Causality for General LTL-definable Properties

Georgiana Caltais Sophie Linnea Guetlein

georgiana.caltaisQuni-konstanz.de linnea.guetlein@uni-konstanz.de

Stefan Leue
stefan.leue@uni-konstanz.de

Department for Computer and Information Science
University of Konstanz, Germany

In this paper we provide a notion of causality for the violation of general Linear Temporal Logic
(LTL) properties. The current work is a natural extension of the previously proposed approach han-
dling causality in the context of LTL-definable safety properties [20,/19]. The major difference is that
now, counterexamples of general LTL properties are not merely finite traces, but infinite lasso-shaped
traces. We analyze such infinite counterexamples and identify the relevant ordered occurrences of
causal events, obtained by unfolding the looping part of the lasso shaped counterexample sufficiently
many times. The focus is on LTL properties from practical considerations: the current results are to
be implemented in QuantUM, a tool for causality checking, that exploits explicit state LTL model
checking.

1 Introduction

The importance and complexity of software driven systems is steadily increasing. Software plays a cen-
tral role in daily used objects, such as computers and mobile phones, but also in other areas, for example
medical systems, aircraft and automobiles. Particularly in these latter areas, software failures may en-
tail major environmental harm and/or serious injuries of humans. Software systems whose malfunction
has such serious consequences are also called safety-critical systems. This paper addresses methods to
analyze models of such systems for the detection of ordered sequences of events that can be considered
causal for the malfunctioning of such a system. Of particular importance in this setting is the identifica-
tion of actual causes, i.e., sequences of events that are indispensable for the malfunctioning to occur and
not just mere “noise” in the system execution.

Model-checking [1] is a formal verification technique for systematically checking whether certain
temporal requirements are satisfied by a system model. Given a state-based model M of the considered
system and a property specification ¢, model checkers return a counterexample if ¢ is not satisfied
by M. This counterexample typically is an execution trace that includes a violation of the property ¢
and can be used to understand the cause of the property violation and to fix the problem. However,
counterexamples can be very long and often contain numerous events that are of no relevance to the
violation of ¢. Furthermore, there can be a very large number of counterexample traces in M that all lead
to the violation of ¢.

In precursory work [20} [19], model checking of reachability properties has been extended to causality
checking by considering all traces in a model that violate a system safety property expressed by a reach-
ability property ¢. Inspired by the actual cause conditions defined in the Structural Equation Model
(SEM) for causality in systems [15} [14] the work in [20} |19]] defines actual cause conditions on ordered
sequences of events that correspond to computations in a Transition System model.

© G. Caltais & S.L. Guetlein & S. Leue
To appear in EPTCS. This work is licensed under the
Creative Commons Attribution License.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Causality for LTL

In this paper we provide a notion of causality for the violation of general Linear Temporal Logic
(LTL) properties. Counterexamples of such properties can always be represented by @-regular expres-
sions of the form uv®, where u and v are regular expressions [22]. Counterexamples of this type are also
often referred to as “lasso-shaped”. They consist of an initial path fragment that can witness the violation
of a “something bad never happens”-kind of property (i.e., a safety property) followed by a loop that can
witness the violation of a “something good eventually happens”-kind of property (i.e., a liveness prop-
erty). In particular, for the case of “pure” safety properties, the lasso ends in a self-loop state where the
property is violated.

Consider, for an example, the behaviour of an elevator system as follows:

Example 1 (Elevator). The elevator can commute between three floors (0,1,2). On each floor there is a
button that can be pressed in order to call the elevator. Whenever a button on some floor is pressed, the
elevator will try to go to that floor immediately. If two buttons are pressed, the elevator will go to the
lower floor first. We use the identifier E; to denote the event “elevator is on floor i”, and B; to denote
“button on floor i is pressed”, for i € {0,1,2}.

A liveness property is, for example, that whenever a button on the second floor is pressed, the elevator
will go there eventually. Assume we are interested in finding those sequences of events that lead to a
hazard in which the button on the second floor is pressed, but the elevator never arrives at the second
floor. A corresponding counterexample is a lasso-shaped execution in which B2 can be observed, whereas
E2 occurs neither along the initial path fragment after B2, nor in the loop.

In this paper, causality checking for general definable LTL properties is done by identifying the coun-
terexample of a temporal property with a so-called Event Order Logic formula. This formula encodes
the relevant ordered occurrences of causal events, and is obtained by unfolding the loop-counterexample
“sufficiently many times”.

Related work. The idea of exploiting counterexamples as a debugging aid, in order to understand what
determined a certain system failure, has been addressed by other works as well. We refer, for instance, to
the results in [2]] that uses the notion of causality in [[15}14] and provides the user a visual explanation of
the failure by marking causes as red dots along the counterexample trace. In [2]], causes for the violation
of an LTL property are computed via an over-approximation algorithm. For another example, we refer
to the work in [[17], where errors in system models are elicited from similar counterexamples witnessing
the violation of liveness properties.

It is certain that imposing minimality conditions on the size of causal explanations is desirable. In
our work, we adapt the approach from [15, [14], and formalise a notion of causality that is minimal with
respect to the number of events (i.e., system actions) it encompasses. In a similar spirit, [23]] proposes
a methodology for computing shortest counterexamples for symbolic model checking of so-called LTL
with past formulae. Other “nice to have” properties of causality such as, compositionality, for instance,
were addressed in [[10, 9, (11}, (12, [5].

For a more comprehensive survey on principles, algorithms and applications of counterexample anal-
ysis, we refer to [6]].

Contributions. In this paper we introduce a notion of causality with respect to the violation of general
LTL properties. This is an extension of the work in [[19], where causality was handled in the context of
safety LTL properties. Our main contributions include an adaptation of the so-called Event Order Logic
(EOL) in [19] in order to enable compact (finite) descriptions of what caused the violation of a system
failure. The proposed notion of causality incorporates a series of properties to be satisfied by the EOL

G. Caltais & S.L. Guetlein & S. Leue 3

formulae characterising property violations. A notion of soundness and completeness depending on a
complete enumeration of all bad traces (i.e., counterexamples) and good traces is also established. We
show that causality in the sense of [[19] is equivalent with causality in the current paper, for the case of
safety LTL properties.

Structure of paper. Section [2 briefly introduces the formal framework for analysing counterexam-
ples witnessing the violation of LTL system properties in the context of transition system models. The
corresponding extension of EOL to describe such counterexamples is provided in Section [3] Section {]
introduces the proposed notion of causality. In Section [5] we discuss soundness and completeness of our
approach. Section[6]draws the conclusions and provides pointers to future work.

2 Preliminaries

In this section we introduce the formal framework for analysing counterexamples witnessing he violation
of Linear Temporal Logic [16] system properties in the context of transition systems.

Definition 1 (Transition Systems (TS’s)). A TS is a tuple T = (S,Act,—,I,AP,L), where S is a finite set
of states, Act is a set of actions, ~C S x Act x § is a transition relation, I € S is a set of initial states, AP
is a set of atomic propositions, and L: S — P (AP) is a function associating to states in S a set of atomic
propositions in AP.

For (s,a,s") € — we also write s % ', In the remainder of this paper, for each a € Act, we consider
an atomic proposition or event variable ay € AP such that: given s’ €S, it holds that aq € L(s") whenever
there exists s € S with s — s/’

We define an execution, or execution trace of T, as a possibly infinite sequence G = so0l1 510453 . ..
with so €I and s; i, si+1 for all i > 0. Moreover, for all i >0 we write G[i...] to represent the execution
Si®is18i+1 - - - - Additionally, for all 0< i< j we write O[i..] to represent the finite execution s;Qj1 . . . o;s;.

Given an execution trace 6’ = s, 0t{s] 0 ..., we write soc; : 0’ as a shorthand for the execution trace
0 = 500150510 ... For simplicity of notation, we sometimes write @@ ..., OF Ggrdg; - . (0 equiva-
lently represent ¢’.

Remark 1. In this paper, we consider TS’s without terminal states, i.e., TS’s for which all executions
are infinite. Observe that this is not a limitation. Finite executions ending in a terminal state s can

be straightforwardly extended to infinite executions via a transition s — s, such that s, has a self-loop

labelled A, i.e., s L 5y,

We further focus on formalising properties of TS’s. A safety property can be seen as a requirement
that some bad event never happens. More formally, a property Py is a safety property if and only if
every path, or execution that violates Py4f, has a finite prefix that can not be extended to a path satisfying
Pyyfe. Intuitively, this means that if a safety property is violated, this violation already happens after the
model has passed a finite sequence of states and after this finite sequence the violation is unrecoverable.
Consequently, if we want to check whether a safety property is satisfied or not, it suffices to only look
at finite paths of the system. A well known approach for reasoning on the violation of safety properties
is model-checking implemented via simple depth first search (DFS) algorithms [1l]. These algorithms
check whether starting from an initial state we can find a path to some state of the model where the bad
event specified by the safety property happens. If such a path can be found, the property is violated.

4 Causality for LTL

A liveness property requires that some good event eventually happens. It follows that when checking
whether a liveness property is satisfied or not it does not suffice to only look at finite execution fragments
of the system. Orthogonally to the model-checking of safety properties, reasoning on the violation of
liveness properties is performed via nested depth first search (NDFS) [7]. This algorithm searches for
an infinite path in the model, such that the good event described by the liveness property does not hold
along that path. If such a path can be found, the property is violated.

Linear time (LT) properties can be expressed in terms of a safety and a liveness property, based on the
Decomposition Theorem 3.37 in [1l]. Consequently, reasoning on the violation of LT properties requires
an NDFS-based approach.

We further provide a brief overview on Linear Temporal Logic (LTL) [16] — a formalism to de-
scribe system properties. Intuitively, LTL formulae range over the atomic proposition true, that holds
in any state of a transition system and, respectively, over atomic propositions a satisfied within a state
s whenever the labelling function indicates so. Recursively, LTL formulae are defined as disjunctions
(1), conjunctions (&) and negations (~) of formulae. The next (X) operator indicates the satisfiability
of a property starting with the “next” state, whereas the until (U) operator indicates the satisfiability of
a formula ¢; all the time until a formula ¢, is finally satisfied. The eventually (<) and generally (O)
operators indicate the satisfiability of a formula “at some point” in the future and, respectively, “all the
time”.

Definition 2 (Linear Temporal Logic (LTL)). LTL formulae over the set AP of atomic propositions are
built according to the following grammar:

O,01,0u=true|al¢1102 |1 & P2 |~ |XP [0 U 92| OP |09 (acAP)

LTL formulae are interpreted over transition systems without terminal states T = (S,Act,—,I,AP,L).
Let 0 = 5001510057 ... be an execution trace in T. The following hold:
* O Etrue

s oFaiffacL(sy)

* Ok~ iffnotc k@

* CEMIQiffocEG orOE M
cCENW&Qiffoc=¢rand o= P

s X0 iffo[l..]E¢d

c o= UM lﬁCHkZO:G[k..] |=¢zal’ldVOSi<k:G[i..] E ¢

* 0ECYIffIk>0:0[k..]=¢

s oEOQiffVk>0:0[k..]=0

We write (@1 — @) as a syntactic sugar for (~ @11¢,), and (¢ < @) as a syntactic sugar for
((~ 01 = 92)&(~ 92 = ¢1)).

We say that a transition system T satisfies a LTL formula ¢, written as T = @, if and only if for all
executions ¢ of T it holds that ¢ = ¢.

If a system model, or TS in our setting, does not satisfy some given LTL-definable property P, there
must be an execution witnessing the violation of the property. Such executions are called counterexam-
ples. For safety properties, counterexamples are finite execution fragments that start in an initial state of
the system and lead to an undesired state where “something bad” actually happens. For liveness prop-
erties, counterexamples must be infinite executions, because every finite path can still be extended to a
path satisfying the liveness property and does, therefore, not suffice as an example for the violation of
the property. An infinite path that violates a liveness property is lasso-shaped.

G. Caltais & S.L. Guetlein & S. Leue 5

3 Event Order Logic

The work in [19] introduces the so-called Event Order Logic (EOL). Intuitively, formulae in EOL are
used to express causality classes for counterexamples. Causality classes can be seen as generalized coun-
terexamples. A causality class represents several counterexamples, all leading to the property violation
in the “same way”. Such counterexamples may only differ in some other events that are not essential for
the property violation.

In the case of liveness properties, our counterexamples must be lasso shaped, that is, they contain a
loop at the end. The sequence “E0,B2,(B1,E1,B0,E0)®” is a counterexample of ¢ := 0(B2 — OE2)
in the elevator model. In words, the elevator is stuck between the ground floor and the first floor, as
(B1,E1,B0,E0)® indicates that the sequence (B1,E1,B0,EQ) keeps repeating forever. We can say that
the cause of the property violation is that the buttons on the ground floor and the first floor are pressed
repeatedly and between that, the elevator never has the chance to go to the second floor.

We see that the cause of a liveness property violation must consist of some events happening at
the beginning and then some other events happening again and again (in the loop). Hence, in what
follows, we propose an extension of EOL in [[19] with so-called infinite formulae to express infinite
causal behaviours.

The work in [19] introduces two kinds of EOL formulae: simple and complex. Intuitively, simple
EOL formulae, usually denoted by ¢, are built over event variables a, that are atomic propositions
witnessing the execution of actions & at some point in the future. The satisfiability of atomic propositions
is different within the frameworks of EOL and LTL: the latter assumes satisfiability with respect to the
initial state of a trace, whereas the former has an “eventually” component. This difference is formalized
in Definition [providing the semantics of EOL.

Similarly to the case of LTL, simple EOL formulae are inductively defined using negation (=), con-
Jjunction (A) and disjunction (V). As a consequence of the observation above, formulae of shape ¢; A ¢»
(respectively, @ v ¢») read as: eventually ¢; will hold and (respectively, or) eventually ¢, will hold.

For technical reasons related to the semantics of the aforementioned infinite EOL formulae, we split
the complex EOL formulae in [19] into: I-complex and G-complex, respectively. We refer to Remark 2]
for a more detailed explanation.

I-complex formulae, usually denoted by v, include simple EOL formulae, conjunctions (A) and dis-
Jjunctions (V) of I-complex formulae. An I-complex formula y; A Y5 has an “ordered-and”-like semantics
and reads: first y; holds and then y». Last, but not least, an I-complex formula YA ¢ A,y reads: first
v holds, then y, holds and in between the “interval” determined by the satisfiability of y; and y» the
simple EOL formula ¢ holds all the time.

G-complex formulae, usually denoted by 6, range over I-complex formulae and encompass two more
temporal operators: Aj that has an “until”-like semantics, and A[that has an “after”-like semantics. More
precisely, ¢ A 6 reads: 6 will hold at some point in the future and until then, the simple EOL formula ¢
holds all the time. Orthogonally, 6 A[¢ reads: at some point 6 holds, and after that, ¢ holds all the time.

Observe that the simple and, respectively, G-complex formulae in this paper have the same expressive
power as the simple and, respectively, complex EOL formulae originally proposed in [19]].

To express infinite causal behaviour, we extend the EOL in [[19] with the so-called infinite formulae,
usually denoted by . These are formulae built over the new logical symbol A®. For a G-complex
formula 6 and an I-complex formula ¥ we write 0 A® y to express that first 6 holds and then y happens
infinitely many times.

Formally, as the new EOL we obtain the following:

6 Causality for LTL

Definition 3 (Extended Event Order Logic (EOL) — Syntax). Simple EOL formulae over a set A of event
variables are formed according to the following grammar:

0,01, 02:=T|ag [~ | o1 A2 [1V (ageA).

Complex EOL formulae are of two kinds:

* I-complex EOL formulae, formed according to the following grammar:

VoyL e E= 0 [yiaw [yiacd ssvn [yiaye [y vy,
where ¢ is a simple EOL formula.

* G-complex EOL formulae, formed according to the following grammar:

O:=y[9A0[0A¢

where ¢ is a simple EOL formula and y an I-complex EOL formula.

Infinite EOL formulae are formed according to the following grammar:

E:=0A"y
where 0 is a G-complex EOL formula and is an I-complex formula.

We want an infinite execution o to satisfy an infinite EOL formula & = 8 A®y if and only if (a) the
events in 0 occur in ¢ in the order specified by 6, and (b) the events of y occur in ¢ in the order specified
by v, infinitely many times.

As an example, consider the following execution ¢ in a TS:

_ [29] /OCZN. 1
O=s0—>=S1_____% (D
o3

It is easy to see that o satisfies the formula

5 =dg, /‘\w(aaz /‘\aO@)

where ag, is the event variable corresponding to ¢; for i € {1,2,3}. We see that ¢ contains a finite part
O] =5) A, s1 determining the event variable aq, to occur, and a finite part in the loop 05 = s %, $2 %, S1
where aq, and aq, occur. Thus, an intuitive approach to decide whether an infinite execution trace
satisfies an infinite EOL formula & = 8 Ay is to split o into an initial final trace o} and finite trace o,
inside of the loop, and check if oy satisfies 6 and if o, satisfies y, respectively.

The following example shows that it is not enough to split the lasso shaped execution trace ¢ into a
first part o] that contains all states up to the loop and a second part o, that consists of the loop executed
only once. Consider the execution ¢ in (1) and the EOL formula &' = ag, A dg, A®(ag; Adg,). Our
execution o also satisfies &’ because in o the event aq, happens before aq, and after that, ay, happens
after aq, infinitely many times. Hence, in this case, the finite traces guaranteeing the satisfiability of &’
are as follows:

o (0%] a3
O =50 —> S| —> 52 —> 8] ()

is obtained by concatenating the sequence in ¢ up to the loop, with one unfolding of the loop, whereas

[2%] o3 (0%] [0%]
Oy =81 —> 82 —> S| —> 52 —> 81 3)

G. Caltais & S.L. Guetlein & S. Leue 7
is the unfolding of the loop twice.
By following a similar pattern, consider o in (I]) and the EOL formula
5” = aal /-\aa,s Aaaz Aaa3 /-\aaz Aw(aaz Aaa3 /-\aaz /-\aaz /-\a(xz).

We want o to satisfy this formula as well, but 7 in (2) and o, in (3) do not satisfy their corresponding
EOL formulae in £”. We have to extend o until the loop has been executed three times, while o is
defined by unfolding the loop four times. Hence, we get:

a o0 07} (073 [2%] (2%} o3
Op = SQ—>81 —>82—>8§1 —>85 —>85§1 —> 85—

[05) o3 O o3 (05 o3 (07) o3 (4)
Oy = S| —>8§—>8§1 —>8§ —>8§] —>85 —>85§] —>85H —> 8

Intuitively, o satisfies an infinite EOL formula £ = 6 A®y whenever ¢ can be split into two finite
executions o7 and 0y, “large enough” to satisfy 8 and y, respectively.

Remark 2. As can be seen in Definition[3| we choose to classify the complex EOL formulae in [19] into
I-complex formulae v and G-complex formulae 0. This is because we want to allow only interval-like
formulae y as right-hand side of the A® operator. The occurrence of ¢ AW or YWA[@ in a cycle does
not make sense unless ¥ = ¢, case in which the corresponding formulae & can be equivalently expressed
in terms of formulae 0 A® (@ A..AQ), where ¢ A.. A stands for finite ordered conjunctions (A) of simple
formulae ¢.

The EOL semantics is translated to the setting of general LTL- properties and infinite loop-traces as
follows:

Definition 4 (EOL — Semantics). Let T = (S,Act,—,I,AP,L) be a transition system without terminal
states. Let ¢,¢1,¢> be simple EOL formulae, let W, Y1, W, be complex EOL formulae, let 0 be a G-
complex EOL formula, and let & be an infinite EOL formula. Let A be a set of event variables and let
ag,aq, range over arbitrary event variables in A.

The satisfiability of EOL formulae (=.) is defined over execution traces G = so01510y ... in T.

For simple EOL formulae we define:

* O, T, e, T (true) is trivially satisfied by all traces

* OFcaq iff30<r:0[0..r]Eeaq iff 30< j<r:sj g>sj

* Ok, -0 iffnot o=, ¢

s 0. MAGiff I0<r:0[0..r] Ee O1 A G iff I0<r: G[0..r] =, @1 and G[0..r] =, P2
* Ok, OV iff I0<r:0[0..r] 5, ¢1 vV, iff I0<r:c[0..r] £, @1 or G[0..r] E, 2
For I-complex EOL formulae we define:

s Ok YL AV iff A0<r:0[0..r] =, Y1 A Y2 iff
30<j<k<r:o[0..j] . yi and c[k..r] =, Y

* Ok, Y1 Ac O As Y1 iﬁ‘EIO<r:G[O..r] Fe W1 Ac @ As Y iff
30<j<k<r:0[0..j] e, yiand olk..r]E. yoand ¥l s.t. j<l<k:o[l.l+1]kE ¢

s O YAV iff30<r:0[0..r] E. Wi AW, iff 30 < r: 0[0..r] E. W1 and 6[0..r] £, ¥
s ok YV iffI0<r:o[0..r]E. Wi Vs iff I0<r: [0..r] =, Wy or 6[0..r] =, W2
For G-complex EOL formulae we define:

8 Causality for LTL

s oli.r]r. @ A0 iffi<j<r:o[j.r]E. 0 and Vkst i<k<j:olk.k+1]E. ¢
* ofi.r]F. O A iffdi<j<r:oli.jlr, 0 and Vks.t. j<k<r:o[k.k+1]E. ¢
* Ok P A 0iffI0<r:0[r.]E.0andVjst 0<j<r:o[j.j+1]F. ¢

* Ok O AP iffI0<r:0[0.r]F. 0 andVjst j2r:c[j.j+1]F. ¢

Let 0 = 500015100 .- 5104415141 - - - QpemS14m O +m+ 151410442 - - - be an infinite execution trace of T with
a loop consisting of m states and starting with s;.1. Let 62] = o[l..l+ j *m—1] be the unfolding of the
loop for j times.

For infinite EOL formulae & = 0 A®y we define:

« 6k Eiff3i20,j20:01 = 0[0..i] and 6] = 6[l..1+ j*m~1] and 61 =, 0 and &} &, y.

Definition 5 (EOL Formulae over Executions). Let 6 = sg005100 ...S;011 « - - Sjom-1C+mS1 0441 - .. be an
infinite execution trace of T with a loop consisting of m states and starting with s;. The EOL formula
over © is defined as: &g :=ag, A...ANag A®(ag,, A...Aag,,,).

The following definition will give us a possibility of comparing two EOL formulae. Whenever we
have an EOL formula &; and extend it to an EOL formula &, by adding some events to the formula, the
set of executions that satisfy the EOL formula &, will be a subset of those executions that satisfy the EOL
formula &;. Intuitively, this holds as in & we have more constraints on the represented execution traces.
Therefore, for two infinite EOL formulae &; and &, we will use the notation &; € &, to express that every
execution o that satisfies &, also satisfies &;. In that case, &; can be seen as a generalized form of &,.

Definition 6 (EOL Formulae Subset Relationship). Ler &yand&, be infinite EOL formulae.

o c: & & iff every execution o that satisfies &, also satisfies &;. Intuitively, this means that the set
of events in & is a subset of the events in &,.

cc&ichifféicband 8,

As an example we consider the EOL formulae &, = EOABIAE1 and & = EOAB1 AB2AE1. In every
execution o that satisfies &, the events EO, Bl and E1 will happen one after the other (but there can be
other events happening between them). Therefore, every execution o that satisfies &, also satisfies &;.
Hence, it holds that &; ¢ &,.

4 Causality for general LTL-definable properties

In this section, we formally define the notion of actual causality (AC) for general LTL-definable proper-
ties. The definition follows its counterpart in [19]. The latter is an adoption of the actual causality in [15],
to the context of concurrent systems. Next, we provide a brief reminder of the causal setting in [15].

In [15]], systems under analysis are formalized as structural equation models. Intuitively, structural
equations are used to describe causal influence of variables in the system. The set of all variables is
partitioned into the set U of exogenous variables that are irrelevant with respect to the causal effect, and
the set V of endogenous variables that are considered to have a meaningful, potentially causal effect. The
set X ¢V contains all events that jointly might represent a cause. A signature S is defined as a tuple
(U,V,R), where U is a finite set of exogenous variables, V is a finite set of endogenous variables, and
R associates with every variable Y €/ U} a nonempty set R(Y) of possible values for Y. A structural
equation model over a signature S is defined in [15] as tuple M = (S, F), where F associates with each
variable X €V a function denoted Fy that defines the values of all variables in X given the values of all
other variables in 2/ U). Consider a structural equation model M = (S,F), a vector X of variables in

G. Caltais & S.L. Guetlein & S. Leue 9

V), and vectors X and i of values for the variables in X and U. My . denotes the structural equation
model for which variables in X are set to ¥. Given a signature S = (U,V,R), a formula of the form
X =x, for X €V and x € R(X), is called a primitive event. A basic causal formula over S is one of the
form [Y; < y1,...,Yx < yx, |@ where ¢ stands for the effect, or hazard, and Y;,...Y; and X are variables in
V. The formula [Y; < yi,...,Y; < Yk,]@ is abbreviated as [V < y]¢. Intuitively, [¥ < y]¢ states that ¢
holds in a setting in which the values of the variables in Y are set to the values in . A causal formula
v is a Boolean combination of basic causal formulae. We write (M, i) =gy ¥ whenever y is true in
the structural model M, given the context defined by i. Additionally, X = X stands for a conjunction of
primitive events of the form X| = x| A.... A Xy = x¢.
An actual cause with respect to the hazard, or effect ¢ is defined in [[15] as follows:

Definition 7 (Actual cause [[13]). X =¥ is an actual cause of ¢ in (M, i) if the following three actual
cause conditions (AC) hold:

AC1: (M, i) ey (X =%) A .

AC2: There exists a partition (Z,W) of V with X € Z and some setting (%,w) of the variable in (X, W)
such that:

1. (M, i) Esy [X < &, W < W' -
2. (M,i) sy [X < X, W < W ,Z' < 7*]¢@ for all subsets Z' of Z
AC3: X is minimal, in the sense that no subset of X satisfies conditions ACI and AC2.

Intuitively, in [[15]], condition AC1 states that there is a setting in which both the cause and the effect
occur. AC2(1) expresses a necessity condition. It says that for X = X to be a cause of @, there must be a
setting x’ such that if X is set to X, @ would not have occurred. However, as stated in [13], AC2(1) might
be too permissive as it allows to change the values of the variables in both X and W. Hence, the change
of ¢ form true to false could be caused by a change of a variable in X or W. The set W enables expressing
so-called “contingent dependencies”. For an intuition, consider two events “Alice presses button B2” and
“Bob presses button B2” that enable the elevator to reach the second floor of a building. We say that the
elevator reaching the second floor depends on Alice pressing the button, under the contingency that Bob
did not press the button. AC2(2) constrains AC2(1) by keeping the values of the variables in X at their
original values and only changing the variables in W. AC2(2) corresponds to a sufficiency condition.
Intuitively, setting X to X, guarantees that ¢ holds. The minimality condition in AC3 ensures that only
those elements that are essential with respect to ¢ are part of the cause.

Actual causality in the context of TS’s and LTL-definable properties is defined as an adoption of [[15]
to the setting of concurrent systems, in the spirit of [19]. In our setting, —¢ represents the hazard, or the
effect.

Definition 8 (Causality for LTL). Let T = (S,Act,—,I,AP,L) be a transition system without terminal
states. An EOL formula & is considered a cause for the violation of the LTL specifiable property @, if the
following conditions are satisfied:

e ACI: There exists an infinite execution & in T such that 6 £, & and 6 # @
e AC2(1): There exists an infinite execution o in T such that 6 ¥, & and o = @
e AC2(2): For all infinite executions 6" in T with 6" &, & it holds that 6" ¥ ¢.

e AC3: The EOL formula & is minimal, i.e., there does not exist an EOL formula &' with &' c & that
also satisfies conditions ACI1 and AC2.

10 Causality for LTL

ACI above resembles its counterpart in Definition [/| in the sense that it identifies a setting ¢ that
satisfies both the cause & and the effect ¢. AC2(1) entails a necessity condition that identifies a setting
witnessed by —& in which the violation of ¢ would not occur. We fully formalise necessity as a complete-
ness result in Theorem [1} Section 5l AC2(2) is a sufficiency result, stating that satisfying the cause & is
enough to guarantee the violation of ¢. AC3 is the minimality condition which states that no true subset
of & satisfies conditions AC1 and AC2. Intuitively, £ is in the “most general form possible”. Moreover,
note that our definition of causality does not employ a notion of “contingency”. This is because our
approach to causality checking is based on a complete exploration of the traces within a TS model and
enables the explicit identification of all potential causes.

Example 2. If we want to show that & = Eg A B2 A (B1 AE1 ABOAEQ) is causal with respect to the
violation of the LTL property ¢ =0(B2 - OE2), we need to show that AC1, AC2 and AC3 are fulfilled
for&.

Consider the infinite execution:
0 = EoBy(B1E1BoEp)” ()

Informally, (5)) states that when at floor Ey, after pressing button B, only alternations of actions press
B; and reach E; are possible, where i € {1,2}. Note that E; is never reached, even if By was pressed.
Moreover, consider a behaviour in which the elevator stops at floor E, infinitely many times after B,
being pressed once:
o' = EoBy(B E\E2BoEy)® (6)

At this point, we can infer the following:

e ACI is satisfied as, for © in , ok, & and o @ hold.

e AC2(1) holds for 6" = Eo(B2E>B1E1)®, for instance.

* AC2(2) is not fulfilled as, for instance, for o' in (6), 0’ =, & and 6’ = @ hold.
Hence, & is not causal, as it does not prohibit the occurrence of E,.

We observe that in order to compute causes for a property violation according to Definition 8 it is not
sufficient to start with an execution trace o that is a counterexample for the property ¢, build the EOL
formula & over o and generalize it (in the sense of Definition @) until it satisfies conditions AC1-AC3.
Example[2] shows that also the non-occurrence of events can be causal for the violation of a general LTL-
property. We further introduce a method to compute the events over ¢ whose non-occurrence is causal
for the violation of ¢, and encode this information within the cause &.

We proceed by first defining a valuation function with respect to a set of event variables M. This
function maps an execution trace o to the subset of event variables of M occurring in ©.

Definition 9 (Valuation Function). Given a transition system T = (S,Act,—,I,AP,L) and a finite set of
event variables M = {aq,,...,aq, }, we define the valuation function valyq as a function on the set of
execution traces of T to the set P(M) — the powerset of M. Let G be an execution trace of T. Then:

valp(0) ={ag e M: 0 E, aq}.

Definition 10 (Non-Occurrence of Events). Let T = (S,Act,—,I,AP,L) be a transition system without
terminal states, @ an LTL-definable property, ¢ an execution trace over T with ¢ # @ and Es the EOL
Sformula built over ¢. Let A be the set of event variables, let Z be the set of event variables occurring in
& and let W := A\Z. We say that that Q is the subset of event variables whose non-occurrence in O is
causal for the property violation of ¢, if

G. Caltais & S.L. Guetlein & S. Leue 11

1. & satisfies ACI and AC2(1).

2. There exists an execution trace 6" with 6" £, &,
valz(o) =valz(c"), valy (o) #valy (") and 6" = ¢.

3. QW is the smallest set s.t. for all execution traces 6" with 6" =, Es and valz(0) =valz (o)
and valp(c) =valp(c") = @ we have " ¢ ¢.

As above, let ¢ be a counterexample for the property @, let & be the EOL formula built over ¢ and
assume & satisfies the first two conditions of the definition above.

We can now compute the subset Q and determine the location of the event variables ay € Q in the
EOL formula &g built over a ¢’ which we choose as in condition 2 above. We then compare & to
& and prohibit the occurrence of ay in &g in the same locations as they occur in 5. We repeat the
procedure for all 6" as in 2 above, and build &; in an incremental fashion. This way we obtain a new
EOL formula &, that also satisfies condition AC2(2).

If, based on Definition [6] there is a generalization &’ of &5 that also satisfies AC1 and AC2, we
replace &5 by &’. We repeat this procedure until &5 is in the most general form possible and, therefore,
also satisfies AC3. Since & satisfies AC1-AC3 by construction, it is a cause for the violation of .

In the context of Example from traces ¢’ satisfying condition 2, we obtain intermediate formulae
&o of shape:

o' = EoBzEz(BlElBoEo)w éc = (EO/.\BZ /.\[—\EZ) /.\w(Bl AE1 /.\BO/.\EO)

6" = EoBy(BIE\ ExBoEo)® &g = (EOAB2 A ~E2) A®(B1 AE1A.~E2AsB0AEO)

0" = EgBy(B1E1BoELEy)? &5 = (EOAB2A[=E2) A®(BIA<=E2AsE1nc~E2AsBOAEOQ)

6" = EoBy(B1E1E2BoEy)® &g = (EOAB2A[~E2) A°(Blac~E2AsE1nc=E2ABOA.~E2A5EQ)

@)
On top of the formula incrementally derived as in (7), the repeated generalisation procedure entails
the EOL formula:

o = (B2 [~E2) A?(-E2) ®)

which is semantically equivalent with B2 A =E2. Observe that &, satisfies AC1 for ¢ in (5) and AC2. &g
also satisfies AC3, because every superset of &5 will either violate AC1 or AC2. Thus, the EOL formula
& satisfies AC1-AC3 .

Conditions AC1-AC3 do not imply that the order of the occurring events is causal. Whether the order
of events occurring in an EOL formula & that satisfies AC1-AC3 is causal or not, can be checked by the
following Order Condition (OC). Note that £ can be causal even if the OC is not satisfied.

Definition 11 (Order Condition (OC)). Let T = (S,Act, —, I,AP,L) be a transition system without termi-
nal states. Let 0 be an infinite execution trace violating an LTL-definable property @. Let & be the EOL
formula built over ©. Let Z be the set of event variables occurring in & and let W := A\Z. Consider a
set of pairs of event variables over Y € Z:

{(ag;,aq;) | ag; Aaq; occurs in & }.

Let &, be the formula obtained by replacing the occurrences ag, A ag; in Y with ag; Nag;.
The order condition (OC) states that the order of events aq, and aq; as above is not causal if the
following holds: exists ¢’ such that 6" # ¢ and val4(0) =val4(c’) and ¢’ #, & and 0’ =, &,.

12 Causality for LTL

Note that for the EOL formula &g in (8)) the following holds: &5 = £54. As a consequence, the order
of events in &g is causal. We say that &4 satisfies OC.

The following result states the equivalence with the original notion of causality in [[19], for the case
of safety LTL properties.

Corollary 1. Let T = (S,Act, —, [,AP,L) be a transition system without terminal states. Let ¢ be a safety
LTL property. A G-complex EOL formula 0 is a cause in the sense of Definition 8| if and only if it is a
cause in the sense of [19].

Proof Sketch. First, recall that counterexamples witnessing the violation of safety properties are finite.
Hence, in [19], the satisfiability of EOL formulae (characterising such counterexamples) was established
based on finite traces. Nevertheless, as can be seen from Definition [4] satisfiability of G-complex for-
mulae can be defined via finite traces as well. In fact, the semantics of G-complex formulae and EOL
formulae as in [[19] coincide. These being said, the equivalence of the two notions of causality in the
context of safety properties follows immediately by case analysis on AC1-AC3. AC1 and, respectively,
AC3 in Definition [8|are identical to their counterparts in [19]. From AC2(1) and AC2(2) in Definition
we can infer AC2(1) in [19]]. AC2(2) in Definition[§]implies AC2(2) in [19], whereas AC2(1) and AC2(2)
in [19] imply their counterparts in Definition 0

We further introduce a definition of causality classes for general LTL-properties. Intuitively, causality
classes can be interpreted as “generalized counterexamples”.

Definition 12 (Causality Class). Let T = (S,Act,—,I,AP,L) be a transition system without terminal states
and let @ be a general LTL formula. Every infinite EOL formula & = 0 A® y that is considered a cause for
the violation of @, i.e., every infinite EOL formula & that satisfies ACI-AC3 and OC, defines a causality
class CC¢. CC¢ is defined as the set of all valid execution traces in T that satisfy E.

For example, the EOL formula & = (B2 A[~E2) A®(-E2) in (8) satisfies ACI-AC3 and OC and,
therefore, defines a causality class. Moreover, note that one execution can belong to more than one
causality class.

S Completeness and Soundness

We say that causality checking is complete whenever for each possible execution trace that violates an
LTL property in the transition system under analysis, there exists a causality class representing this trace.
Therefore, completeness can be seen as a necessity condition. The completeness of causality checking
depends on a complete enumeration of all bad and good traces in the system.

Theorem 1 (Completeness). Let T = (S,Act, —, I,AP,L) be a transition system without terminal states.
Let o range over infinite execution traces in T violating an LTL-definable property ¢, i.e., © ¥ @. For
each such o there exists a causality class of ¢ containing this trace.

Proof. Let ¢ be a general LTL property and let & = & v.... v &, be the disjunction of all EOL formulae &;
that satisfy AC1-AC3 and OC. Let ¢ be a trace such that o i ¢. We have to show that ¢ € CC¢, for some
i€l,...,n. Assume that o is not contained in any causality class, that is ¢ ¥, &; for all EOL formulae &;
that satisfy the conditions AC1-AC3 and OC.

Let &5 be the EOL formula representing o, and let Z and W be the corresponding event variable
partitioning, with respect to Act. Since 0 k, &5 it follows that &5 is excluded from & by one of the
ACI1-AC3 tests. We will show that this is not the case for any of the conditions AC1-AC3 or OC.

G. Caltais & S.L. Guetlein & S. Leue 13

* ACl is satisfied because for o it holds that ¢ =, s and G ¥ @.

¢ AC2(1) holds given the assumption that there exist n EOL formulae in & that satisfy AC1-AC3
and OC.

o If AC2(2) fails, then there exists an infinite execution 6" with 6" =, & (and, hence, valz (o) =
valz(c")) but 6" = ¢. Let g be the EOL formula derived from ¢”’. We can now transform
&s to a new formula & by prohibiting the occurrence of ay in &g, in the same locations as they
occur in 5. Consequently, we still have o =, £/ and o £ &) but now, 6" ¥, &.. Thus, 6" does
not influence the satisfaction of AC2(2) by &J. If &/ still doesn’t satisfy AC2(2), i.e., if there is
another ¢’ with 6’ =, & and valz (o) =valz(c"") but ¢’ = @, we repeat the procedure from
above. Since the action alphabet is finite and the EOL formulae are finitely representable, this
procedure will stop after finitely many steps. The resulted EOL formula &/ satisfies AC2(2).

o If AC3 excludes &g, then there must be some &/ c &, that satisfies AC1 and AC2. We still have
o = &} by Definition 3].

In all cases we obtain an EOL formula &/ that satisfies AC1-AC3 and OC, such that o = /. Thus, o is
contained in the causality class CC; . O

We define a causality checking result to be sound if whenever the events described by a causality
class occur, the property violation occurs.

Theorem 2 (Soundness). Let T = (S,Act, -, I,AP,L) be a transition system without terminal states.
Each execution trace o of T contained in a causality class of a general LTL property @ is a bad trace,
i.e. O Q.

Proof. Let ¢ be contained in the causality class CCg for some EOL formula . Since & defines a
causality class, it must, by definition, satisfy AC1-AC3 and OC. In particular, & must satisfy AC2(2).
Since 0 € CC¢ we have 0 E, & by definition of causality classes. It follows from AC2(2) that o & ¢. [

6 Conclusions

We have presented an approach for extending causality checking towards general LTL-definable proper-
ties. To this end, we have reconsidered the actual cause conditions AC1-AC3 and OC, and adapted them
to the lasso-shaped counterexamples that general LTL properties entail.

For practical reasons related to the implementation of the causality checking procedure, our current
results are limited to LTL-definable properties. Nevertheless, in the future, we consider extending the
formal framework of causality checking to the more general case of ®w— regular linear-time properties [[1]].
It should be pointed out that the described adaption can be straightforwardly extend to general @w-regular
properties, corresponding to the expressiveness of Biichi automata, which are a strictly larger class of
properties than LTL [235]].

As already mentioned, we consider implementing the current causality checking approach in an
automated tool. Of particular interest is QuantUM [18]], a tool that enables the semi-formal specification
of systems in terms of SysML [21] and applies LTL model-checking for determining what caused the
violation of a safety LTL property. Recall that our notion of causality relies on the complete enumeration
of system traces. Hence, the main challenge is to determine all (lasso-shaped) counterexamples in an
efficient way (e.g., on-the-fly [8} 24} 3, 14]). Further future research comprises significant case studies in
order to asses the scalability of our approach.

14

Causality for LTL

Acknowledgements. The authors are grateful for the useful comments received from the anonymous
reviewers of CREST 2018.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT Press.

Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni & Richard J. Trefler (2009): Explaining Coun-
terexamples Using Causality. In Ahmed Bouajjani & Oded Maler, editors: Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, Lec-
ture Notes in Computer Science 5643, Springer, pp. 94-108. Available at https://doi.org/10.1007/
978-3-642-02658-4_11.

Vincent Bloemen, Alfons Laarman & Jaco van de Pol (2016): Multi-core on-the-fly SCC decomposition. In
Rafael Asenjo & Tim Harris, editors: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016, ACM, pp. 8:1-8:12,
doi:10.1145/2851141.2851161. Available athttp://doi.acm.org/10.1145/2851141.2851161.

Vincent Bloemen & Jaco van de Pol (2016): Multi-core SCC-Based LTL Model Checking. In Roderick
Bloem & Eli Arbel, editors: Hardware and Software: Verification and Testing - 12th International Haifa
Verification Conference, HVC 2016, Haifa, Israel, November 14-17, 2016, Proceedings, Lecture Notes in
Computer Science 10028, pp. 18-33, doii10.1007/978-3-319-49052-6_2. Available at https://doi.org/
10.1007/978-3-319-49052-6_2.

Georgiana Caltais, Stefan Leue & Mohammad Reza Mousavi (2016): (De-)Composing Causality in Labeled
Transition Systems. In Gregor GoBler & Oleg Sokolsky, editors: Proceedings First Workshop on Causal
Reasoning for Embedded and safety-critical Systems Technologies, CREST@ETAPS 2016, Eindhoven, The
Netherlands, 8th April 2016., EPTCS 224, pp. 10-24. Available at https://doi.org/10.4204/EPTCS.
224 .3\

Edmund M. Clarke & Helmut Veith (2003): Counterexamples Revisited: Principles, Algorithms, Applica-
tions. In Nachum Dershowitz, editor: Verification: Theory and Practice, Essays Dedicated to Zohar Manna
on the Occasion of His 64th Birthday, Lecture Notes in Computer Science 2772, Springer, pp. 208-224.
Available at https://doi.org/10.1007/978-3-540-39910-0_9.

Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper & Mihalis Yannakakis (1992): Memory-Efficient Algo-
rithms for the Verification of Temporal Properties. Formal Methods in System Design 1(2/3), pp. 275-288,
doi{10.1007/BF00121128. Available athttps://doi.org/10.1007/BF00121128,

Jean-Michel Couvreur, Alexandre Duret-Lutz & Denis Poitrenaud (2005): On-the-Fly Emptiness Checks
for Generalized Biichi Automata. In Patrice Godefroid, editor: Model Checking Software, 12th Interna-
tional SPIN Workshop, San Francisco, CA, USA, August 22-24, 2005, Proceedings, Lecture Notes in Com-
puter Science 3639, Springer, pp. 169—184, doi;10.1007/11537328_15. Available athttps://doi.org/10.
1007/11537328_15.

Gregor Goessler & Lacramioara Astefanoaei (2014): Blaming in component-based real-time systems. In
Tulika Mitra & Jan Reineke, editors: 2014 International Conference on Embedded Software, EMSOFT 2014,
New Delhi, India, October 12-17, 2014, ACM, pp. 7:1-7:10, doi:10.1145/2656045.2656048. Available at
http://doi.acm.org/10.1145/2656045.2656048.

Gregor GoBler, Daniel Le Métayer & Jean-Baptiste Raclet (2010): Causality Analysis in Contract Violation.
In: Runtime Verification - First International Conference, RV 2010, Lecture Notes in Computer Science
6418, Springer, pp. 270-284, doij10.1007/978-3-642-16612-9_21. Available at http://dx.doi.org/10.
1007/978-3-642-16612-9{_1}21.

Gregor GoBler & Daniel Le Métayer (2015): A general framework for blaming in component-based systems.
Sci. Comput. Program. 113, pp. 223-235, doi3j10.1016/j.sc1c0.2015.06.010. Available at https://doi.
org/10.1016/j.scico.2015.06.010.

https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
http://dx.doi.org/10.1145/2851141.2851161
http://doi.acm.org/10.1145/2851141.2851161
http://dx.doi.org/10.1007/978-3-319-49052-6_2
https://doi.org/10.1007/978-3-319-49052-6_2
https://doi.org/10.1007/978-3-319-49052-6_2
https://doi.org/10.4204/EPTCS.224.3
https://doi.org/10.4204/EPTCS.224.3
https://doi.org/10.1007/978-3-540-39910-0_9
http://dx.doi.org/10.1007/BF00121128
https://doi.org/10.1007/BF00121128
http://dx.doi.org/10.1007/11537328_15
https://doi.org/10.1007/11537328_15
https://doi.org/10.1007/11537328_15
http://dx.doi.org/10.1145/2656045.2656048
http://doi.acm.org/10.1145/2656045.2656048
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1016/j.scico.2015.06.010
https://doi.org/10.1016/j.scico.2015.06.010
https://doi.org/10.1016/j.scico.2015.06.010

G. Caltais & S.L. Guetlein & S. Leue 15

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

Gregor GoBler & Jean-Bernard Stefani (2016): Fault Ascription in Concurrent Systems. 1In: Trust-
worthy Global Computing - 10th International Symposium, TGC, Lecture Notes in Computer Science
9533, Springer, pp. 79-94, doi;10.1007/978-3-319-28766-9. Available at http://dx.doi.org/10.1007/
978-3-319-28766-9.

Nicolas Halbwachs & Lenore D. Zuck, editors (2005): Tools and Algorithms for the Construction and
Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Pro-
ceedings. Lecture Notes in Computer Science 3440, Springer, doii10.1007/b107194. Available at https:
//doi.org/10.1007/b107194.

Joseph Y. Halpern (2015): A Modification of the Halpern-Pearl Definition of Causality. In Qiang Yang &
Michael Wooldridge, editors: Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJICAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, pp. 3022-3033. Available
athttp://ijcai.org/Abstract/15/427.

Joseph Y. Halpern & Judea Pearl (2002): Causes and Explanations: A Structural-Model Approach. Part II:
Explanations. CoRR cs.Al/0208034. Available at http://arxiv.org/abs/cs.AI/0208034.

Michael Huth & Mark Dermot Ryan (2004): Logic in computer science - modelling and reasoning about
systems (2. ed.). Cambridge University Press.

Tsutomu Kumazawa & Tetsuo Tamai (2011): Counterexample-Based Error Localization of Behavior Models.
In Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann & Rajeev Joshi, editors: NASA Formal
Methods - Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceed-
ings, Lecture Notes in Computer Science 6617, Springer, pp. 222-236, doi;10.1007/978-3-642-20398-5_17.
Available athttps://doi.org/10.1007/978-3-642-20398-5_17,

Florian Leitner-Fischer & Stefan Leue (2011): QuantUM: Quantitative Safety Analysis of UML Models.
In Mieke Massink & Gethin Norman, editors: Proceedings Ninth Workshop on Quantitative Aspects of
Programming Languages, QAPL 2011, Saarbriicken, Germany, April 1-3, 2011., EPTCS 57, pp. 16-30,
doi{10.4204/EPTCS.57.2. Available at https://doi.org/10.4204/EPTCS.57.2]

Florian Leitner-Fischer & Stefan Leue (2013): Causality Checking for Complex System Models. In Roberto
Giacobazzi, Josh Berdine & Isabella Mastroeni, editors: Verification, Model Checking, and Abstract Interpre-
tation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, Lecture
Notes in Computer Science 7737, Springer, pp. 248-267, doi:10.1007/978-3-642-35873-9_16. Available at
https://doi.org/10.1007/978-3-642-35873-9_16,

Florian Leitner-Fischer & Stefan Leue (2013): Probabilistic fault tree synthesis using causality computation.
IJCCBS 4(2), pp. 119-143, doi;10.1504/IJCCBS.2013.056492. Available at https://doi.org/10.1504/
IJCCBS.2013.056492.

OMG (2007): OMG Systems Modeling Language (OMG SysML), V1.0. Technical Report, Object Manage-
ment Group. Available athttp://www.omg.org/spec/SysML/1.0/PDF.

Doron A. Peled (2001): Software Reliability Methods. Texts in Computer Science, Springer,
doi:10.1007/978-1-4757-3540-6. Available athttp://u.cs.biu.ac.il/~doronp/srm.html.

Viktor Schuppan & Armin Biere (2005): Shortest Counterexamples for Symbolic Model Checking of LTL with
Past. In Halbwachs & Zuck [13], pp. 493-509, doi;10.1007/978-3-540-31980-1_32. Available at https:
//doi.org/10.1007/978-3-540-31980-1_32,

Stefan Schwoon & Javier Esparza (2005): A Note on On-the-Fly Verification Algorithms. In Halbwachs &
Zuck [13]], pp. 174-190, doi:10.1007/978-3-540-31980-1_12. Available at https://doi.org/10.1007/
978-3-540-31980-1_12,

Pierre Wolper (1983): Temporal Logic Can Be More Expressive. Information and Control 56(1/2), pp.
72-99, doi:10.1016/S0019-9958(83)80051-5. Available athttps://doi.org/10.1016/50019-9958(83)
80051-5.

http://dx.doi.org/10.1007/978-3-319-28766-9
http://dx.doi.org/10.1007/978-3-319-28766-9
http://dx.doi.org/10.1007/978-3-319-28766-9
http://dx.doi.org/10.1007/b107194
https://doi.org/10.1007/b107194
https://doi.org/10.1007/b107194
http://ijcai.org/Abstract/15/427
http://arxiv.org/abs/cs.AI/0208034
http://dx.doi.org/10.1007/978-3-642-20398-5_17
https://doi.org/10.1007/978-3-642-20398-5_17
http://dx.doi.org/10.4204/EPTCS.57.2
https://doi.org/10.4204/EPTCS.57.2
http://dx.doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
http://dx.doi.org/10.1504/IJCCBS.2013.056492
https://doi.org/10.1504/IJCCBS.2013.056492
https://doi.org/10.1504/IJCCBS.2013.056492
http://www.omg.org/spec/SysML/1.0/PDF
http://dx.doi.org/10.1007/978-1-4757-3540-6
http://u.cs.biu.ac.il/~doronp/srm.html
http://dx.doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
http://dx.doi.org/10.1007/978-3-540-31980-1_12
https://doi.org/10.1007/978-3-540-31980-1_12
https://doi.org/10.1007/978-3-540-31980-1_12
http://dx.doi.org/10.1016/S0019-9958(83)80051-5
https://doi.org/10.1016/S0019-9958(83)80051-5
https://doi.org/10.1016/S0019-9958(83)80051-5

	Introduction
	Preliminaries
	Event Order Logic
	Causality for general LTL-definable properties
	Completeness and Soundness
	Conclusions

