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Abstract. In this paper, we present a method to assess functional safety
of architectures for Automated Driving Systems (ADS). The ISO 26262
standard defines requirements and processes in support of achieving func-
tional safety of passenger vehicles, but does not address in particular
autonomous driving functions. Autonomous driving will bring with it a
number of fundamental changes affecting functional safety. First, there
will no longer be a driver capable of controlling the vehicle in case of
a failure of the ADS. Second, the hardware and software architectures
will become more complex and flexible than those used for conventional
vehicles. We present an automated method to assert functional safety of
ADS systems in the spirit of ISO 26262 in light of these changes. The ap-
proach is model-based and implemented in the QuantUM analysis tool.
We illustrate its use in functional safety analysis using a proposed prac-
tical ADS architecture and address, in particular, architectural variant
analysis.

1 Introduction

The functional safety of software-driven functions in passenger vehicles is cur-
rently the subject of the ISO 26262 [8] international standard. It specifies de-
velopment processes and requirements ensuring functional safety of software de-
fined safety-critical functions, also referred to as items, in automobiles. The ISO
26262 standard focuses primarily on the safety of the software-defined items in
the presence of systematic software and random hardware faults.

The advent of assisted and autonomous driving is fundamentally changing the
architecture of software-defined critical automotive systems. As a consequence
the methodological foundations of asserting functional safety of such systems
will have to be redeveloped. The current version of the ISO 26262 standard, as
well as the current proposed revision on this standard [9], do not account for the
functional safety of autonomous driving functions.

First, the development of autonomous driving systems (ADS) will at some
point lead to vehicles in which a human driver will no longer be available to
take over control of the vehicle. Following the classification in the SAE J3016
standard [20], this will be the case starting at level 4. Whereas classical functional
safety approaches follow a fail-safe approach, which in case of a failure relies
on a driver being able to take over control of the vehicle and bring it into a
safe state, ADS systems have to be designed to operate in a fail-operational



manner. This means that in the presence of the failure of some ADS function,
the overall vehicle system will remain operational for a certain period of time,
with a given probability, in order to navigate the vehicle automatically into a
safe location, for instance the shoulder [24]. This is frequently also referred to as
“limp-home” mode. For the analysis of functional safety properties this means
that the availability of these limp-home mode functions in the presence of a
system failure needs to be proven.

Second, the conventional approach to functional safety, as reflected by the
current ISO 26262 standard, is highly “item-oriented”. This means in particular
that one driving function, or item, is implemented by one software component
executing exclusively on one hardware unit, referred to as electronic control unit
(ECU). Current systems already break with this strict concept and run a low
number of functions on a single ECU. However, safety arguments largely rely
on execution in isolation, with the exception that some degree of freedom of
interference, including that caused by concurrency problems, at the level of the
underlying execution platform has to be proven. This will not be the appro-
priate paradigm for ADS. In those systems, many sub-functions will co-operate
and be highly interdependent in order to implement an overall system function,
namely to drive safely from location A to location B [18]. Furthermore, for cost,
performance, flexibility and dependability reasons, ADS will be implemented
on networked computing platforms that encompass a low number of processors,
connected by high bandwidth real-time networks, and potentially possessing
multiple cores [13]. To increase reliability, redundant software functions can be
mapped to different hardware components, both statically and possibly also dy-
namically. As a consequence, many functions will be mapped to a single or more
hardware components, which means that a software-hardware mapping prob-
lem needs to be considered in the system and safety design. Again, current ISO
26262-type functional safety analyses do not account for this type of architec-
tures.

Third, ADS will be highly concurrent, due to the parallel processing of sen-
sor data and decision making to support different driving functions, leading to
concurrency non-determinism. Another change with ADS is the application of
non-linear machine-learning algorithms based on neural networks that are heav-
ily used in environment perception. Non-determinism and non-linearity make
it particularly difficult to use classical safety analysis techniques, such as Fault
Tree Analysis (FTA) or Failure Mode and Effects Analysis (FMEA) proposed
for piloted driving in ISO 26262, in a non-automated, manual fashion.

In this paper we propose a method to analyze functional safety of ADS “in
the spirit” of ISO 26262, to the extent that it is applicable, and address some
of the challenges pointed out above. The method is model-based and relies on
SysML [19] models that describe the nominal and the failure behavior of com-
ponents, as well as software-hardware mappings. We embed these models into
the QuantUM method and tool [15,17] for analyzing causes of safety violations.
QuantUM employs automated causality checking [16] in order to compute, de-
picted as a probabilistic fault tree, ordered sequences of events that are deemed



to be causes for safety violations. The benefits of this approach include the fol-
lowing aspects.

– The algorithmic model analysis methods employed in QuantUM (model
checking, causality checking) are well suited to deal with concurrency in-
duced non-determinism. Dealing adequately with the non-linearity caused
by using neural networks based machine learning is not addressed in this
paper.

– The proposed analysis avails itself to an implementation in an automated
software tool. Once the models and properties are defined, the analysis per-
formed by QuantUM requires no further interaction with an engineer.

– The SysML models can easily be modified, for instance to analyze architec-
tural alternatives as well as alternative software-hardware mappings during
design space exploration. The functional safety analysis can then easily be
repeated at little cost by invoking QuantUM on the modified model.

– The developed tools can be qualified according to, for instance, ISO 26262.

We evaluate our approach by applying it to a case study in which we perform a
functional safety analysis for a practical ADS architecture [5] for which we ana-
lyze two mappings of ADS functions to hardware. The analyzed system failures
can be used to assess the impact of single or multiple faults on the overall failure
probability, as requested by ISO 26262. The analysis also enables an engineer
to select efficient failure handling concepts and to evaluate different possible
architectures while meeting safety goals as specified by ISO 26262.

Related Work. The most closely related work on automated model-based safety
analysis for autonomous vehicles is [7]. It uses a block definition diagram and
a manually created fault tree to compute probabilities for the purpose of safety
analysis. In contrast to our work, no causal explanations for failures are auto-
matically derived from the model.

Model-based techniques are applied to evaluate an automotive architecture
in several papers. The approach of [6] is not automated, and it does not address
the specifics of ADS. UML models, which are similar to SysML models, are also
verified in [22] and [2], but both do not quantify system failures.

The paper [1] also addresses safety engineering for autonomous vehicles. It
proposes an approach that differs from that of ISO 26262 by focussing on safety
mechanism to detect all malfunctions.

Structure of the Paper. In Section 2 we present the foundations of our work which
includes the demands of ISO 26262 on vehicles, the change in the architecture
with the development of ADS and the QuantUM approach, which we will extend.
In Section 3 we explain the analysis steps to verify an ADS architecture in the
“spirit” of ISO 26262. In Section 4 illustrate our approach by applying the steps
on two ADS architectures. In Section 5 we draw conclusions and suggest future
developments.



2 Preliminaries

Functional Safety and Autonomous Driving. The ISO standard 26262 [8] as well
as its recently proposed revision [9] define requirements on software development
processes for safety-critical functions of an automotive passenger vehicle. This
is to ensure that the functional safety of a passenger vehicle is challenged by no
more than an acceptable residual risk. The standard is focused on mechanisms
that ensure functional safety of critical software-driven functions in the presence
of systematic faults and random hardware faults. It assumes that systematic
faults can be eliminated by verification and validation techniques, in particular
testing. The standard does not tackle random software failures, which happen
non-deterministic, for instance, due to concurrency issues or special environment
influences. Notice that the ISO 26262 standard does not address techniques to
ensure “Safety of the Intended Function” (SOTIF), i.e., the safety of intended
functionalities of the vehicle itself. A standard addressing this safety aspect is
currently under development [10].

Two characteristics of the ISO 26262 standard are important in the context
of this work. First, the standard is “item-oriented”, which means that it ad-
dresses safety mechanisms for items, such as airbag control, steering, braking,
light control, etc., in isolation. This approach is inappropriate for ADS since dif-
ferent vehicle functions will be interdependent by acting as backup functions for
others. Further, the driver as the function integrator and coordinator in piloted
driving is not available, which means that the software has to take over these
integration functions. Second, neither the published version of the ISO 26262
standard nor the its proposed revision address assisted or autonomous driving
per se [11]. To the contrary, the ISO 26262 standard allows safety mechanisms
to rely on the driver taking over control of the vehicle in order to mitigate the
impact of function failures, which in ADS at SAE level 3 is likely not to be prac-
tical [23], and at levels 4 and 5 is not even foreseen [20]. Nonetheless, we show
how formal analysis techniques can be used to support the safety engineering
of ADS in the spirit of ISO 26262. According to ISO 26262, different driving
functions, referred to as “items”, are assigned an Automotive Safety Integrity
Level (ASIL), ranging from the least critical ASIL A to the most critical ASIL
D. The determined ASIL implies the design methods that are to be used. As
argued above, we will consider the ADS driving function as a unique “item” in
the ISO 26262 sense and perform a safety analysis on this set of functions as a
whole, including an assignment of an ASIL.

According to ISO 26262, safety goals need to be defined to ensure that the
failure probability of software functions in the presence of random hardware
faults lies at an acceptable minimum. For each ASIL, a maximum tolerable
probability of failing a safety goal due to random hardware faults is specified.
A system failure may be a result of a single fault (single-point failure) or a
combination of faults (multiple-point failure). From the safety goals, functional
safety requirements are derived. In safety analyses one will also have to consider
fault rates of the underlying hardware, for instance sensor faults, as well as the



hardware-specific fault detection rates. Those will later occur as parameters of
our models.

Following ISO 26262, the system architecture design is derived from technical
safety requirements. For ASILs A to D, the standard recommends documenting
the architecture using a semi-formal notation, such as the SysML, for ASIL A
and B, and strongly recommends this for ASIL C and D [9, Part 6]. The system
architecture then needs to be verified against the safety requirements [8, Part 4].
The process mandated by ISO 26262 for this verification includes a system design
analysis to identify possible effects of faults, the causes of possible failures and a
quantification of failures. Applicable methods include Fault Tree Analysis (FTA)
and Markov models. The use of formal verification techniques, including model
checking [4], is recommended for software architecture verification for ASIL C
and D [8, Part 6]. This includes verification that certain safety goals are met by a
given system design [8, Part 8]. We propose that an automated approach based
on a formal analysis of the state space described by the system architecture
helps to detect and explain safety goal violations at an early stage in the safety
engineering process, thereby meeting the requirements of ISO 26262. It also
enables automated, tool-supported architectural variant analysis during safety
and system engineering, greatly contributing to reducing the related costs.

Model-based Safety Analysis - the QuantUM Approach. Safety analysis relies on
the establishment of cause-effect relationships between states or events in a sys-
tem. Causality checking [16] is an automated, algorithmic approach to compute
cause-effect relationships for events in a model of a system. It is based on model
checking and systematic, complete state space exploration. Based on a counter-
factual reasoning argument, it computes ordered sequences of events as being
causal for the violation of a safety specification, defined as the (un-)reachability
of a hazard state. In the context of the QuantUM toolset [15,17], causality check-
ing is used to automatically compute sequences of sequentially ordered events
with minimal length which are causal for violations of the reachability property
representing the hazard. The SysML model is given by block definition diagrams
(bdd) to depict units of the architecture, and state chart diagrams (stm) to spec-
ify their behavior. The SysML model contains both the nominal and the failure
behavior of the architectural components. In QuantUM, the computed causal
events are then depicted as a fault tree [17], with the considered hazard forming
the top level event.

The causes for a model failure that QuantUM calculates are represented by a
fault tree including the calculated probabilities. In the interpretation of the fault
tree notation that QuantUM uses, the nodes in the graph do not all correspond
to subsystem faults, but rather to events belonging to the causal process leading
up to a hazard. The top level event is connected to an or gate. The or gate is
connected to a number of ordered and gates, each one representing a causality
class. A causality class is specified by a minimal ordered sequence of events
that jointly, and in that order, cause the occurrence of the hazard. Notice that
QuantUM can also determine the non-occurrence of single events as the cause
of a hazard.



System Architectures for ADS. A functional architecture for autonomous driv-
ing is proposed in [5]. The authors extract, from several conceptual as well as
practical implemented architectures, a layered architecture. The semantic under-
standing of the external world is calculated in the perception layer. It computes
an external world model based on a fusion of the various forms of external sensor
information that it receives. The external world model in conjunction with the
internal state of the car, which is defined among others by the energy manage-
ment and failure states of the platform, are used by the decision and control layer
to make decisions about the execution of a trajectory. The trajectory is then used
by the vehicle platform manipulation layer to drive the actors, like steering and
braking, and keeping the platform overall stable. All three layers have a complex
structure of interdependent, cooperating elements, each representing a specific
function.

Functional Safety Goals for ADS. A predominant idea in ISO 26262 is that a
system needs to reach a safe state in the event of a system failure, in other
words, that it is fail-safe. When the driving is piloted, this can often be achieved
by switching the defective subsystem off and leaving it up to the driver to deal
with the situation. In autonomous driving, this option does not exist, as argued
above. The objective here needs to be that in the presence of the failure of one
function in an ADS, the overall system architecture needs to remain operational
for a certain period of time so as to ensure that a safe state can be reached. This
capability is often referred to as “fail-operational”. The ISO 26262 standard
states: “If a safe state cannot be reached by a transition within an acceptable
time interval, an emergency operation shall be specified.” [8, Part 3]. This means
that designing safety mechanisms that ensure a limited backup capability for a
defective functionality for a certain period of time is within the practices rec-
ommended by ISO 26262. A typical example would be that the braking system
takes over functionalities of a failed steering control system by applying differen-
tial torque or braking for a limited period of time so as to “limp home” to a safe
part of the road, such as the shoulder. The safety goals that we pursue in our
analysis will, hence, have to reflect the probabilities of remaining fail-operational
for a certain period of time.

3 Safety Analysis of an ADS Architecture

Safety Goals for an ADS. Following the earlier made argument we consider the
driving function of an ADS to be one item, i.e., one driving function. Using this
assumption we perform a safety analysis for this item in the spirit of ISO 26262.

As argued above, we need to consider a fail-operational architecture. When
reaching a failure state, the ADS reacts by switching to an emergency mode
that handles the failure situation. For a safety analysis of an ADS, we consider
possible hazards of an architecture and derive appropriate safety goals to prevent
the hazards:



1. When a vehicle is operating as an ADS it has to control the vehicle platform
even if it is in an emergency mode. If the control is lost, then the vehicle will
crash. To prevent this hazard we derive the safety goal SG1: Ensure that the
ADS provides driving information to the vehicle platform at any time.

2. The ADS can have an undetected failure. As a consequence, the emergency
mode may not be activated. The detection of a failure ensured by the safety
goal SG2: Ensure that the emergency mode is enabled when a failure of the
ADS occurs.

3. If the system cannot enter or remain in the emergency operation mode for a
specified period of time, a safe state may not be reachable. We assume the
period of time necessary to reach a safety state to be t1 seconds and derive
the safety goal SG3: Ensure that the emergency mode of the ADS is available
on demand for at least t1 seconds.

The ASIL classification of a safety goal is determined according to the severity of
a function failure caused by a hazard, the probability of exposure to a situation
with a potential failure, and the controllability of the failure situation by the
driver. We assume the severity of each hazard of the ADS to be potentially life-
threatening (S3 according to [8, Part 3]). Since the ADS system will be active
most of the time when the vehicle is in operation, certainly during more than
10% of the operation time, we assume the probability of exposure to be high
(E4 according to [8, Part 3]). We also assume the controllability to be very
low (C3 according to [8, Part 3]), since in the case of SAE level 3 driving the
driver may be surprised by a failure situation, or unable to handle it due to
the low occurrence rate of such a situation. These valuations hold for all three
safety goals and consequently this implies, according to ISO 26262, an ASIL-D
classification for each safety goal.

As argued above, ISO 26262 recommends the use of formal methods, includ-
ing model checking, for the analysis of ASIL D safety goals.

Fig. 1. Mapping 1 Fig. 2. stm hw Fig. 3. stm func1

Automated Safety Analysis of an ADS Architecture. We now describe how an
extended version of the QuantUM tool can be used to perform an automated



safety analysis for a given ADS architecture with respect to safety goals SG1 -
SG3.

Step 1: ADS Modeling. The system architecture of a vehicle consists of several
software function units executing on a number of hardware units. Each unit is
represented by a block in a SysML bdd, see the example in Figure 1. It depicts
two software function units, represented by blocks colored blue, executing on
one hardware unit, colored yellow. Assigning a software function to a hardware
unit on which the function is executed is referred to as software-hardware map-
ping. In our bdds, mappings are depicted using dashed arrows with the label
<<allocate>>. The behavior of each unit is modeled by a SysML stm. The stms
of different units execute concurrently. For the example in Figure 1 the behavior
of the blocks hw and func1 are exemplified in Figures 2 and 3, respectively.

In the stms, the blue states represent the nominal behavior of the units, and
the red states represent its failure behavior. The state machines execute their
normal behavior by staying in a “work” state. To reach a failure state, a fault
event has to occur. The first type of fault directly leads to a failure of the unit.
This can for instance be caused by a loss of power, or by a permanent error such
as a broken hardware element. These faults are modeled by a transition to a
failure state, such as hw error1 in Figure 2. The unit remains in this state until
it is repaired, represented by a repair transition to the work state. As a result
of entering a failure state, a hardware unit stops executing and any software
function, executing on this hardware unit, will cease to operate as well. To model
this behavior, the Boolean variable hw bad is set to true and all transitions of
the function unit are disabled by a guard !hw bad (see Figure 3). The second
type of fault leads to an error inside of the hardware unit, such as a bit flip, even
though the unit continues to operate. The hardware unit is not corrupted, but
an error is propagated to functions executing on that unit. In the SysML model,
error propagation is modeled by message passing. In the example in Figure 2,
two errors are propagated by messages error2 and error3 to the respective
software functions. With the receive of such an error the function 1 enters the
func1 error2 state and function 2 enters the func2 error3 state upon receiving
error3. From these states, the function can return to its normal behavior by a
transition representing failure repair.

Step 2: System Failure Modeling. The ADS fails if one of the safety goals SG1-
SG3 is violated. The violation of these system goals needs to be mapped to states
that the different stms in the system are entering. QuantUM offers the possibility
to tag states in the stms of different blocks as error states, and then permits to
either use a logical or or a logical and between all tagged states in order to
characterize a violation state of the system. To model the safety goals needed
here we extend this rather inflexible scheme. An ADS has the structure of a set
of channels. Sensory input data is processed by a function and the output data is
forwarded to the next function, forming one channel called the primary channel.
The emergency mode adds a second, partly redundant backup channel to the
ADS. The ADS fails and violates its safety goals if there is a function failure



in each of the channels. We attach a Boolean variable bad to each function and
permit forming logical expressions on these variables to express the failure of one
channel. We combine the failure expressions of each channel with an “and” and
add the result to the property. For example, in order to check two redundant
channels the resulting property has the form it is never the case that step1 or
step2 or . . . of channel1 is bad and step1 or step2 or . . . of channel2 is bad.

Step 3: Analysis of Emergency Mode Failures. A violation of SG3 implies that
the normal ADS behavior has a failure and either the emergency mode function-
ality is not available on demand, or it is not provided for at least a certain period
of time and therefore constitutes a fundamental challenge to the safety of the
vehicle. In the following we compute the probability Pfail for a violation of SG3.
The analysis performed by QuantUM works on a global state graph obtained by
interleaving the local behaviors of the concurrent system hardware and software
components. A path in this graph, representing an execution of the ADS, consti-
tutes a violation of SG3 if in a state the emergency mode is being activated but
not going to be available for at least a period of time t1. We characterize the set
of all emergency activation states S in the global state graph using a Boolean
expression e formed as described in Step 2. In accordance with the foundations
of probabilistic model checking we will consider reaching a first state si ∈ S as a
stochastic event, with the path consisting of a stochastic experiment. The event
of reaching a state si first, denoted by reach si, precludes the event of reaching
another state s′i ∈ S first, which means that stochastic events we consider do
not overlap. As a consequence we may partition the sample space, which consists
of all possible paths in the global state graph, according to the events reach si.
In a first probabilistic model checking step performed by QuantUM we com-
pute the probability P (reach si) to reach each state in S within a period of a
driving cycle t dc. In a second model checking step we compute the probability
P (faili|reach si) to reach a failure from state si within a time t1. To enable the
first model checking step we change the model in such a way that we conjoin ¬e
with all transition guards. This means that when the system enters a state in
which e becomes true, this state is turned into an end state with no enabled exit
transition. For each end state we calculate its probability. For the second model
checking step we compute the probability P (fail si|reach si) by starting in any
state defined by expression e. The probability Pfail is computed by a summation
over all products of P (faili|reach si) ·P (reach si), which is justified by the mem-
oryless nature of CTMCs. No causality checking will be performed and no fault
trees will be computed by QuantUM during SG3 violation analysis.

Step 4: Probability Rates. Probability rates, in particular for hardware failures,
repairs and failure detection, are difficult to determine and usually depend on a
specific domain and the concrete hardware used. However, even if precise rates
are not available, the comparison of the relative failure probabilities of architec-
tural variants with identical and with different estimated or assumed rates can
be of great importance. This can for instance answer the question how architec-
tural variants will affect failure probabilities, or what error detection rates are



required to achieve a desired level of failure probability. In QuantUM, the SysML
model is labeled with probability rates, for instance for the probability of execut-
ing a failure or repair transition. QuantUM uses probabilistic model checking,
in particular model checking for Continuous Time Markov Chains (CTMCs) [3],
in order to compute the probabilities for the causes leading to a violation of
safety properties. A fault event of the hardware may lead to different faults in
a system. In this situation we distribute the fault rate over the different fault
transitions. The portion of the fault rate that each transition receives relies on
domain specific knowledge that the designer needs to provide. For example, in
Figure 2, a bit flip with a probability rate of 10−4 can cause an error2 or an
error3. Notice that throughout the paper, rates are assumed to be per hour.
Assume that it is typical that 40% of the errors are of type error2 and 60% are
of type error3. This leads to a fault rate of 0.4 · 10−4 for error2 and a fault
rate of 0.6 · 10−4 for error3. To split the fault rate in this way is appropriate
for CTMCs, cf. [3].

A potential threat to the validity of the failure probabilities computed by
QuantUM and the probabilistic model checker Prism [12] that QuantUM uses, is
the fact that the original SysML model mixes non-probabilistic and probabilistic
transitions. For the non-probabilistic transitions Prism assumes a default rate of
1. Assuming that we consider one time step, based on the negative exponential
distribution on which CTMCs are based this translates into a probability of less
that 1 of taking this transition with which the accumulated path probability up
to this step will be multiplied. However, we do not experience a negative effect on
the total failure probability since the SysML model structure that we propose
implies that the system will cycle through non-probabilistic normal behavior,
for which the path probability is 1, until it performs one probabilistic failure
transition to enter a failure state. For example, the state func1 work in Figure 3
has non-probabilistic transitions between the states func1 calculation and
func1 idle with a default rate of 1, remaining is state func1 run until the
probabilistic transition error2 is taken.

4 Case study: A Comparison of Autonomous Driving
Architectures

Step 1: ADS Modeling. [5] proposes a functional architecture generalized from
real architectures. We use part of this functional model and add several hard-
ware units. The resulting mapping problem leads to a number of architectures.
The SysML bdd in Figure 4 gives an overview of the structure of the first ar-
chitectural variant that we consider. We model the perception layer by a block
Perception and the motion and control layer by a block Trajectory. Since
the functions represented by these two blocks are critical for the proper func-
tioning of the ADS we add blocks PerceptionSafe and TrajectorySafe to
provide redundant backup functionality. The function represented by the block
Trajectory Selection selects by default the trajectory of block Trajectory,
but switches in case of a failure of these blocks to the alternative trajectory



Fig. 4. Architectural variant 1 for ADS

computed by block TrajectorySafe. The block MotionControl represents the
interface with the vehicle platform manipulation layer by providing it with con-
trol parameters, such as steering angle, braking force or differential torque, that
the vehicle platform will translate into commands for the actuators of the vehicle.
Figure 4 also illustrates the software-hardware mapping that we propose for the
first architectural variant. Notice that the primary functionalities for perception
and trajectory computation are mapped to the hardware block ADS primary,
while the backup functionality ADS backup is mapped to a separate hardware
unit ADS backup, thus increasing the probability that the backup functionality
will be available even in the case of a failure of the primary hardware represented
by block ADS primary.

The state machine modeling the behavior or block ADS primary is given in
Figure 5. The hardware operates correctly in state run. In this state, the occur-
rence of a detected error inside the hardware, for instance a memory bit flip, is
communicated to the Perception block using a perception error message in
case the perception function is currently executing on ADS primary. In case a
trajectory computation function is executing, the hardware error will be com-
municated using a trajectory error message to the Trajectory block. If in

Fig. 5. Stm ADS primary Fig. 6. Stm Perception



the run state an undetected hardware error occurs, the impact on the hardware
is unknown. We model this by a transition into state undetected along which
we set the failure variable bad to true. In this state, no software function can be
executed on the hardware.

The behavior of the block Perception is defined by the hierarchical state
machine in the stm diagram in Figure 6. The normal behavior is modeled in the
nested state Normal. The function starts its computation in the state idle and
cycles through states idle and calculate, which represents the processing of
sensor information, as long as the variable ADS primary.bad is false. When re-
turning to idle it sends the message trajectory input to the function trajectory
in order to indicate that input data for the trajectory function is available. Upon
receipt of a message perception error, the perception function can decide ei-
ther to handle this message and remain in the Normal state, or it can decide to
enter the ErrorData state and set its bad value to true. Upon repair it can return
to the idle state and resume execution. Deviating from the classical ISO 26262
viewpoint to only consider hardware failures, we also consider software failures.
Such a failure in the block Perception is modeled by a non-deterministic group
transition from the Normal state to the CalculationError state in the course
of which the bad variable will be set to false. We assume that these errors can
also be repaired, modeled by a return to the Normal state. Space limitations do
not allow us to present the complete behavioral model of the ADS. The other
blocks representing hardware and software functions have behaviors similar to
the ones described above.

Step 2: System Failure Modeling. We characterize a system failure of the ADS
violating SG1 or SG2 using different Boolean expressions for each architectural
variant and safety goal. The Boolean propositions refer to the bad variables of
the blocks in the SysML model. For architectural variant 1, a system failure
violating SG1 happens when a software function or a hardware unit fails in
both channels, or when at least one of the functions TrajectorySelection or
MotionControl or the hardware X ECU fails. This leads to the Boolean failure
expression

((ADS primary.bad ∨ Perception.bad ∨ Trajectory.bad)

∧(ADS backup.bad ∨ PerceptionSafe.bad ∨ TrajectorySafe.bad))

∨(TrajectorySelection.bad) ∨ (MotionControl.bad ∨X ECU.bad).

(1)

Architectural variant 2 differs from the first in that the block
TrajectorySelection is mapped to the block ADS backup. As a consequence,
architectural variant 2 fails under the same failure condition as variant 1, and
additionally by a failure of ADS backup. This leads to the Boolean failure ex-
pression

((ADS primary.bad ∨ Perception.bad ∨ Trajectory.bad)

∧(ADS backup.bad ∨ PerceptionSafe.bad ∨ TrajectorySafe.bad))

∨(ADS backup.bad ∨ TrajectorySelection.bad)

∨(MotionControl.bad ∨X ECU.bad).

(2)



The function TrajectorySelection is responsible for selecting the emergency
trajectory in case of a failure. The function fails if the function itself or the un-
derlying hardware is in a failure state. This leads to a violation of SG2, expressed
by the Boolean failure expression TrajectorySelection.bad ∨ X ECU.bad for ar-
chitectural variant 1 and TrajectorySelection.bad ∨ ADS backup.bad for variant
2.

Step 3: Analysis of Emergency Mode Failures. For the computation of the failure
probability of the emergency mode we need to determine the expected operation
time of the emergency mode t1, a Boolean expression representing a failure of
the ADS and a Boolean expression characterizing the activation of the emer-
gency mode. We assume t1 to be 10 seconds. The failure states of the ADS for
the two architectural variants are encoded by the Boolean expressions 1 or 2,
respectively. The emergency mode of the ADS is activated in both architec-
tural variants if a software function running on hardware ADS primary or the
hardware ADS primary itself fails. We encode these states using the Boolean
expression (ADS primary.bad ∨ Perception.bad ∨ Trajectory.bad).

Step 4: Probability Rates. In order to determine rates in the context of our case
study we assume ADS primary and ADS backup to be implemented using “stan-
dard” hardware without hardware checks in order to meet the high computing
power demands of the software functions executing on them. In such hardware
components most faults happen because of memory errors [21], and we assume
typical fault rates of 10−4. Since there are no special computing power demands
that apply to X ECU and since we have not accounted for any redundancy here we
assume safety hardware to be used with a fault rate of 10−8. We further assume
a hardware fault detection rate of 99%, i.e., 1% of the errors remain undetected.
As described above, the probability of detected hardware faults are distributed
evenly over all software functions running on the considered hardware unit. For
instance, perception error and trajectory error are assumed to each have
a probability of 49.5%, i.e., a rate of 0.495 · 10−4. We assume that a software
function affected by a detected hardware error handles the error with a prob-
ability of 90%, but will fail with a probability of 10%. For software failures of
the perception function we assume a fault rate of 10−4. Functions in a failure
state can resume by a repair transition. We assume a repair rate of 4 · 10−2 for
software functions (cf. [7]).

Analysis using QuantUM. We assume a driving cycle duration tdc of 1h in all of
the analyses. The result of the analysis for violating SG1, and thereby SG2, is a
fault tree with the state representing the SG1 violation as top level event, and
19 disjunctive tree branches for architectural variant 1 and 16 disjunctive tree
branches for architectural variant 2. We call the disjunctive tree branches causes.
For both variants, space limitations do not permit us to present the full fault tree
here. Architectural variant 1 has the probability of 1.31998187 · 10−8 and archi-
tectural variant 2 the probability of 4.30677042 ·10−6 to violate SG1. Due to the



Architectural Variant 1 Architectural Variant 2

Memory Time States Memory Time States

SG1 143.27MB 63.79min 235,765 124.84MB 57.14min 207,052

SG2 284.11MB 4.93min 321,133 310.35MB 1.12min 324,464

SG3 99.25MB 6.59min 349,937 160.04MB 4.96min 354,943

Table 1. Computational effort for SG violation analyses

redundant structure of the architecture in both variants, analyzing SG2 in isola-
tion leads to two single source failures already detected by SG1. One single source
failure involves trajectory selection error for both variants and the other
failure involves X ECU undetected for variant 1 and ADAS backup undetected

for variant 2. The probability of a violation of SG3 is 6.399474 · 10−9 for variant
1 and 6.164128 · 10−9 for variant 2.

The experiments were performed on a computer with an i7-6700K CPU
(4.00GHz), 60GB of RAM and a Linux operation system. The computational
efforts in memory, time and for the architectural variants are depicted in Ta-
ble 1. The column States gives the number of states explored by QuantUM, in
the case of SG3 this only comprises the number of states analyzed by Prism.

The memory effort for SG1 and SG2 is small in comparison to previous
models [14]. The small memory effort is due to the fact, that the current im-
plementation of QuantUM, does not compute duplicate state prefix matching
as described in [14]. However, for the analyzed models, the current version of
QuantUM computes all causes, since each failure state of the stms is only reached
by a single trace. All other traces leading to a failure state are extensions of the
single trace and so not minimal.

Result Interpretation. The architectural variant 1 has a lower probability of vio-
lating SG1. This result can be explained as follows. The fault trees for the two ar-
chitectural variants differ mainly in the probability of the causes that contain the

Fig. 7. Cause 5 of architectural variant 1 Fig. 8. Cause 1 of architectural variant 2



event ADS backup undetected, representing an undetected hardware failure in
the hardware unit that is subject to the altered software-hardware mapping. The
fault tree of architectural variant 1 contains four causes that contain the event
ADS backup undetected, of which one cause is depicted in Figure 7, with a prob-
ability of 9.91367948 · 10−11 and thus not contributing significantly to the total
SG1 violation probability. All other causes that contain ADS backup undetected

have a similarly insignificant probability. Notice that failure events in the fault
trees are marked in red.

The fault tree of architectural variant 2 contains one cause with this event,
depicted in Figure 8, with a probability of 0.99899950 · 10−6, thus contributing
significantly to the SG1 violation. While in architectural variant 1 the ADS back-

up undetected fault needs to coincide with a Perception CalculationError,
in architectural variant 2 the occurrence of ADS backup undetected suffices to
lead to an SG1 violation. The difference in the probabilities of the two con-
sidered causes is due to the fact that the conditional occurrence of two failure
events, such as in cause 5 of architectural variant 1, is less probable than the
unconditional occurrence of a fault event as in cause 1 of architectural variant
2. Due to the software-hardware mapping in architectural variant 2, the fault
event ADS backup undetected directly leads to an SG2 violation, and this sce-
nario has a high probability. The difference in the probabilities of SG1 violations
can hence be traced back to the difference in the hardware-software mappings
used in both architectural variants.

In the following, we discuss the influence of the detection and error handling
rates. We first increase the detection rate of ADS backup for variant 2 from 99%
to 99.99%. The higher detection rate decreases the failure probability of cause
2 from 9.98999501 · 10−7 to 9.98999995 · 10−9. This change has no significant
effect since the probability of reaching error state undetected is decreased by
the same amount that the error probability of the functions running on the
hardware is increased. The probability of violating SG1 is now mainly due to
reaching failure state ErrorData of function TrajectorySelection, which is
3.32799547 · 10−6. In a second step we increase the error handling rate of func-
tion TrajectorySelection from 90% to 99%. This decreases the failure prob-
ability for ErrorData in function TrajectorySelection to 3.32805910 · 10−8.
As a consequence the overall failure probability of violating SG1 decreases from
4.30677042 · 10−6 to 5.60069041 · 10−8. We notice that detection and error han-
dling rates have an essential influence on the failure probability of the ADS.

A violation of SG3 is less probable than 10−9 for both variants. The small
probabilities are reasonable since the ADS remains in the emergency mode for
only 10 seconds, which is much shorter than the assumed driving cycle of one
hour. Unexpectedly, a violation of SG3 is more probable for variant 1 (6.399474 ·
10−9) than for variant 2 (6.164128 · 10−9). The difference is due to the fact that
variant 2 fails more probable without entering the emergency mode.

ISO 26262 requires an analysis of single and multiple point failures, and
whether failures are detected or undetected. We extract this information from
the causes in the fault trees. A cause representing a single point failure contains a



single failure event, other causes are multiple point of failure. For example, Cause
1 of variant 2 is a single point failure since it contains the single failure event
ADS backup undetected. An undetected failure is represented by a cause that
contains at least one undetected failure event. Cause 5 of variant 1 represents
such an undetected failure. With this information it is possible to perform further
analyses on undetected failure rates and to relate them to single and multiple
point faults, as required by ISO 26262.

5 Conclusion

We have presented an automated approach to support the design time func-
tional safety analysis for architectures supporting ADS. The paper addresses
the handling of the complexity of future ADS by analyzing a flexible mapping
of hardware and software functions. We have applied the proposed approach to
two variants of a practical ADS architecture and compared the two variants.
We have shown that the proposed approach gives necessary information to per-
form functional safety analyses in the spirit of ISO 26262. The analysis included
fail-operational behavior, software faults and interdependent driving functions
which are so far not adequately addressed by ISO 26262. We see great potential
in supporting ISO 26262 style functional safety analyses of innovative automotive
architectures using the formal algorithmic analyses that QuantUM supports.

Future research will address an improved integration of the analysis into
existing tools and methods, for instance by incorporating automated Failure
Mode and Effects Analysis (FMEA), more flexible property specification, and
an improved scalability of the method, in particular using symbolic analysis
techniques.
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