
Encoding Causality via Modal Formulae

Georgiana Caltais1 and Mohammad Reza Mousavi2

1 Department for Computer and Information Science, University of Konstanz
2 Department of Informatics, University of Leicester

Abstract. This work introduces an encoding of causality for labelled
transition systems and Hennessy Milner logic, in terms of modal formulae
with data. The approach paves the way to the automatic identification
of causalities using the mCRL2 model checker.

Introduction. Determining and computing causalities is a frequently addressed
issue in the philosophy of science and engineering. A notion of causality that is
frequently used in relation to technical systems relies on counterfactual reason-
ing [8]. In short, the counterfactual argument defines when an event is considered
a cause for some effect, in the following way: a) whenever the event presumed to
be a cause occurs, the effect occurs as well, and b) when the presumed cause does
not occur, the effect will not occur either. The seminal papers [4, 5] describes an
event model and a notion of actual causation encompassing the counterfactual
argument. Most relevant for our work are the contributions in [7, 1]. The results
in [7] provide an interpretation of the results in [4] in the context of transition
systems and trace models for concurrent system computations. In [1] we adopt
the aforementioned trace-based interpretation to the context of labelled transi-
tions systems (LTS’s) and Hennesy Milner logic (HML) [6] and devise a series
of preliminary results on compositionality of causality.

The objective of this paper is to provide an encoding of causality as in [1] in
terms of modal formulae with data [3], thus paving the way to the identification
of causalities in an algorithmic fashion using the mCRL2 model-checker [2].

Preliminaries. Next, we provide a brief overview of LTS’s and their computa-
tions, and HML. A labeled transition system (LTS) is a triple T = (S, s0, A,→),
where S is the set of states, s0 ∈ S is the initial state, A is the action alphabet
and →⊆ S×A× S is the transition relation. Let A∗ be the set of words over A,
and let ε be the empty word. We write −→→ ⊆ S×A∗×S, to denote the extension
of→ to words, defined recursively in the expected way: s

a−→→ s′ iff s
a−→ s′, s

ε−→→ s,
s

aw−−→→ s′ iff s
a−→→ s′ and s

w−→→ s′, for a ∈ A and w ∈ A∗.
Let D, Di range over possibly infinite lists of words in A∗. We say that two

such lists are size-compatible if they are finite lists of the same length, or if they
are all infinite lists.

Let π = (s0, l0,D0), . . . (sn, ln,Dn), sn+1 ∈ (S×A× [A∗])∗ × S. Assume that
D0, . . . ,Dn are size-compatible. We write traces(π) to denote the pairwise exten-
sions of l0 . . . ln with words “at the same level” in D0, . . . ,Dn. For instance, if π =
(s0, l0, [w

0
1, w

0
2]), (s1, l1, [w

1
1, w

1
2]), s2, then traces(π) = {l0w0

1l1w
1
1, l0w

0
2l1w

1
2}. π

is a computation of T whenever the following hold: (i) s0
l0−→ s1 . . .

ln−→ sn+1,

2 G. Caltais & M. R. Mousavi

(ii) D0, . . . ,Dn are size-compatible, and (iii) for all w ∈ traces(π) there ex-

ists s ∈ S s.t. s0
w−→→ s. sub(π) stands for the set of all computations π′ =

(s0, l
′
0,D′0), . . . , (sm, l

′
m,D′m), s′m+1 s.t. l′0 . . . l

′
m is a sub-word of l0 . . . ln.

We consider formulae in Hennessy-Milner logic (HML) [6] given by the fol-
lowing grammar:

φ, ψ ::= > | 〈a〉φ | [a]φ | ¬φ | φ ∧ ψ | φ ∨ ψ (a ∈ A). (1)

We say that an HML formula φ as above is built over A. The associated satis-
faction relation |= is defined in the standard way, over states s ∈ S and HML
formulae. Intuitively, s |= 〈a〉φ states that s can execute a and reach a state that
satisfies φ afterwards. Orthogonally, s |= [a]φ refers to the fact that no matter
what state is reached from s by executing a, the reached state satisfies φ. > is
the formula that holds in any state, whereas ∧,∨ and ¬ stand for conjunction,
disjunction and negation.

Defining causality. Our notion of causality is an adoption of the “actual cau-
sation” proposed in [4], previously adapted to the setting of concurrent systems
in [7]. Consider an LTS T = (S, s0, A,→) and a “hazard” HML formula φ. A
causal analysis of T w.r.t. φ is justified under the assumption that φ does not
hold in all states of T , i.e., T can display correct behaviour as well (item 2 be-
low). A computation π = (s0, l0,D0), . . . , (sn, ln,Dn), sn+1 is a causal trace if,
intuitively:

– the execution of l0 . . . ln leads to a state satisfying the hazard (item 1 below)
– the occurrence of the actions l0, . . . , ln along a trace χ′ in T guarantees that

executing χ′ leads to the hazard (item 3), as long as χ′ does not encode
elements in D0, . . . ,Dn which are causal by their non-occurrence (item 4).
Non-occurrence is useful to explain situations in which the hazard holds if
certain words in D0, . . . ,Dn are not executed, whereas executing these words
removes the hazard

– π is the “shortest” computation satisfying the above properties (item 5)

Formally, causal traces in T w.r.t. φ, denoted by Causes(φ, T) , is the set of
all computations π = (s0, l0,D0), . . . , (sn, ln,Dn), sn+1 s.t. :

1. s0
l0−→ . . . sn

ln−→ sn+1 ∧ sn+1 |= φ (Positive causality)

2. ∃χ ∈ A∗, s′ ∈ S : s0
χ−→→ s′ ∧ s′ |= ¬φ (Counter-factual)

3. ∀χ′ = l0χ0 . . . lnχn ∈ {l0 . . . ln} ∪ (A∗ \ traces(π)), s′ ∈ S :

s0
χ′

−→→ s′ ⇒ s′ |= φ (Occurrence)

4. ∀χ′ ∈ traces(π) \ {l0 . . . ln}, s′ ∈ S : s0
χ′

−→→ s′ ⇒ s′ |= ¬φ (Non-occurrence)
5. ∀π′ ∈ sub(π) : π′ does not satisfy items 1. – 4. above (Minimality)

Consider, for an example, the following LTS and the HML formula φ = 〈h〉>:

s0 s6

s3 s2 s1 s4 s5

a

b c b

h

h

(2)

Encoding Causality via Modal Formulae 3

Item 1 suggests that action a should be a cause for the hazard φ. Item 2 in-

dicates that φ does not hold trivially everywhere as, for instance, s0
acb−−→→ s3

and s3 6|= φ. Item 4 states that (s0, a, [ε]), s1 is not a cause for φ because ex-
tending a with cb, for instance, violates φ and thereby violates item 3. However,
(s0, a, [h, c, cb, bh]), s1 is a good candidate as all possible extensions of a with
anything but h, c, cb or bh also keep the hazard, and thus satisfies items 3 and 4.
Item 5 states that (s0, a, [ε, c]), (s1, b, [h, ε]), s4 is not a cause as it is not minimal.
This is because its sub-computation (s0, a, [h, c, cb, bh]), s1 satisfies items 1–4 as
previously discussed.

Causality as modal formulae with data. In this section we introduce an
attempt of encoding causality via modal formulae with data. This paves the way
to the automatic identification of causes in mCRL2.

We proceed by first introducing modal formulae with data as in [3], used in
order to model various real world phenomena. For space considerations, we only
provide the fragment relevant for our work:

R ::= a | ε | R ·R | R+R | R∗ | R+ (a ∈ A)
φ ::= true | false | ¬φ | φ ∨ φ | φ ∧ φ | ∀d : D .φ | ∃d : D .φ | 〈R〉φ | [R]φ

µX(d1 : D1 := t1, . . . , dn : Dn := tn).φ |
VX(d1 : D1 := t1, . . . , dn : Dn := tn).φ | X(t1, . . . , tn)

(3)

Formulae R are defined as regular expressions in the standard way. Formulae
〈R〉 and, respectively, [R] extend the diamond 〈−〉 and, respectively, box [−]
modalities in (1) to regular expressions. Existential and universal quantifiers for
ranging over data domains are also introduced. µ and, respectively, V stand for
the minimal and, respectively, the maximal fixed point equations.

Assume a computation π = (s0, a0,D0), . . . , (sn, an,Dn), sn+1. We write l
for the list a0 : . . . : an : [], and LD for the list of lists D0 : . . . : Dn. In order to
check whether π is a cause w.r.t. a HML formula φ, we propose a straightforward
encoding the corresponding items 1− 5 in terms of modal formulae with data as
below.

We write A∗ for the “type” of words of actions in A (e.g., l : A∗), [A∗] for
the “type” of lists of words of actions in A (e.g., D0 : [A∗]), [[A∗]] for the “type”
of lists of lists of words of actions in A (e.g., LD : [[A∗]]), [l]φ to denote the
formula [a0 · . . . ·an]φ (symmetrically for the diamond modality 〈−〉). We use the

notations
µ
= and, respectively,

V
= in order to represent minimal and, respectively,

maximal fixed point equations. The encodings are:

PC(l : A∗,LD : [[A∗]])
µ
= 〈l〉φ (encoding Positive Causality)

C(l : A∗,LD : [[A∗]])
µ
= ∃l′ : A∗.〈l′〉¬φ (encoding Counter-factual)

4 G. Caltais & M. R. Mousavi

CON(l : A∗,LD : [[A∗]], n : N, k : N, j : N)
V
=

∀l0 : A∗.∀ln : A∗.∃l′ : A∗. (j == k)∨
((j 6= k) ∧ (l′ == zip(l, l0 : . . . : ln)) ∧ (l′ 6=zip(l, row(LD, j)) ∧ [l′]φ∧
CON(l,LD, n, k, j + 1)))∨ (♣)

((j 6= k) ∧ (l′==zip(l, l0 : . . . : ln)) ∧ (l′==zip(l, row(LD, j)) ∧ [l′]¬φ∧
CON(l,LD, n, k, j + 1))) (♠)

(encoding Causality of (non-)occurrence)
where n + 1 is the size of l, and k + 1 is the length of the size-compatible lists
Di in LD. Additionally, j is an index used for iterating through the words at
location j in each of the lists Di. The words at location j in all Di’s are given
by the “row” j in LD: row(LD, j). Variables l, n, k and j are examples of data
tokens for formulae as in (3). Furthermore, zip(l, l0 : . . . : ln) denotes the pairwise
extension of l with l0 : . . . : ln as expected: a0 : l0 : . . . : an : ln. Intuitively,
zip(l, l0 : . . . : ln) corresponds to an element in traces(π). Hence, the disjunct
(♣) encodes causality of occurrence, whereas the disjunct (♠) encodes causality
of non-occurrence.

M(l : A∗,LD : [[A∗]])
µ
=

∃l′ : A∗.∃LD′ : [[A∗]]. (subtrace(l′, l) == true)∧
(| l′ | +1 ==| LD′ |) ∧ szCompatible(LD′)∧
PC(l′,LD′) ∧ C(l′,LD′) ∧ CON(l′,LD′, | l′ |, | LD′[0] |, 0)

(encoding Minimality)
In the formula above, we write subtrace(l′, l) == true whenever l′ ∈ sub(l).
Moreover, szCompatible(LD′) == true whenever the elements of LD′ are size-
compatible lists. A non-empty solution w.r.t. M(l,LD) denotes that π violates
the minimality condition.

Let π = (s0, a, [h, c, cb, bh]), s1 be the causal computation of the LTS in (2),
w.r.t. the HML formula 〈h〉>. We fix l = a and LD = [[h], [c], [cb], [bh]]. It
is straightforward to see that s0 satisfies the formula in (encoding Positive
Causality). It follows immediately that (encoding Counter-factual) holds in s0
when l′ = acb, for instance. Moreover, s0 satisfies (♠) for all l′ ranging over

{ah, ac, acb, abh}, as s0
l′−→→ si ⇒ si 6|= 〈h〉>. Symmetrically, s0 satisfies (♣) for

all remaining transitions l′ ranging over {a, ab} as s0
l′−→→ si ⇒ si |= 〈h〉>. Sim-

ilarly, it can be shown that (encoding Minimality) is not satisfied by any state
in (2). Hence, the proposed modal formulae confirm π as being causal.

Conclusions. We provide an encoding of the causality for LTS’s and HML
in [1] in terms of modal formulae with data. This is the first step towards the
implementation of an algorithm for computing such causalities. As future work
we consider implementing the corresponding encodings in mCRL2 [2]. While
the trace component l = l0, . . . , ln in the proposed definition of causality can
be easily identified as a counterexamples violating the specification, one of the
biggest challenges remains the automatic identification of the words in Di causal
by their non-occurrence as in item 4. Corresponding case studies and comparison
with other approaches (e.g., [7]) will be considered as well.

Encoding Causality via Modal Formulae 5

References

1. G. Caltais, S. Leue, and M. R. Mousavi. (De-)composing causality in labeled tran-
sition systems. In G. Gößler and O. Sokolsky, editors, Proceedings First Work-
shop on Causal Reasoning for Embedded and safety-critical Systems Technologies,
CREST@ETAPS 2016, Eindhoven, The Netherlands, 8th April 2016., volume 224
of EPTCS, pages 10–24, 2016.

2. S. Cranen, J. F. Groote, J. J. A. Keiren, F. P. M. Stappers, E. P. de Vink, W. Wes-
selink, and T. A. C. Willemse. An overview of the mCRL2 toolset and its recent
advances. In N. Piterman and S. A. Smolka, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 19th International Conference, TACAS
2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795
of Lecture Notes in Computer Science, pages 199–213. Springer, 2013.

3. J. F. Groote and M. R. Mousavi. Modeling and Analysis of Communicating Systems.
MIT Press, 2014.

4. J. Halpern and J. Pearl. Causes and explanations: A structural-model approach.
Part I: Causes. The British Journal for the Philosophy of Science, 2005.

5. J. Y. Halpern. A modification of the Halpern-Pearl definition of causality. In Q. Yang
and M. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, pages 3022–3033. AAAI Press, 2015.

6. M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In
J. W. de Bakker and J. van Leeuwen, editors, Automata, Languages and Program-
ming, 7th Colloquium, Noordweijkerhout, The Netherland, July 14-18, 1980, Pro-
ceedings, volume 85 of Lecture Notes in Computer Science, pages 299–309. Springer,
1980.

7. F. Leitner-Fischer and S. Leue. Causality checking for complex system models. In
R. Giacobazzi, J. Berdine, and I. Mastroeni, editors, Verification, Model Checking,
and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome,
Italy, January 20-22, 2013. Proceedings, volume 7737 of Lecture Notes in Computer
Science, pages 248–267. Springer, 2013.

8. D. Lewis. Counterfactuals. Blackwell Publishers, 1973.

