hazards that can be detected
by reachability analysis on the state space defined by the model that is being con-
sidered. When the state space exploration during Causality Checking, typically
implemented using a depth-first (DFS) or breadth-first search (BFS), reaches a
hazardous state, a trace leading into this state, called a counterexample, will be
generated. In implementations of Causality Checking, the state space traversal
is usually implemented using a modified model checking algorithm. The modi-
fications concern the fact that we need to explore all executions of the model,
including property violating counterexamples and non-violating executions, in
order to implement the counterfactual-style actual cause conditions in Causality
Checking.

Pivotal for the performance of Causality Checking is the computation and
storage of all minimal counterexamples found during state space exploration.
Existing implementations of Causality Checking use a prefix tree data structure
to store system executions as well as a parallelization of the search in order
to improve performance. A crucial aspect in this regard is how the state space
exploration deals with the situation in which a state s is visited that has been
visited before during the search. s is then referred to as a duplicate state. Both
a BFS and a DFS would not further explore a duplicate state, since doing so
would lead to an exponential time penalty. However, when performing Causality
Checking all executions need to be explored, irrespective of whether they contain
a state which, due to the search strategy employed, happens to be a duplicate
state. As a consequence, during the exploration of the system executions it is
necessary to concatenate the prefixes leading from the initial system state into a
duplicate state with all possible suffixes starting with the duplicate state. This
should be done efficiently, in particular by behaving benevolently on practical
examples in the face of a potential exponential time and space penalty.

For performance reasons the algorithm that is implemented in SpinCause
and QuantUM, which we refer to as Duplicate State Prefix Matching (DSPM)
and which is documented in [Lei15], under-approximates the computation of the
execution suffixes beginning in duplicate states since it cannot guarantee that all
of them will be considered. It is the objective of this paper to propose an algo-
rithm that deals with duplicates precisely, without relying on an approximation,
and which is nonetheless efficient. The algorithm that we propose, which we refer
to as Causal Trace Backward Search (CTBS), performs an efficient exploration
and analysis of all counterexamples found during the state space exploration. It
works on-the-fly and returns preliminary results at any point during the compu-
tation. While DSPM generates valuable approximations for realistic models, as
we shall see, it is incomplete for Causality Checking, whereas CTBS is complete.

A Motivating Example. Consider the transition system depicted in Figure 1(a).
Causality Checking conceptually works on transition systems, which can be au-
tomatically derived from higher-level modeling languages, such as SysML. As-
sume that states sf1 and sf2 violate a uniquely defined reachability property ϕ,
corresponding to the occurrence of a hazard in the underlying domain model.
We henceforth refer to these states as failure states. In effect, in the context of

s0start

s3 s2

sf1

s1

s4 s5

sf2

b

c

b

a

c

a

d

ae

(a) Transition System

s2, s5

sf1, sf2root

s3

s0

s4

s0

s1

s0

a

b

c

a

b

e

d

(b) BCT tree with 3 minimal coun-
terexamples

Fig. 1. Running Example

Causality Checking, reaching a failure state corresponds to the effect for which
we compute the actual causes.

The action traces abc, bac and deac are minimal counterexamples for the
violation of φ. They are minimal since they do not contain a non-contiguous
subtrace that also is a counterexample of ϕ. In this sense, abac is a non-minimal
counterexample, since it contains abc as a non-contiguous subtrace. We refer to
the set of all minimal counterexamples as causal trace set. The causality classes
defined in Causality Checking will be constructed from the causal trace set by
grouping all traces that contain the same set of actions into one such class. In
the example, the traces abc and bac form one causality class.

A standard DFS or BFS, modified to compute all traces, would not return
the trace bac in case it had previously explored the trace abc, since state s2 would
then be a duplicate state. We, hence, need to ensure that a state space explo-
ration concatenates all trace prefixes starting in the initial state and leading into
any duplicate state with all trace suffixes that start in the respective duplicate
state. In the example this means that the prefix ba, for instance, needs to be
concatenated with the suffixes c and ac. Notice that the resulting trace baac will
not be included in the causal trace set since it is not a minimal counterexample.

As we shall see, the DSPM algorithm under-approximates this concatena-
tion step by not considering all suffixes starting in a duplicate state, in partic-
ular when a prefix trace leads into a duplicate state while traversing another
duplicate state. Assume DSPM to explore abc, b and then de, which leads to
duplicate state s3. At this point, no suffixes starting in s3 can be added since
none exist. Assume ba to be explored next, leading to a second duplicate state
s2. The suffix traces c and ac would be concatenated to the prefix ba. DSPM
would in this situation disregard concatenating the suffixes of duplicate states
via which s2 can be reached, such as s3, and therefore returns an incomplete
result by disregarding, for instance, deac. Notice that this incompleteness would
not occur in case bac was explored first, followed by de. In this situation DSPM
would correctly perform all concatenations of prefixes and suffixes at all du-

plicate states. The algorithm CTBS that we propose in this paper completely
handles all concatenations entailed by duplicate states.

Related Work. There are only few papers available that address the compu-
tation of all minimal counterexamples for reachability properties required to
compute causality classes [LL14, Lei15, BHK+15]. As we argue above, the algo-
rithm described in [LL14,Lei15] only computes an approximation. The algorithm
in [BHK+15] is also approximative since it is based on bounded model check-
ing. We propose an algorithm that can in principle compute complete causality
classes. Note that minimal traces in a causality class are different from mini-
mal length paths in graphs, which is why the vast literature on shortest path
searches on graphs [ES12] and the computation of minimal length counterexam-
ples [AL10,HKD09,SB05,HK06] is not directly applicable to our problem.

Structure of the Paper. We discuss the foundations of our work in Section 2.
In Section 3, we present the algorithm proposed in [Lei15] to compute a causal
trace set, propose a new algorithm and compare the computational complexity of
both algorithms. We qualitatively and quantitatively compare the algorithms by
several case studies in Section 4. In Section 5, we draw conclusions and suggest
future developments.

2 Preliminaries

Causality Checking uses a modified state space exploration algorithm to traverse
the state space of a transition system.

Definition 1 (Transition System (TS) [BK+08]). A transition system is a
tuple (S,Act, →, I, AP,L) where S is a finite set of states, Act is a finite set of
actions, → ⊆ S×Act×S is a transition relation, I ⊆ S is a set of initial states,
AP is a set of atomic propositions, and L : S → 2AP is a labeling function.

The standard state space exploration strategies used in depth-first-search (DFS)
or breath-first-search (BFS) are modified for the purpose of Causality Checking
in two fundamental ways. First, the state space exploration continues after a
first property violating state is found. Second, when reaching a duplicate state,
a concatenation operation as explained above needs to be performed.

An execution ρ of an TS is a possibly infinite alternating sequence s0a0s1a1 . . .
of states and actions that starts in the initial state and any triple (si, ai, si+1),
called a transition, is an element in →. During state space exploration a state
s may be visited twice. We then call s a duplicate state. A finite execution
s0a0s1 . . . sn of a TS where the last state sn is a duplicate state is called a dupli-
cate execution. A finite execution σ = s0a0s1 . . . sn where sn 2 ϕ, for an invariant
property ϕ, is called a counterexample. We then write σ 2 ϕ. An action trace
a0a1 . . . is a sequence of actions. In the following, we refer to an action trace
simply as a trace.

A trace σ′ = a′0 . . . a
′
n contains another trace σ = a0 . . . am when σ is a

non-contiguous subtrace of σ′, written as σ v σ′. Formally, σ v σ′ holds iff the

word a′0 . . . a
′
n is contained in the language obtained from the regular expression

Σ∗a0Σ
∗a1Σ

∗ . . . Σ∗amΣ
∗, where Σ = {a′0 . . . a′n}. We write σ @ σ′ iff σ v σ′

and σ 6= σ′. Let η = s0a0 . . . amsm+1 and η′ = s′0a
′
0 . . . a

′
ns
′
n+1 executions from

which traces σ and σ′, respectively, have been derived by projection. We say η′

contains η iff σ v σ′. The v relation is transitive.
For space efficiency reasons, traces are stored using a prefix tree [Fre60] data

structure. For any tree, the path of some vertex is defined as a backwards se-
quence of edges that leads from the considered vertex to the root vertex r. Note
that the path of any vertex is unique. A trace of a path is the projection of the
respective path on the set of actions. A path p contains another path p′ iff the
trace of p contains the trace of p′.

3 Algorithms for Computing a Causal Trace Set

Definition of Causal Trace Set. The definition of the causal trace set relies on two
essential properties of the traces included in the set. First, every counterexample
needs to be represented by an element of the Causal Trace Set (completeness),
and second, the causal trace set contains only traces corresponding to minimal
counterexamples.

Definition 2 (Causal Trace Set). Assume a TS T and a safety property ϕ.
Let σ and σ′ be traces in T . A causal trace set is a subset Ψ of the traces of T
that satisfies following conditions:

– TC1 (completeness): For every σ′ that satisfies σ′ 2 ϕ there exists a σ such
that σ ∈ Ψ and σ v σ′.

– TC2 (minimality): Ψ is minimal, that is to say, no σ ∈ Ψ is a true subtrace
of σ′ ∈ Ψ .

We call a trace in Ψ a causal trace.

Duplicate State Prefix Matching Algorithm (DSPM). We now discuss the DSPM
algorithm in more detail. When the state space exploration encounters a coun-
terexample or a duplicate execution, it hands the execution over to the DSPM
algorithm. The DSPM algorithm compares new with existing counterexamples
and only stores minimal ones. Duplicate executions are stored in a list until the
state space exploration terminates. They are then concatenated with previously
stored minimal counterexamples which contain the respective duplicate state.
The DSPM pseudo code can be found in [Lei15].

As discussed above, DSPM computes a potentially incomplete causal trace
set when it is possible to reach a duplicate state via another duplicate state.
This is due to the fact that the duplicate processing happens only after all
counterexamples have been computed. The order of processing of duplicates
depends on the search order used by the state space exploration algorithm. As
explained above, the order of encountering duplicate states and their processing
may lead to an incompleteness in the discovery of causal traces. It is not obvious

whether there is an ordering that would avoid this incompleteness. In particular,
ordering the processing of duplicate states according to the length of the trace
needed to reach them will not solve the problem, as we found out.

Causal Trace Backward Search Algorithm (CTBS). The CTBS algorithm com-
putes minimal counterexamples using a Backwards Causal Trace (BCT) tree
data structure. Consider the example BCT tree depicted in Figure 1(b) which is
derived from the transition system in Figure 1(a). CTBS is interleaved with the
state space exploration algorithm. When the state space exploration encounters
an execution corresponding to a counterexample, to reaching a non-property
violating trace ending in a terminal state or to reaching a duplicate state, the
corresponding execution will be handed over to CTBS. CTBS maintains the
BCT tree data structure, which is implemented as a prefix tree. The edges of
the BCT are labeled with actions. The root vertex of this tree is labeled with
all failure states of the system, in the example with the states sf1 and sf2. The
non-root vertices are labeled with a set of states. These states are equivalent in
the sense that one can reach one of the failure states from them via an identical
trace. The trace is defined by the sequence of action labels along the edges of the
BCT tree that are encountered on the path from the considered vertex to the
root vertex. As an example, the vertex labeled s2, s5 implies that from states s2
and s5 a failure state can be reached via a trace c. Notice that such traces cor-
respond to suffixes of counterexamples. When a suffix contains an initial state,
then it represents a causal trace. As an example consider the trace abc leading
from the leaf vertex s0 to the root vertex.

The CTBS algorithm is designed to satisfy two major requirements: 1) It
needs to ensure that all traces in the system are completely analyzed, indepen-
dently of the search order during the state space exploration. 2) The algorithm
should be efficient wrt. both space and time, in particular by storing only mini-
mal counterexamples and by ignoring non-minimal counterexamples.

CTBS computes traces as follows. Assume the BCT tree to be labeled by all
failure states. When CTBS receives an execution, it will first split the execution
into the transition triples (si, ai, si+1) that it is built of. In the sequel we will
refer to si+1 as the target state of that transition. For each of these transition
triples we ensure that there is a child vertex labeled by si+1 for a father vertex
labeled si in the BCT tree. If the child vertex does not exist, it will be added
to the tree. The edge leading to this child will be labeled with ai. If the child
vertex exists, but the edge to the child is labeled by some aj 6= ai, then a new
child node labeled si+1 will be added and the edge leading to this note will be
labeled with ai.

In order to ensure efficiency, the algorithm exploits the observation that for
each state s in a minimal counterexample, there is no shorter trace to reach a
failure state from s than the suffix of the trace corresponding to the counterex-
ample that starts in s. This implies that all non-minimal suffixes can be removed
from the BCT tree, as expressed by the prune rules PR1 and PR2. To illustrate
this point, assume that a given BCT tree contains a path bac and that the state
space exploration hands the trace abac over to CTBS. Assume further that abac

will be split into transition triples and integrated into the BCT tree. Since bac
is contained in abac, the vertex that stores abac and the complete subtree that
hangs off it will be pruned from the BCT tree.

PR1. The CTBS algorithm deletes a vertex when the trace of the vertex
contains a shorter counterexample.

Lemma 1 shows that the trace of a vertex deleted by prune rule PR1 is not a
suffix of a minimal counterexample.

Lemma 1. A suffix that contains a shorter initial trace is not a suffix of a
minimal counterexample.

Proof. Assume a trace t and a shorter initial trace t′ that satisfies t′ @ t, and an
arbitrary minimal counterexample tc with suffix t. t being a suffix of tc implies
that t v tc. t v tc and the assumption t′ @ t interrelate transitively, which
yields t′ @ tc. t

′ is a counterexample since it is initial. As consequence, any
counterexample tc is not minimal since t′ is minimal. ut

A second prune rule removes a state label from a vertex when another vertex
labeled with this state has a shorter trace to reach a failure state. Assume a
vertex labeled with s2 to be in the BCT tree of Figure 1(b) from which the root
vertex can be reached via trace ac. The BCT tree contains a vertex labeled s2s5
which has a trace c. The trace of vertex s2 contains the trace of vertex s2s5. As
a consequence, prune rule PR2 removes the state label s2 from the respective
vertex and thereby removes the longer suffix ac from the BCT tree.

PR2. The algorithm CTBS removes a state s from a vertex v whenever the
trace tv of v contains the trace of another vertex v′ labeled with s.

Lemma 2 shows that a counterexample with a suffix that is equivalent to the
trace of the vertex v in PR2 cannot be minimal.

Lemma 2. Any counterexample with a suffix starting in a state s in vertex v is
not minimal when another vertex v′ with state s exists and the traces tv contains
trace tv′ .

Proof. Assume two different vertices v and v′ with state s and with traces tv and
tv′ that satisfy tv′ v tv, and an arbitrary counterexample c with suffix tv′ . The
counterexample c is not minimal since we can construct a shorter counterexample
than c. Notice that tv 6= tv′ otherwise v = v′. We split c in state s in a prefix
s0a0 . . . s and the suffix tv = s . . . sf , prepend the prefix to the suffix tv′ = s . . . sf ′

and result with a counterexample c′ = s0a0 . . . s . . . sf ′ . The assumption tv′ v tv
with tv 6= tv′ results in tv′ @ tv. c′ @ c holds because the prefixes of c and c′

before state s are equivalent by construction and for the suffixes tv′ @ tv holds.
Thus, c′ is shorter than c and c is not minimal. ut

The pseudo code of the CTBS algorithm is shown in Listing 1.1. The algo-
rithm uses four data structures: The vertex root is the root vertex of the prefix
tree, a state initial stores the initial state of the TS, a map v map returns ver-
tices that contain a certain state, and a map t map returns a list of transitions
with a certain state as the target state.

1 Vertex root; State initial;

2 Map <State , Set <Vertex >> v_map;

3 Map <State , Set <Transition >> t_map;

4

5 function addExecution(Exection e)

6 IF e.hasBad ()

7 //add property violating states to root

8 root.addState(e.lastState ());

9 initial = e.firstState ();

10 // iterate execution transitions

11 FOR Transition t in e

12 t_map.get(t.s2).add(t);

13 addTransition(t.s1, t.act , t.s2);

14

15 function addTransition(s1, act , s2)

16 //get all vertices with state s2

17 FOR Vertex v2 in v_map(s2)

18 //get father vertex reachable by label act

19 Vertex v1 = v2.getFather(act)

20 // ensure restriction PR1 and PR2

21 IF causalPathShorter(v1) || otherShorter(v1, s1)

22 continue;

23 v1.add(s1);

24 checkOtherLonger(v1 , s1); // enforce PR2

25 IF s1 == initial

26 checkAllPaths(v1); // enforce PR1

27 return;

28 FOR Transition t’ in t_map.get(s1)

29 addTransition(t’.s1, t’.act , t’.s2);

Listing 1.1. Sketch of Backward Causal Trace Search Algorithm

The algorithm calls the function addExecution iteratively for a counterex-
ample or a duplicate execution. If the function is called with a counterexample,
the last state of the execution violates the property and this state is added to
the root (lines 6-8). For counterexamples and duplicate executions, the algo-
rithm saves the initial state which is the same state for all executions of a TS in
variable initial (line 9).

The algorithm adds the transitions belonging to an execution to the t map
and calls, for every transition t = (s1, a, s2), the function addTransition (line
11-13). This function checks for every vertex v with state s2 (line 17) whether
a vertex v1 with state s1 and edge (v1, a, v) (line 19) does satisfy one of the
prune rules PR1 and PR2 (line 21), and in this case continues with the next

vertex (line 22). Otherwise, both prune rules are not satisfied, s1 is part of a
new minimal suffix and the state s1 is added to v1 (line 23). The algorithm then
checks whether any other path of a vertex with state s1 now contains the path
of v1 (line 24) and removes s1 from such a vertex. If s1 is an initial state, then
a causal trace is found and all other paths in the tree are checked to determine
whether they contain the new causal trace (line 26). The transitions of a prefix
that reaches state s1 can already be contained in the transition list t map and
need again to be added to the BCT tree. Therefore, the function calls itself
recursively for all transitions t′ with s1 as a target state (line 28-29). In order
to ensure a clear presentation, we removed several optimization from the pseudo
code. Most importantly, in order to optimize performance addExecution calls
addTransition only for transitions not yet in t map. Furthermore, if v1 in
the function addTransition already contains the state s1, than this vertex is
ignored and the recursion is not called.

Correctness of the CTBS algorithm. First, it should be noted that CTBS delivers
a sound BCT tree since every trace in the computed BCT tree corresponds to
an execution of the TS that we consider. The CTBS algorithm is correct iff the
set of traces that the BCT tree represents is a causal trace set, in other words,
if this set satisfies conditions TC1 and TC2 from Definition 2.

Lemma 3. The set of traces represented by the BCT tree computed by the CTBS
algorithm satisfies condition TC1 of Definition 2.

Proof. Assume a set Ψ of traces computed by the CTBS algorithm for a set of
executions that is returned by a state space exploration algorithm for a TS S,
and a counterexample t that does not contain any trace in Ψ . By the construction
of Ψ , all traces in Ψ are contained in a BCT tree PT . Obviously, t is not a trace
of the tree, otherwise, t itself is in Ψ . t is not a trace in the BCT tree in two
cases.

1. t was never added as a trace to PT . This means that there is in the sequence
of transitions that corresponds to trace t at least one transition (si, ai, si+1)
so that si is not a target state of any other transition in PT . This means
that this transition was never handed over by the state space exploration
algorithm. A state space exploration algorithm explores the full state space
of an S and every transition of S is contained in at least one execution. Since
t contains a transition that is not contained in S, t is not a trace of S. This
contradicts the assumption that t is a counterexample of S.

2. t was deleted by a prune rule because t contains a shorter counterexample
t′. In that case, t′ is a trace in Ψ . Otherwise, t′ is also deleted because of an
even shorter counterexample that is contained in PT .

Either t does not exist or contains a counterexample in PT . Both cases contradict
the assumption that a counterexample t exists that contains no trace in Ψ . ut

Notice that this completeness result also holds for the CTBS algorithm when
it is used with a BFS algorithm for the state space exploration. Assume that the

completeness does not hold. Then there would be a counterexample of length
shorter than the current search depth that contains an unexplored transition,
which means that the corresponding trace is not included in the BCT tree PT .
This, however, contradicts the property of a BFS that all states up to the current
search depth have been explored. This property is beneficial in case we need
to bound the search depth in causality checking for very large models since it
ensures that the causal traces up to the current search depth form a causal trace
set, which implies completeness up to the search depth reached.

Lemma 4. The set of traces in the BCT tree computed by the CTBS algorithm
contains only minimal counterexamples.

Proof. Assume a BCT tree PT computed by the CTBS algorithm for a TS S,
and a vertex with an initial state s0 and a non-minimal trace t contained in PT .
t is a non-minimal trace if another counterexample t′ exists in S with t′ @ t.
There are two cases where t′ can exist. In the first case, t′ is not contained in PT
and this case violates Lemma 3. In the second case, t′ is contained in PT . In this
case a vertex v with the initial state s0 exists for t. Also, for t a corresponding
vertex v′ exists. One of the vertices already contains s0 and with adding s0 to
the other vertex, the corresponding traces t and t′ are compared by prune rule
PR1 when determining whether the vertices of t or t′ can be removed. This leads
to two cases. If v already contains s0, then s0 is removed from v. Otherwise, if v′

already contains s0, then s0 is removed from v. In both cases, v does not contain
s0. This contradicts the assumption that t is an initial trace. ut

The correctness of CBTS follows from Lemmas 3 and 4.

Complexity Considerations. The worst-case size of the causal trace set is bounded
by the number of traces in a TS, since all traces can be minimal traces. A mini-
mal trace can be an arbitrary sequence of actions from the action set Act, where
the corresponding execution of the TS contains any state at most once. Traces
generated by loops in the TS do not need to be considered in the complexity
analysis, as can easily be seen. Assume a minimal trace that reaches a state
twice, then the subtrace between reaching the state for the first and the second
time corresponds to a loop in the TS. A trace not including this loop is shorter
and reaches the same end state as the trace that contains the loop, which means
that the trace including the loop cannot be minimal. In the worst case, the num-
ber of traces in a TS is |Act|n−1, where |Act| is the number of actions and n is
the number of states in the TS.

The worst case complexity of the DSPM algorithm was shown in [Lei15] to
be in O(|t|2) where |t| is the number of all traces in an TS. The complexity is
driven by the comparison of every trace in t with all causal traces, which in the
worst case can be all traces.

The worst case complexity of the CTBS algorithm is also dominated by the
number of trace comparisons. The algorithm processes iteratively the set of tran-
sitions E of a TS. The number of transitions |E| is at most |t| in the worst case
in which all traces t consist of a single transition. A transition can only be added

once to a trace in the BCT tree. Otherwise the trace would not be minimal
since it would contain the target state of the transition twice. In the worst case
a transition is added to all traces in the BCT tree. When adding a state to a
vertex, the prune rules need to compare the trace of this vertex in the worst case
twice with all other traces. We conclude that the CTBS algorithm has a worst
case complexity of |E| · |t| · 2 · |t| ∈ O(|t|3).

In conclusion, under worst case complexity considerations, DSPM scales bet-
ter than CTBS. The approximation performed by the DSPM algorithm does not
affect the worst case runtime since the trace set t consists of all traces, including
the traces not analyzed by DSPM.

The worst case complexity of computing a causal trace set depends on the
number of all traces that need to be computed, which as shown above can be
exponential. However, for realistic models not all traces are minimal, and hence
not causal. This means that there is significant potential in removing non-causal
traces. The DSPM algorithm always analyzes complete counterexamples. In con-
trast, due to the prune rules the CTBS algorithm compares and prunes suffixes
before a complete counterexample is analyzed. This is the essential performance
advantage of the CTBS algorithm over DSPM, as will become obvious during
the experimental evaluation.

4 Case Study and Experimental Evaluation

We now compare the DSPM and CTSB algorithms by analyzing several models of
different size taken from [Lei15]. We implemented four variants of the considered
algorithms:

(1) the CTBS algorithm based on BFS state space exploration,
(2) the CTBS algorithm based on DFS state space exploration,
(3) a modified version of the DSPM algorithm, and
(4) to obtain a baseline, an algorithm that ignores all duplicate states, i.e., be-

haves like a standard BFS when encountering a duplicate state.

These implementations are integrated in the QuantUM tool and use a modified
version the model checker SpinJa [dJR10] for the state space exploration. We
modified the above described DSPM algorithm in order to address its insufficien-
cies with respect to treating multiple duplicates encountered during state space
exploration. This is accomplished by computing all minimal counterexamples by
repeatedly iterating through all duplicate states stored in a list maintained by
DSPM until no new counterexample is generated.

All analyses were performed on a computer with a E5-2697 CPU (2.7GHz),
785GB of RAM and a 64 bit Linux operating system. The analysis algorithms
were mapped to two threads: one thread performed the state space exploration
and another executed the algorithm for the causal trace set computation. The
state space exploration was based on a BFS as long as nothing else is stated. A
timeout for the experiments was set to two hours.

Model States Transitions Depth #Causal #Class TimeLast TimeR Memory
Railroad crossing 143 373 37 62 4 <00:01 00:04 51MB

Airbag 3,456 14,257 35 484 5 <00:01 07:09 62MB
Odometer 4,032 19,624 55 13 3 <00:01 00:09 70MB
FFU Star 207,052 964,695 37/60 458 16 <00:01 timeout 545MB
FFU ECU 235,765 90,775,575 31/60 509 19 <00:01 timeout 896MB
ASR ch1 680,897 3,745,635 37/60 67200 2 02:00:05 timeout 3,747MB

ASR Reduced 14,222,115 45,997,298 39/60 76428 2 01:45:58 timeout 91,814MB

Table 1. Experimental results for CTBS algorithm (variant 1).

Table 1 shows the results of the CTBS algorithm. The input model is char-
acterized by the number of states that were explored, the number of transitions
traversed and the maximal search depth. For the larger models FFU Star, FFU
ECU, ASR ch1 and ASR Reduced we limited the search depth to 60. In case of
a timeout, the current search depth reached by the CTBS algorithm is given
in column Depth. For all of the four larger models, the search depth limit was
reached when the timeout occurred. We indicate time values using the format
(hours:minutes:seconds). The column #Causal gives the size of the causal trace
set that was computed, #Class gives the number of causal classes that were de-
tected, and TimeLast indicates the period of time after starting the experiment
when the last causal trace was found. The computation time consumed by the
analysis is given in the TimeR column, and the consumed memory in the column
Memory. Table 2 shows some experimental results for the algorithm variants 4),
3) and 2).

In order to compare the algorithm variants qualitatively, we analyzed the
railroad crossing example taken from [Lei15] with the CTBS variant 1) using
the QuantUM tool. We obtained the fault tree depicted in Figure 2. The fault
tree has four subtrees that represent the causality classes Class 0 . . . Class 3.
A class is created by all causal traces with the same set of actions. The number of
causal traces that a class contains is depicted next to the class name, for instance,
Class 0 contains 20 causal traces. These causal traces lead to a partial order
representing 20 different linear orderings of the 5 class events in Class 0. Notice
that the type of fault tree that we use is a dynamic fault tree, which means that
the order of the occurrence of events on one of its and-branches is assumed to
be linear from the top to the bottom. In effect, Causality Checking computes a
partial order of these events that cannot be directly depicted in a fault tree. To
describe these partial order constraints we use event order logic, and we omit
these ordering constraints here.

Quantitative Result Interpretation. The algorithm variant 4) defines a base line
for the quantitative performance of the other algorithm variants when analyzing
the different models. The highest analysis time with this algorithm is observed for
the model ASR Reduced with a value of 57:57. The algorithm variants 1), 2) and
3) have a much higher computation time demand. As opposed to the baseline,
these algorithms experienced a timeout for the models FFU Star, FFU ECU, ASR
ch1 and ASR Reduced. We can conclude that the penalty for processing duplicate

Ignore Duplicate Traces mod. DSPM algorithm CTBS with DFS
Model #Causal #Class TimeR #Causal #Class TimeR #Causal #Class TimeR

Railroad crossing 2 2 00:04 48 4 timeout 62 3 00:04
Airbag 5 5 00:09 62 7 timeout 484 5 39:46

Odometer 3 3 00:07 6 3 timeout 13 3 00:08
FFU Star 16 16 00:47 110 41 timeout 4,768 289 timeout
FFU ECU 19 19 00:29 149 7 timeout 2 2 timeout
ASR ch1 2 2 01:50 31 2 timeout 9,607 20 timeout

ASR Reduced 3 3 57:57 27 3 timeout 34,972 7 timeout

Table 2. Experimental results for the algorithm variants 4), 3) and 2).

states completely is a significant increase in computation time. Algorithm variant
3), which corresponds to the approximating DSPM algorithm, experiences a
timeout for all models, whereas CTBS in both variants 1) and 2) is able to
analyze some models without timeout. This points to a performance advantage
of CTBS over DPSM.

More generally, the advantage of CTBS over DPSM in terms of its perfor-
mance on practical models can be argued as follows. First, the CTBS can return
preliminary results. In particular, a causal trace set can be constructed when
using a BFS state space exploration even when the computation aborts for in-
stance due to a timeout. The analysis of the model FFU Star guarantees that all
causal traces up to depth 37 when the timeout occurs are found, and that traces
that were found up to that depth are actually causal. The same holds true for the
analysis of model FFU ECU at depth 31, for the model ASR ch1 at depth 37 and
for the model ASR Reduced at depth 39. Notice that since we return causal trace
sets in these situations, the results are complete and no causal traces up to the
analysis depth that was reached are missing. Second, causal traces are minimal
and, as a consequence, found early during the analysis. For several models the
last causal trace was detected in less than 1 second, as can be gleaned from the
data in column TimeLast. The remainder of the computation time is spent by
the algorithm to ensure that the causal trace set contains all causal traces. For
instance, for the Airbag model, the computation of this guarantee takes another
7 minutes and 9 seconds. For the models FFU ECU and FFU Star the checking
of this guarantee timeouts after 2h. However, based on our knowledge of this
model we can state that all causal traces were found by the time the timeout
occurred.

The CTBS algorithm based on a BFS (variant 1) performs differently com-
pared to the DFS based version (variant 2) in terms of runtime and causal
results. For the Airbag model, variant 1) requires 7:09 which is substantially
less than 39:46 for variant 2). A DFS based algorithm first searches the depth
and checks many orderings of non causal traces before shorter causal traces are
found. The CTBS algorithm based on DFS scales worse than based on BFS and
this result goes in line with previous results in [LL13a]. Variant 2), however,
found more causal classes than variant 1), for the FFU Star, ASR ch1 and ASR

reduced model. We had a closer look at the fault trees and detected that several
causal traces returned by variant 2) are actually not causal. As expected, the

Fig. 2. Fault Tree for Railroad Crossing using CTBS variant 1)

DFS cannot ensure that a causal trace is causal until the algorithm terminates.
We conclude that variant 2) is not sound when the analysis is aborted before
completion, for instance due to a timeout.

Qualitative Result Interpretation. We refer to the railroad crossing example to
illustrate some qualitative differences between variant 1) and variant 4), the
algorithm defining the baseline in terms of quantitative performance. In the rail-
road crossing model, a train can approach the crossing (Train approach), enter
the crossing (Train cross) and finally leave the crossing. Whenever a train is
approaching, the gate should close (gateClose) and will open when the train has
left the crossing. Additionally, it is possible that the gate fails (Gate fail). The
car approaches the crossing (Car approach) and enters the crossing (Car cross)
when the gate is open, and finally leaves the crossing. The fault tree computed
for the railroad crossing example by variant 4) is missing the causality classes la-
beled Class 2 and Class 3, which were on the other hand computed by variant
1), see the fault tree in Figure 2. The events of Class 0 are a subset of the events
in Class 2, but the action Gate fail happens after the action Train cross. The
events of Class 1 are contained in Class 3 but the action Car approach hap-
pens after the action gateClose. When Gate fail happens before Car approach,
the gate stays open. When Gate fail happens after Car approach then the gate
falsely opens itself. From Class 1 we can infer that an accident happens because
the car is not leaving the crossing. From Class 3 computed by CTBS in variant
1) we conclude that an accident can additionally happen because the train is
not leaving the crossing. This exemplifies that CTBS in variant 1) can compute
more information regarding the cause of an event in the system than the baseline

algorithm variant 4). This is due to the completeness of variant 1) as opposed
to the incompleteness of variant 4).

5 Conclusion

In this paper we have addressed the complete computation of causal trace sets
in Causality Checking. The complete computation of the causal trace sets is es-
sential in the analysis of safety-critical systems in order to ensure that all causal
factors will be identified by the analysis. The CTBS algorithm that we propose
addresses the problem of a complete and sound construction of traces that belong
to this set when the state space traversal encounters multiple duplicate states
during the search. We contrast the CTBS algorithm with the DSPM algorithm,
which is the current basis for implementations of Causality Checking. The vari-
ant of DSPM originally implemented in QuantUM only performs an incomplete
under-approximative handling of the construction of traces when encountering
duplicate states. In contrast, CTBS handles the encounter of duplicate states
properly and completely and manages to establish complete causal sets. In par-
ticular, CTBS outperforms a variant of DSPM modified to accomplish a naive
correction of the under-approximation.

Further research addresses the application of the algorithmic scheme under-
lying CTBS to other applications where all executions of a state space need to
be explored exhaustively. Furthermore, we will investigate the computation of
causal trace sets using symbolic state space exploration techniques.

References

AL10. Husain Aljazzar and Stefan Leue. Directed explicit state-space search in the
generation of counterexamples for stochastic model checking. IEEE Trans.
Software Eng., 36(1):37–60, 2010.

BHK+15. Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and
Stefan Leue. Symbolic causality checking using bounded model checking. In
SPIN, volume 9232 of Lecture Notes in Computer Science, pages 203–221.
Springer, 2015.

BK+08. Christel Baier, Joost-Pieter Katoen, et al. Principles of Model Checking.
MIT Press, 2008.

dJR10. Marc de Jonge and Theo C. Ruys. The spinja model checker. In SPIN,
volume 6349 of Lecture Notes in Computer Science, pages 124–128. Springer,
2010.

ES12. Stefan Edelkamp and Stefan Schrödl. Heuristic Search - Theory and Appli-
cations. Academic Press, 2012.

Fre60. Edward Fredkin. Trie memory. Commun. ACM, 3(9):490–499, September
1960.

Hal15. Joseph Y. Halpern. A modification of the halpern-pearl definition of causal-
ity. In IJCAI, pages 3022–3033. AAAI Press, 2015.

HK06. Henri Hansen and Antti Kervinen. Minimal counterexamples in o(n log
n) memory and o(nˆ2) time. In ACSD, pages 133–142. IEEE Computer
Society, 2006.

HKD09. Tingting Han, Joost-Pieter Katoen, and Berteun Damman. Counterexample
generation in probabilistic model checking. IEEE Trans. Software Eng.,
35(2):241–257, 2009.

Hol04. Gerard J. Holzmann. The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004.

HP05. J.Y. Halpern and J. Pearl. Causes and explanations: A structural-model
approach. Part I: Causes. The British Journal for the Phil. of Science,
2005.

KL18. Martin Kölbl and Stefan Leue. Automated functional safety analysis of
automated driving systems. In FMICS, volume 11119 of Lecture Notes in
Computer Science, pages 35–51. Springer, 2018.

Lei15. Florian Leitner-Fischer. Causality Checking of Safety-Critical Software and
Systems. PhD thesis, University of Konstanz, Germany, 2015.

LL11. Florian Leitner-Fischer and Stefan Leue. Quantum: Quantitative safety
analysis of UML models. In QAPL, volume 57 of EPTCS, pages 16–30,
2011.

LL13a. Florian Leitner-Fischer and Stefan Leue. Causality checking for complex
system models. In VMCAI, volume 7737 of Lecture Notes in Computer
Science, pages 248–267. Springer, 2013.

LL13b. Florian Leitner-Fischer and Stefan Leue. Probabilistic fault tree synthesis
using causality computation. IJCCBS, 4(2):119–143, 2013.

LL14. Florian Leitner-Fischer and Stefan Leue. Spincause: a tool for causality
checking. In SPIN, pages 117–120. ACM, 2014.

Obj17. Object Management Group. OMG Systems Modeling Language, Specifica-
tion 1.5, 2017. http://www.omg.org/spec/SysML.

SB05. Viktor Schuppan and Armin Biere. Shortest counterexamples for symbolic
model checking of LTL with past. In TACAS, volume 3440 of Lecture Notes
in Computer Science, pages 493–509. Springer, 2005.

VGRH02. W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree
Handbook, 2002.

http://www.omg.org/spec/SysML

	An Efficient Algorithm for Computing Causal Trace Sets in Causality Checking
	Introduction
	Preliminaries
	Algorithms for Computing a Causal Trace Set
	Case Study and Experimental Evaluation
	Conclusion

