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In this paper we introduce a notion of counterfactual causality in the Halpern and Pearl sense that
is compositional with respect to the interleaving of transition systems. The formal framework for
reasoning on what caused the violation of a safety property is established in the context of labeled
transition systems and Hennessy Milner logic. The compositionality results are devised for non-
communicating systems.

1 Introduction

Determining and computing causalities is a frequently addressed issue in the philosophy of science and
engineering, for instance when causally relating system faults to system failures. A notion of causality
that is frequently used in relation to technical systems relies on counterfactual reasoning. Lewis [19]
formulates the counterfactual argument, which defines when an event is considered a cause for some
effect, in the following way: a) whenever the event presumed to be a cause occurs, the effect occurs as
well, and b) when the presumed cause does not occur, the effect will not occur either (counterfactual
argument). Counterfactual reasoning hence requires the consideration of alternative worlds: one world,
corresponding to one program or system execution in software and systems analysis, where both the
cause and the effect occur, and another world in which neither the cause nor the effect occur. Cause and
effect are assumed to be temporally ordered.

In their seminal paper [12], Halpern and Pearl argue that the simple Lewis-style counterfactual ar-
gument cannot explain causalities if the causes correspond to complex logical structures of multiple
events. Halpern and Pearl define a notion of complex logical events based on boolean equation systems
and propose a number of conditions, called actual cause (AC) conditions, under which an event can be
considered causal for an effect. The AC conditions encompass a couterfactual argument.

The Halpern and Pearl model of actual causation has been related in various forms to computing
systems. Most relevant for our work is the work on causality checking [17, 16] which interprets the
Halpern and Pearl event model and notion of actual causation in the context of the transition system and
trace model for concurrent system computations. In addition to the Halpern and Pearl model, in causality
checking the order of events as well as the non-occurrence of events can be causal. An implementation
of causality checking using explicit-state model checking [18] as well as SAT-based bounded model
checking [3] have been provided. The causality checking approach has been applied to various case
studies in the area of analyzing critical systems for safety violations. In this setting, an ordered sequence
of events is computed as being the actual cause of a safety property violation. In safety engineering the
safety property violation is usually referred to as a hazard. The computed causalities will be displayed
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as fault trees complemented by temporal logic formulae which specify the order in which causal events
occur.

The objective of this paper is to consider the notion of counterfactual causality reasoning and actual
causation in the context of labeled transition systems (LTS’s). In our setting the LTS’s represent system
models and Hennessy Milner logic (HML) [13] formulae specify the system properties for whose viola-
tion actual causes are sought. We also establish first results on computing causalities in this setting using
(de-)compositional verification.

Our notion of causality complies to the characteristics of ”actual causation” proposed in [12] and
further adapted to the setting of concurrent systems in [16]. Intuitively, an execution within an LTS is
causal whenever it leads to a state where a certain effect, or hazard, is enabled. We handle effects such as
the violation of a safety property expressed in HML. Moreover, our definition includes a counterfactual
test witnessing that a certain LTS execution L is causal for the occurrence of an effect E if and only if,
were L not to happen, E would not occur either. Additionally, our definition exploits what is referred
to as the ”non-occurrence of events” in [16], and identifies relevant system execution fragments that,
whenever performed, change the occurrence of the effect from true to false. Then, similarly to the
approaches in [12, 16], our definition indicates that a setting that does not include the relevant executions
discussed above has no influence on the effect as long as the causal events are present. Finally, we require
causal executions to be minimal.

We establish the compositionality results with respect to the interleaving of LTS’s, thus shifting the
fault localization issue to the level of smaller interleaved components. The current approach only handles
non-communicating LTS’s. As an immediate extension of our approach, we would like to extend it to
communicating LTS’s by adopting ideas from [1, 7] (please see the conclusions section for more details
on this extension).

Related work. Lewis-style counterfactual arguments have become the basis for a number of fault anal-
ysis, failure localization and software debugging techniques, such as delta debugging [25], nearest neigh-
bor queries [22], counterexample explanation in model checking [11, 10] and why-because-analysis [14].

(De-)compositional verification has been studied in various contexts, such as model-checking [2,
5, 24] and model-based conformance testing [21, 23]. Our approach is based on our earlier work on
decompositional verification of modal mu-calculus formulae [1]. Regarding compositional verification
of causality, we are only aware of the line of work by Gößler, Le Métayer, and associates such as [8, 6,
7, 9]. In the remainder, we review [8] and [7] as two closely related examples in this line of work.

In [8], the authors define three trace-theoretic notions of causality for safety properties and provide an
assume guarantee framework which allows for decomposing the identification of causes. They also pro-
vide decidability results. Their approach substantially differs from ours: firstly, we combine the different
aspects of causality (positive causality, counterfactual, non-occurrence of events, and minimality) in one
definition while in [8] a subset of these aspects is considered in three different definitions. Secondly, the
approach of [8] relies on an assume-guarantee style of specifying the properties, with given LTS models
for assume and guarantee contracts, while we rely on the alphabet of the system in decomposing the
modal property and its cause. Our approach is in its early stages of development and the approach of [8]
has been worked out in various directions. For example, [8] supports interaction models and is equipped
with complexity and decidability results.

In [7], a de-compositional approach to a detecting a trace-based notion of causality is proposed. To
start with a failed trace of the system, i.e., a counter-example of the property at hand, is consider and
subsequently it is analyzed how the alternative possible behaviors of the different components may lead
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to failed traces. In our approach, however, we do not start from a system-level counter-example: we aim
at decomposing the modal formula for the property, so that all counter-examples are generated locally
from the component specifications. Our initial results reported in this paper only concern interleaving
components for which a very neat decomposition can be obtained, but our long-term vision is that modal
decomposition will enable mechanized decomposition of the modal formula for communicating compo-
nents, following the approach of [15, 1].

A trace-based approach to identifying causality for failures of interleaved systems has been recently
introduced in [4]. In short, the authors propose a method for identifying event sequences that frequently
occur within failing system executions, thus possibly revealing causes for system failures. One of the
main differences with our approach is that in [4] system events are parameterised by thread identifiers,
program and memory locations, while we consider more abstract events ranging over alphabets denoting
(atomic) system actions. Nevertheless, the idea of using thread identifiers might be worth exploited in
the context of extending our current work to the setting of concurrent, communicating LTS’s.

Paper structure. In Section 2 we provide a brief reminder of HML, LTS’s, and introduce LTS com-
putations. In Section 3 we introduce our notion of causality and provide a series of examples motivating
and explaining our definition. In Section 4 we discuss the (de-)compositionality results for causality.
In Section 5 we conclude and provide pointers to further developments. More detailed proofs of the
compositionality results are provided in Appendix A.

2 Preliminaries

Let A be a possibly infinite set of labels, usually referred to as alphabet. Let (−)∗ be the Kleene star
operator. We use w,w0,w1, . . . to range over words in A∗. We write ε for the empty word and wa for the
word obtained by concatenating w ∈ A∗ and a ∈ A. We call a sub-word of a word w a word w′ obtained
by deleting n letters (n ≥ 1) at some not-necessarily-adjacent positions in w, written w′ ∈ sub(w). The
empty sequence ε is a sub-word of w.

Definition 1 (Labeled Transition Systems). A labeled transition system (LTS) is a triple (S,s0,A,→),
where S is the set of states, s0 ∈ S is the initial state, A is the action alphabet and→⊆ S×A×S is the
transition relation.

We write −→→ ⊆ S×A∗×S, to denote the reachability relation, i.e., the smallest relation satisfying:

p
ε−→→p

, and p
w−→→p′ p′

a−→p′′

p
wa−→→p′′

.

The set of actions that can be triggered as a first step from s ∈ S is denoted by init(s): init(s) = {a ∈
A | ∃s′ ∈ S : s a−→ s′}.
Definition 2 (Computations). Let [−] be a list constructor. We write D = [w0, . . . ,wn] for a finite list of
words wi ∈ A∗, with 0≤ i≤ n. A notation of shape D = [w0, w1, . . .] refers to an infinite list D of words
wi ∈ A∗, for i≥ 0. We write [ ] to denote the empty list. Moreover, we write w : D as an alternative to a list
with w as the first element, and D the ”remaining” elements; for instance, w1 : [w2,w3] = [w1,w2,w3].
We say that lists D0, . . . ,Dn are size-compatible if they are finite lists of the same length, or if they are all
infinite lists. For instance, [ ] and [ ] are size-compatible, [w0,w1,w2] and [w′0,w

′
1,w

′
2] are size-compatible,

[w0,w1, . . .] and [w′0,w
′
1, . . .] are size-compatible, whereas [ ] and [w] are not size-compatible.

Consider an LTS T = (S,s0,A,→) and π ∈ (S×A× [A∗])∗×S a sequence

(s0, l0,D0), . . . (sn, ln,Dn),sn+1
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over states si ∈ S, actions li ∈ A and sets of words Di ⊆ A∗, for 0≤ i≤ n. Whenever D0, . . . ,Dn are size-
compatible, we write traces((l0,D0) . . .(ln,Dn)) or, in short, traces(π), to denote the pairwise extensions
of l0 . . . ln with words from D0, . . . ,Dn as follows:

traces((l0, [ ]) . . .(ln, [ ])) = {l0 . . . ln}
traces((l0,w0 : D0) . . .(ln,wn : Dn)) = {l0w0 . . . lnwn}∪ traces((l0,D0) . . .(ln,Dn))

For instance, traces((a, [wa0,wa1,wa2]),(b, [ε,ε,ε]),(c, [ε,wc1,ε])) = {awa0bc, awa1bcwc1, awa2bc}, for
a,b,c ∈ A and wa0,wa1,wa2,wc1 ∈ A∗.

We say that π is a computation of T whenever the following hold:

• s0
l0−→ s1 . . .

ln−→ sn+1,
• D0, . . . ,Dn are size-compatible, and
• for all w ∈ traces(π) there exists s ∈ S such that s0

w−→→ s.

A computation consisting of only one state s0 is called trivial computation. We use π,µ, . . . to range over
computations.

The set of sub-computations of π = (s0, l0,D0), . . . ,(sn, l0,Dn),sn+1, denoted by sub(π) is the set of
all computations π ′ = (s0, l′0,D

′
0), . . . ,(sm, l′m,D

′
m),s

′
m+1 such that l′0 . . . l

′
m ∈ sub(l0 . . . ln). Note that all

elements of sub(π) should be computations themselves.

For an intuition, size-compatible lists D0, . . . ,Dn encode the pairwise extensions of execution traces
l0 . . . ln in T that always disable a certain effect. Given a computation (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 as
above, sequences w = l0w0 . . . lnwn ∈ traces((l0,D0) . . .(ln,Dn)) determine executions s0

w−→→ s in T , such
that the effect does not occur in s. In our framework, occurrence of effects is formalised in terms of
satisfiability of formulae in Hennessy Milner logic [13].

Definition 3 (Hennessy-Milner logic). The syntax of Hennessy-Milner logic (HML) [13] is given by the
following grammar:

φ ,ψ ::=> | 〈a〉φ | [a]φ | ¬φ | φ ∧ψ | φ ∨ψ (a ∈ A).

We define the satisfaction relation � over LTS’s and HML formulae as follows. The alphabet of a
formula φ , denoted by al phabet(φ) is the set of actions that appear in φ .

Let T = (S,s0,A,→) be an LTS. Let φ , φ ′ range over HML formulae. It holds that:
s �> for all s ∈ S
s � ¬φ whenever s does not satisfy φ ; also written as s 6� φ

s � φ ∧φ ′ if and only if s � φ and s � φ ′

s � φ ∨φ ′ if and only if s � φ or s � φ ′

s � 〈a〉φ if and only if s a−→ s′ for some s′ ∈ S′ such that s′ � φ

s � [a]φ if and only if s′ � φ for all s′ ∈ S′ such that s a−→ s′.

3 Defining Causality

We further provide a notion of causality for LTS’s. The effects that we consider are safety properties
expressed as HML formulae. Examples motivating and explaining each of the items of our definition are
given towards the end of this section.

Our notion of causality complies with that of ”actual causation” proposed in [12] and further adapted
to the setting of concurrent systems in [16]:
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• Intuitively, AC1 in Definition 4 states that there must be a setting, or an execution within the LTS
under consideration, that determines an effect, or a hazardous situation in which a safety property
is violated.

• AC2(a) identifies a setting in which the effect does not occur. This is the counter-factual part of
our definition.

• AC2(b) indicates that, as long as the causal events are present, a setting that does not include the
relevant executions discussed above has no influence on the effect.

• AC2(c) corresponds to the so-called ”non-occurrence of events” in [16], and identifies relevant
system execution fragments that, whenever performed, change the occurrence of the effect from
true to false. Intuitively, the aforementioned execution fragments are causal by their absence: the
effect is enabled only within settings in which the fragments are not executed by our LTS.

• AC3 corresponds to the minimality condition in both [12] and [16].

The approach in [16] also exploits an ordering condition (OC) that identifies whether the order in
which certain events are executed is causal with respect to a given effect, or not. Our framework does not
explicitly handle such orderings. Nevertheless, for non-interleaved systems, such orderings are implicitly
captured by sequences l0 . . . ln determined by causal computation as in Definition 4. Additionally, as also
discussed in Remark 1, the compositionality results in Section 4 can alleviate the ordering issue for
certain kinds of effects in the context of interleaved systems.

Definition 4 (Causality for LTS’s). Consider a transition system T = (S,s0,A,→); causal traces for
an HML property φ in T denoted by Causes(φ ,T ) is the set of all computations π = (s0, l0,D0), . . . ,
(sn, ln,Dn),sn+1 ∈ (S×A× [A∗])∗×S such that

1. s0
l0−→ . . .sn

ln−→ sn+1 ∧ sn+1 � φ (Positive causality, AC1),

2. ∃χ ∈ A∗,s′ ∈ S : s0
χ−→→ s′∧ s′ � ¬φ (Counter-factual, AC2(a)),

3. ∀χ ′ = l0χ0 . . . lnχn ∈ {l0 . . . ln}∪ (A∗ \ traces((l0,D0) . . .(ln,Dn))), s′ ∈ S : s0
χ ′−→→ s′⇒ s′ � φ

(Causality of occurrence, AC2(b))

4. ∀χ ′ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln}, s′ ∈ S : s0
χ ′−→→ s′⇒ s′ � ¬φ

(Causality of non-occurrence, AC2(c))

5. ∀π ′ ∈ sub(π) : π ′ does not satisfy items 1. – 4. above (Minimality, AC3)
Definition 5 (Causal projection). A causal projection of T = (S,s0,A,→) with respect to an HML
property φ , is T ′ = (S′,s0,A,→′) such that S′ = {si | 0 ≤ i ≤ n+ 1∧ (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 ∈
Causes(φ ,T )} and→′= {(si, li,si+1) | 0≤ i≤ n∧ (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 ∈ Causes(φ ,T )}.

We write T ↓ φ to denote the causal projection of T with respect to φ .

Intuitively, a causal projection is an LTS whose executions capture precisely all causal sequences
determined by computations as in Definition 4.

Next, we illustrate the different aspects of Definition 4 using the following small “canonical” exam-
ples. The first example below motivates the positive causality condition (item 1 in Definition 4).

Example 1 (Positive causality). Consider the formula φ = 〈h〉>, which states that action h (for hazard)
is enabled at the current state and LTS T1 depicted in Figure 1.(a).

The intuition behind the notion of cause suggests that action a should be considered a cause for
〈h〉>. According to Definition 4, we have that (s10,a, [h]),s11 ∈ Causes(φ ,T ). The causal projection of
T1 for φ is has one transition, namely, s10

a−→ s11.
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h

a

T1

s10

s11

s12

h

a

T2

h

h

s20

s21

s22

h

a

T3

a

s30

s31 s32

s33

h

a

T4

b

hb

b

s40

s41

s44 s45 s46

s42
s43

(a) Action a causes
hazard h.

(b) The occurrence of
hazard h is factual
(trivial).

(c) The occurrence of
a is not causal for haz-
ard h.

(d) The non-
occurrence of bb
is causal for hazard h.

Figure 1: Canonical examples motivating different conditions on causality

The following example motivates the non-triviality condition (item 2 in Definition 4).

Example 2 (Counter-factual). Consider the LTS T2 depicted in Figure 1.(b) and the same formula φ =
〈h〉>. Although trace a can lead to a state where φ holds, the hazard formula holds trivially everywhere
else, and hence there is no cause to be identified; we refer to Lemma 1 for a formalisation.

The next two examples motivate the causality of occurrence and non-occurence, respectively (items
3 and 4 in Definition 4).

Example 3 (Causality of Occurrence). Consider the LTS T3 depicted in Figure 1.(c) and the same for-
mula φ = 〈h〉>. Trace a can non-deterministically lead to two states, namely s31 and s32. The formula
holds only in one of them, namely in s31. Hence, a cannot be considered a cause for the hazard. More
precisely, if a trace is causal then its execution, or “occurrence”, always leads to a state where the
hazard holds.

Example 4 (Causality of Occurrence and Non-occurrence). Consider the LTS T4 depicted in Figure 1.(d)
and the same formula φ = 〈h〉>. Trace a leads to state s42 where the hazard formula holds. Trace ab
also leads to a hazardous state s43; however, performing another b, i.e., performing the trace abb from
the initial state, removes the hazard. Hence, (s40,a, [ε]),s42 is not in the set of causes for φ , because
extending a with bb, for instance, violates φ and thereby violating item 3 in Definition 4. However,
(s40,a, [h,bb,bh]),s42 is a cause, because a leads to a hazard, all possible extensions of a with anything
but h, bb or bh, the only ones being ε and b, also keep the hazard. On the other hand, the extensions
of a with h, bb or bh remove the hazard. Hence, h, bb and bh are the ”relevant extension” that enable
removing the hazard.

The next example motivates the minimality condition, item 5 in Definition 4.

Example 5 (Minimality Condition). Consider again the LTS T4 treated in Example 4. Computation
(s40,a, [ε,ε]), (s42,b, [h,b]),s43 is not a cause because it is not minimal (violating item 5 in Definition 4).
This is because its sub-computation (s40,a, [h,bb,bh]), s42 is a cause as illustrated in Example 4.

Consider the LTS T5 depicted in Figure 2.(a) and the formula φ = 〈h〉>. For instance, the compu-
tation (s50,a, [ε,ε,ε . . .]), (s51, i, [h, ih, iih . . .]), s51 is not in Causes(φ ,T5), because performing an i does
not change the state of the system and hence, cannot contribute to the occurrence of the hazard. Com-
putation (s50,a, [h, ih, iih, . . .]), s51, however, is in Causes(φ ,T5), because it satisfies all the conditions of
the cause, including minimality.
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(a) Action i does not
contribute to h.

(a) Trace ab is a cause
because trace a is not a
cause.

Figure 2: Canonical examples motivating minimality condition

Consider the LTS T6 depicted in Figure 2.(b) and the formula φ = 〈h〉>. Computation (s60,a, [ε]),
(s63,b, [h]), s65 is a cause for φ , despite the fact that computation (s60,a, [h,bh]),s61 also leads to the
hazard.

This is not a violation of minimality, because (s60,a, [h,bh]),s61 does not satisfy the so-called ”Causal-
ity of occurrence” (AC2(b)) in Definition 4, as also illustrated in Example 3.

4 (De-)composing Causality

In this section we provide the main results regarding (de-)compositionality of causality. Theorem 1 states
the equivalence between reasoning on causality with respect to disjunctions φ ∨ψ of HML formulae in
the context of interleaved LTS’s, and reasoning on causality with respect to φ or ψ in the correspond-
ing interleaved components. Orthogonally, Theorem 2 captures the equivalence between reasoning on
causality with respect to conjunctions φ ∧ψ of HML formulae in the context of interleaved LTS’s, and
reasoning on causality with respect to φ and ψ in the corresponding interleaved components. Both results
are established for non-communicating LTS’s executing disjoint sets of actions.

Our formal framework exploits standard notions of interleaving (||) and non-deterministic (+) choice
between LTS’s [20] or, more explicitly, between causal projections as in Definition 5. Consider the LTS
T = (S,s0,A,→), a ∈ A and s,s′, p, p′ ∈ S. Then:

s || p a−→ s′ || p whenever s a−→ s′ s+ p a−→ s′ whenever s a−→ s′

s || p a−→ s || p′ whenever p a−→ p′ s+ p a−→ p′ whenever p a−→ p′.

Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′). We abuse the notation and write T ||T ′ in
lieu of s0 || s′0, and T +T ′ in lieu of s0 + s′0.

With this intuition in mind, we proceed to discussing our compositionality results.
Lemma 1 provides a result that shows that reasoning on (de-)composition of causality in the context

of formulae that hold in the initial state of a system is trivial.

Lemma 1 (Immediate Causality). Consider the LTS’s T = (S,s0,A,→) and the HML property φ . If
s0 � φ it holds that s0 = Causes(φ ,T ) or Causes(φ) = /0.



8 (De-)Composing Causality

Proof. The proof is by contradiction; we refer to Appendix A for the detailed reasoning.

We call properties φ as above immediate effects.

4.1 (De-)Composing Disjunction

In what follows we show that reasoning on causality with respect to disjunctions of HML formulae φ ∨ψ

can be performed in a compositional fashion.
Intuitively, the result in Lemma 2 states that causality is preserved under disjunction of HML formu-

lae and the interleaving of non-communicating LTS’s. Or, more precisely, given two non-communicating
LTS’s T and T ′ and two HML formulae φ and ψ built over their corresponding alphabets, it holds that a
cause π ∈ Causes(φ ,T ) determines a cause µ ∈ Causes(φ ∨ψ,T || T ′) within the interleaved LTS’s.

Lemma 2. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If π = (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 ∈ Causes(φ ,T ), then there exists
µ = (s0 || s′0, l0,D0), . . . ,(sn || s′0, ln,Dn),sn+1 || s′0 ∈ Causes(φ ∨ψ,T || T ′).

Proof. The statement follows by two intermediate results.
We show how to create a computation µ satisfying conditions AC1–AC2(c) in Definition 4 from

π , given the hypothesis that π satisfies conditions AC1–AC2(c) as well. AC1 is satisfied for µ as a
consequence of AC1 being satisfied for π . AC2(a) trivially holds for µ as φ and ψ are not immediate
effects. Showing AC2(b) and AC2(c) strongly relies on the shape of D0, . . . ,Dn. The lists D i are created
in three steps.

1. We begin by simply ”copying” the information in each Di into the corresponding D i.

2. We identify all causal traces χ obtained by interleaving the causal traces of π with the causal traces
determined by all computations in Causes(ψ,T ′). We make the necessary insertions into the lists
D i, so that χ’s are stored as causal traces of computations in Causes(φ ∨ψ,T || T ′).

3. We compute all the causal traces χ for φ ∨ψ that do not allow s′0 to evolve in T ′, but consist of
words in B as well. We make the necessary insertions into the lists D i, so that χ’s are stored as
causal traces of computations in Causes(φ ∨ψ,T || T ′). This step guarantees that the remaining
traces in (A∪B)∗ \ traces((l0,D0) . . .((ln,Dn))) are not ”harmful” with respect to AC2(b) for µ ,
as they never lead to s || s′ � ¬φ ∧¬ψ .

By the above construction, AC2(b) and AC2(c) hold for µ as well.
AC3 for µ is proved to hold by reductio ad absurdum. In short, we show that whenever there is

µ ′ ∈ sub(µ), such that µ ′ satisfies AC1–AC2(b), there exists π ′ ∈ sub(π), such that π ′ satisfies AC1–
AC2(b) as well. This contradicts the hypothesis π ∈ Causes(φ ,T ).

We refer to Appendix A for the complete proof.

Intuitively, Lemma 3 states that causality with respect to an effect φ ∨ψ in two interleaved, but
non-communicating LTS’s, is preserved by at least one of the interleaved components. Or, more pre-
cisely, given two non-communicating LTS’s T and T ′ and two HML formulae φ and ψ built over their
corresponding alphabets, it holds that a cause µ ∈ Causes(φ ∨ψ,T || T ′) within the interleaved LTS’s
determines a cause π ∈ Causes(φ ,T ) for φ in T , or a cause π ′ ∈ Causes(ψ,T ′) for ψ in T ′.
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Lemma 3. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′), then there exists
π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 ∈ Causes(φ ,T ) or
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
n+1 ∈ Causes(ψ,T ′).

For all k ≤ i ≤ m: (si, li,D i) corresponds to (si || s′i, li,Di) in µ , whenever li ∈ A. For all p ≤ j ≤ q:
(s′j, l

′
j,D

′
j) corresponds to (s j || s′j, l

′
j,D

′
j) in µ , whenever l′j ∈ B. Moreover, lk . . . lm = l0 . . . ln ↓ A,

l′p . . . l
′
q = l0 . . . ln ↓ B.

Proof. The statement follows by two intermediate results.
First, we show that one can build π or π ′ as above, such that π or π ′ satisfy conditions AC1–AC2(c)

in Definition 4, given the hypothesis that µ satisfies AC1–AC2(c) as well. The reasoning for proving
this intermediate result strongly relies on the shape of the lists D i and D

′
j corresponding to π and π ′,

respectively. We construct the aforementioned lists in three steps.

1. We start with empty lists D i and D
′
j.

2. Then, we ”encode” causal sequences χ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln} satisfying AC2(c)
by definition, into traces((lk,Dk) . . .(lm,Dm)) and, respectively, traces((l′p,D

′
p) . . .(l

′
q,D

′
q)), via

the projections of χ on A and, respectively, B that satisfy AC2(c) as well.

3. Eventually, we ”prepare” π for satisfying AC2(b). We identify all sequences χ ∈A∗\traces((lk,Dk)
. . .(lm,Dm)) that always lead to s � ¬φ . For each such χ we make the necessary insertions into
the lists D i, so that χ’s are stored as causal traces of computations in Causes(φ ,T ). We repeat the
”preparation” process for π ′ as well.

Then, we show that π or π ′ satisfy AC1–AC2(c) by reductio ad absurdum. Without loss of generality,
assume that π satisfies AC1–AC2(c). Showing that π has to satisfy AC3 as well follows by proof by
contradiction. More explicitly, we show that whenever there exists π̃ ∈ sub(π) satisfying AC1–AC2(c),
one can construct µ̃ ∈ sub(µ) such that µ̃ satisfies AC1–AC2(c) as well. This contradicts the hypothesis
µ ∈ Causes(φ ∨ψ,T || T ′).

We refer to Appendix A for the complete proof.

Corollary 1 states that a causal computation µ with respect to an effect φ ∨ψ in interleaved, but non-
communicating LTS’s, determines a causal computation π in the interleaved component that triggered
the first step in µ .

Corollary 1. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′) then

• if l0 ∈ A then exists π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 ∈ Causes(φ ,T ); otherwise
• if l0 ∈ B then exists π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
n+1 ∈ Causes(ψ,T ′).

For all k ≤ i ≤ m: (si, li,D i) corresponds to (si || s′i, li,Di) in µ , whenever li ∈ A. For all p ≤ j ≤ q:
(s′j, l

′
j,D

′
j) corresponds to (s j || s′j, l

′
j,D

′
j) in µ , whenever l′j ∈ B. Moreover, lk . . . lm = l0 . . . ln ↓ A,

l′p . . . l
′
q = l0 . . . ln ↓ B.
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Proof. The result follows immediately by Lemma 3, Lemma 2 and the minimality condition AC3 in
Definition 4.

Lemma 4 states that, as a consequence of the minimality condition, causal computations with re-
spect to effects φ ∨ψ in interleaved, non-communicating LTS’s capture executions of only one of the
interleaved components.
Lemma 4. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects and
µ ∈ Causes(φ ∨ψ,T || T ′), then either

µ = (sk || s′0, lk,Dk), . . . ,(sm || s′0, lm,Dm),sn+1 || s′0, or
µ = (s0 || s′p, l′p,D ′p), . . . ,(s0 || s′q, l′q,D ′q),s0 || s′n+1

such that, for all k ≤ i≤ m and p≤ j ≤ q: si ∈ S, s′j ∈ S′, li ∈ A, l′j ∈ B, Di ∈ A∗ and D ′j ∈ B∗.

Proof. Assume µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′). Assume,
without loss of generality, that by Lemma 3 there exists a computation:

π̃ = (sk, lk,D̃k), . . . ,(sm, lm,D̃m),sn+1 ∈ Causes(φ ,T )

such that for all k ≤ i ≤ m: (si, li,D̃i) corresponds to (si || s′i, li,D i) in µ , whenever li ∈ A. Moreover,
lk . . . lm = l0 . . . ln ↓ A. Then, by Lemma 2, it follows that there exists a computation

µ̂ = (sk || s′0, lk,D̂k), . . . ,(sm || s′0, lm,D̂m),sn+1 || s′0 ∈ Causes(φ ∨ψ,T || T ′).

Additionally, observe that µ̂ ∈ sub(µ). This violates the minimality condition AC3 for µ , unless µ = µ̂ .
This proves our initial statement.

Theorem 1 is the main result of this section. Intuitively, it states that reasoning on causality with re-
spect to an effect φ ∨ψ in the context of non-communicating, interleaved LTS’s is equivalent to reasoning
on causality for φ or ψ in the context of the corresponding interleaved components.
Theorem 1 ((De-)composing Disjunction). Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′)
such that A∩B = /0. Assume two HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ

are not immediate effects, the following holds:

T || T ′ ↓ (φ ∨ψ) ' T ↓ φ +T ′ ↓ ψ. (1)

Proof. Let (S||,s0 || s′0,A∪B,→||)= (T || T ′) ↓ (φ ∨ψ) and (S+,s0+s′0,A∪B,→+)= (T ↓ φ)+(T ′ ↓ψ),
respectively. The result follows immediately by Corollary 1, Lemma 4 and the semantics of the non-
deterministic choice operator (+), where the isomorphic structure is underlined by:

f : S||→ S+ f−1 : S+→ S||
f (s0 || s′0) = s0 + s′0

f (p || q) =

{
p if q = s′0∧ p 6= s0
q if p = s0∧q 6= s′0

f−1(s0 + s′0) = s0 || s′0
f−1(p) =

{
p || s′0 if p ∈ S∧ p 6= s0
s0 || p if p ∈ S′∧ p 6= s′0

Example 6. For an example, consider two LTS’s T and T ′ with initial states s0 and p0, respectively,
depicted as in Figure 3. Let φ = 〈h〉> and ψ = 〈h′〉> be two HML formulae. It is straightforward to
see that T ↓ φ is defined by the dotted transition s0

a
� s1 in T , whereas T ′ ↓ ψ is p0

d
� p1

e
� p2.

The interleaving of T and T ′ is the LTS originating in s0 || p0 in Figure 3. At a closer look, one can see
that T || T ′ ↓ (φ ∨ψ) is the transition system defined by the dotted transitions s0 || p0

a
� s1 || p0 and

s0 || p0
d
� s0 || p1

e
� s0 || p2, which is obviously isomorphic with T ↓ φ +T ′ ↓ ψ .
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s2 s0 s1 s3 p0 p1 p2 p3

s0 || p0 s2 || p0

s1 || p0 s0 || p1 s2 || p1

s3 || p0 s1 || p1 s0 || p2 s2 || p2

s3 || p1 s1 || p2 s0 || p3 s2 || p3

s3 || p2 s1 || p3

s3 || p3

b a h d e h′

f

b

a d d

h d a e

b

d
h

e

f

a h′

b

h′

f

e

f

h h′ a

b

f

h′
h

Figure 3: (De-)composing causality.

4.2 (De-)Composing Conjunction

In what follows we show that reasoning on causality with respect to conjunctions of HML formulae
φ ∧ψ can be performed in a compositional fashion.

Lemma 5 states that causalities in two non-communicating LTS’s are reflected within their interleav-
ing as well.
Lemma 5. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds. If

π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 ∈ Causes(φ ,T ) and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
q+1 ∈ Causes(ψ,T ′) then

µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∧ψ,T || T ′)

for all µ such that s0 || s′0
l0−→ . . .sn || s′n

ln−→ sn+1 || s′n+1 is an execution sequence in sk
lk−→ . . .sm

lm−→ sm+1 ||

s′p
l′p−→ . . .s′q

l′q−→ s′q+1, and s0 || s′0 = sk || s′p, sn || s′n = sm || s′q, sn+1 || s′n+1 = sm+1 || s′q+1, l0 . . . ln ↓A= lk . . . lm
and l0 . . . ln ↓ B = l′p . . . l

′
q.

Proof Sketch. The statement is a consequence of two intermediate results.
First we show that whenever π and π ′ satisfy conditions AC1–AC2(c) in Definition 4, one can build µ

as above, such that µ satisfies AC1–AC2(c) as well. Showing that µ satisfies AC1 and AC2 is immediate,
by the assumption that both π and π ′ satisfy AC1–AC2(c) and the fact that φ and ψ are not immediate
effects. Proving that AC2(b) and AC2(c) hold for µ strongly relies on the lists D i in µ . The construction
of D i’s is as follows.
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1. We start with D i’s set to the empty list [ ].

2. Then, note that all causal traces χ corresponding to π are causal for ¬φ ∨¬ψ as well. Hence, we
consider sequences χ from the interleaving of such χ with χ ′ ∈ B∗ and make the corresponding
additions to all D i’s, such that χ is captured within traces((l0,D0) . . .(ln,Dn)) as well. Symmet-
rically, repeat the procedure for all causal traces corresponding to π ′.
Intuitively, this step works also as a ”cleaning” step preparing µ to satisfy AC2(b) w.r.t. φ ∧ψ .

At this point AC2(b) and AC2(c) hold for µ , by the construction of lists D i above.
Proving minimality of µ follows by reductio ad absurdum. The intuition is as follows. Whenever

there exists µ ′ ∈ sub(µ) such that µ ′ satisfies AC1–AC2(c), one can build π̃ ∈ sub(π) and π̃ ′ ∈ sub(π ′)
such that π̃ and π̃ ′ satisfy AC1–AC2(c). This contradicts the hypothesis π ∈ Causes(φ ,T ) and π ′ ∈
Causes(ψ,T ′).

We refer to Appendix B for the complete proof.

Lemma 6 states that causality with respect to an HML formula φ ∧ψ in the context of interleaved,
non-communicating LTS’s, determines causality with respect to φ and ψ in the corresponding interleaved
components.

Lemma 6. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds.

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∧ψ,T || T ′), then there exist

π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 ∈ Causes(φ ,T ) and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
q+1 ∈ Causes(ψ,T ′)

where sk
lk−→ . . .sm

lm−→ sm+1 || s′p
l′p−→ . . .s′q

l′q−→ s′q+1 includes the execution sequence s0 || s′0
l0−→ . . .sn || s′n

ln−→
sn+1 || s′n+1, and sk || s′p = s0 || s′0, sm || s′q = sn || s′n, sm+1 || s′q+1 = sn+1 || s′n+1, lk . . . lm = l0 . . . ln ↓ A and
l′p . . . l

′
q = l0 . . . ln ↓ B.

Proof Sketch. First, we show that one can build π and π ′ as above, such that π and π ′ satisfy conditions
AC1–AC2(c) in Definition 4, given the hypothesis that µ satisfies AC1–AC2(c) as well. The reasoning
for proving this intermediate result strongly relies on the shape of the lists Di and D ′j corresponding to π

and π ′, respectively. We construct the aforementioned lists in three steps.

1. We start with empty lists Di and D ′j.

2. Then, we ”encode” causal sequences χ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln} satisfying AC2(c)
by definition, into traces((lk,Dk) . . .(lm,Dm)) and, respectively, traces((l′p,D

′
p) . . .(l

′
q,D

′
q)) as fol-

lows. Whenever χ always leads to states satisfying ¬φ , make the corresponding additions to Di

such that the projection of χ on A is stored within traces((lk,Dk) . . .(lm,Dm)). Symmetrically,
repeat the procedure for causal sequences χ that always lead to states satisfying ¬ψ .

3. Eventually, we ”prepare” π for satisfying AC2(b). We identify all sequences χ ∈A∗\traces((lk,Dk)
. . .(lm,Dm)) that always lead to s � ¬φ . For each such χ we make the necessary insertions into
the lists D i, so that χ is stored as a causal trace of π . We repeat the ”preparation” process for π ′

as well.

Then, we show that π and π ′ satisfy AC1–AC2(c) by reductio ad absurdum. Showing that π has to
satisfy AC3 follows by proof by contradiction as well. Intuitively, we show that whenever there exists
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π̃ ∈ sub(π) satisfying AC1–AC2(c), one can construct µ̃ ∈ sub(µ) such that µ̃ satisfies AC1–AC2(c) as
well. This contradicts the hypothesis µ ∈ Causes(φ ∧ψ,T || T ′). Similar reasoning for proving that π ′

has to satisfy AC3.
We refer to Appendix B for the complete proof.

Theorem 2 is the main result of this section. Intuitively, it states that reasoning on causality with re-
spect to an effect φ ∧ψ in the context of non-communicating, interleaved LTS’s is equivalent to reasoning
on causality for φ and ψ in the context of the corresponding interleaved components.

Theorem 2 ((De-)composing Conjunction). Consider T = (S,s0,A,→) and T ′= (S′,s′0,B,→′) such that
A∩B = /0. Assume two HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not
immediate effects, the following holds:

T || T ′ ↓ (φ ∧ψ) = (T ↓ φ) || (T ′ ↓ ψ). (2)

Proof. The result is immediate by Lemma 5 and Lemma 6.

For an example, we refer again to the LTS’s in Figure 3. The causal projection T || T ′ ↓ (φ ∧ψ) is
defined by the dashed/dotted transitions s0 || p0

d
� s0 || p1

a s1 || p1
e s1 || p2, s0 || p0

d
� s0 ||

p1
e
� s0 || p2

a s1 || p2 and s0 || p0
a
� s1 || p0

d s1 || p1
e s1 || p2. This is precisely the inter-

leaving of the causal projections T ↓ φ and T ′ ↓ ψ .

Remark 1. As pointed out in Section 3, the proposed notion of causality does not check whether the
order in which certain actions are executed is causal with respect to the violation of a safety property,
or not. Nevertheless, as already mentioned, for non-interleaved systems such orderings are implicitly
captured by sequences l0 . . . ln determined by causal computations as in Definition 4. Additionally, in the
context of interleaved systems, the ordering information can be irrelevant. For formulae defined over
disjoint alphabets, based on the compositionality results in Theorem 1 and Theorem 2, causal reasoning
is ”pushed” at the level of the interleaved components, hence the order in which these components
execute the interleaving does not matter.

5 Conclusions and Future Work

In this paper we introduce a notion of causality for LTS’s and violation of safety properties expressed
in terms of HML formulae. The proposed notion of causality inherits the characteristics of ”actual
causation” proposed in [12, 16] and, in addition, is compositional with respect to the interleaving of the
considered type of non-communicating LTS’s.

A natural extension is handling causality in the context of communicating LTS’s in the style of
CCS [20], for instance. The challenge would be to establish (de-)compositionality results whenever the
interleaved systems display internal, non-observable behaviour. The current approach relies on the fact
that the HML formulae are defined over ”observable”, disjoint alphabets. However, the general modal
decomposition theorems such as those proposed in [15, 1] do provide support for arbitrary formulae and
silent actions. This provides an interesting ground to extend our approach to communicating processes.

Of equal importance is extending our framework to handle causality for liveness properties as well.
This can be achieved via HML with recursion, which is again treated in modal decomposition approaches
[1].

We would also like to investigate the benefits of casting causality within a process algebraic setting.
Observe that, for instance, causal projections can be naturally expressed as CCS process terms derived
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from CCS terms for components or their underlying LTS’s. Hence, we would like to study whether a
process algebraic handling of causality provide more insight on its properties and whether causality as
described in this paper can be axiomatized.

Last, but not least, we would like to investigate to what extent our definition of causality is related to
the actual causality in [16, 3]. As already discussed in the current paper, the two notions share similar
characteristics, including causal non-occurrence of events and the ordering condition (that is implicit in
our approach). Once such a relationship is identified, one could exploit the compositionality results to
improve fault localisation in automated tools for causality checking [16, 3].
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[8] Gregor Gößler, Daniel Le Métayer & Jean-Baptiste Raclet (2010): Causality Analysis in Contract Violation.
In: Runtime Verification - First International Conference, RV 2010, Lecture Notes in Computer Science
6418, Springer, pp. 270–284, doi:10.1007/978-3-642-16612-9 21. Available at http://dx.doi.org/10.
1007/978-3-642-16612-9{_}21.

http://doi.ieeecomputersociety.org/10.1109/LICS.1995.523274
http://dx.doi.org/10.1007/978-3-319-23404-5_14
http://dx.doi.org/10.1007/978-3-319-11164-3_14
http://dx.doi.org/10.1007/978-3-319-11164-3_14
http://dx.doi.org/10.1007/s10515-005-2641-y
http://dx.doi.org/10.1007/s10515-005-2641-y
http://dx.doi.org/10.1145/2656045.2656048
http://dx.doi.org/10.1016/j.scico.2015.06.010
http://dx.doi.org/10.1016/j.scico.2015.06.010
http://dx.doi.org/10.1016/j.scico.2015.06.010
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21
http://dx.doi.org/10.1007/978-3-642-16612-9{_}21


G. Caltais & S. Leue & M.R. Mousavi 15
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A (De-)Composing Disjunction – Complete Proofs

Lemma 1. Consider the LTS’s T = (S,s0,A,→) and the HML property φ . If s0 � φ it holds that
s0 = Causes(φ ,T ) or Causes(φ) = /0.

Proof. Assume s0 6∈ Causes(φ ,T ), hence one of the conditions in Definition 4 is violated.

• Assume AC1 does not hold. Hence, s0 � ¬φ . This violates the hypothesis. Therefore, AC1 has to
hold.

• If AC2(a) does not hold then, ∀χ ∈ A∗,s ∈ S : s0
χ−→→ s∧ s � φ . Hence, Causes(φ ,T ) = /0.

• If AC2(b) and AC2(c) are vacuously true, as l0 . . . ln = ε .

• Condition AC3 trivially holds as well.

Hence, it follows that s0 = Causes(φ ,T ), by the items above and the minimality condition, or that
Causes(φ ,T ) = /0 whenever φ trivially holds.

We call properties φ as above immediate effects.

Lemma 7. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If π = (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 satisfies AC1–AC2(c) in Definition 4 w.r.t. φ ∨ψ , then exists
µ = (s0 || s′0, l0,D0), . . . ,(sn || s′0, ln,Dn),sn+1 || s′0 satisfying AC1–AC2(c) w.r.t. φ ∨ψ .

Proof. We proceed by first defining the lists D i, for all 0 ≤ i ≤ n. Then, we show that µ satisfies items
AC1–AC2(b) in Definition 4.

The ”recipe” for building the appropriate D i’s is as follows.

1. For all 0≤ i≤ n, define D i = Di.
This ensures that all sequences χ ∈ traces((l0,D0) . . .(ln,Dn)) satisfying AC2(c) are preserved by
µ as well.

2. Then, for all (s′0, l
′
0,D

′
0) . . .(s

′
m, l
′
m,D

′
m) ∈ Causes(ψ,T ′), χ ′ ∈ traces((l′0,D

′
0) . . .(l

′
m,D

′
m)) and χ ∈

traces((l0,D0) . . .(ln,Dn)) consider χ = l0χ i . . . lnχn ∈ χ || χ ′. For all 0≤ i≤ n, insert χ i into D i.
This ensures that sequences such as χ ′ always leading to states s || s′ such that s || s′ � ¬φ ∧¬ψ ,
thus satisfying AC2(c), are captured within traces((l0,D0) . . .(ln,Dn)) as well.

3. Last, but not least, assume D0 = χ0 : D
′′
0, . . . ,Dn = χn : D

′′
n . For all 0 ≤ i ≤ n, consider χ̃i ∈

χ i || lw such that l 6∈ init(s′0) and lw ∈ B∗; insert χ̃i into D i. Recursively, repeat the procedure for
D
′′
0, . . . ,D

′′
n .

On the one hand, the new additions χ̃i preserve AC2(c) for all χ ∈ traces((l0,D0) . . .(ln,Dn)), as
l 6∈ init(s′0) and s′0 is not an immediate effect.
On the other hand, it is important to notice that the rôle of such χ̃i’s is to guarantee that traces
χ ∈ {l0 . . . ln}∪ (A∪B)∗ \ traces((l0,D0) . . .(ln,Dn)) are not ”harmful” with respect to AC2(b).
By construction, the latter traces χ cannot lead to states s || s′ such that s || s′ � ¬φ ∧¬ψ , as all
possibilities of states s′i 6= s′0 to evolve this way are removed by interleaving sequences lw ∈ B∗,
where l 6∈ init(s′0), with χ i ∈D i as above.
The only way to evolve in T ′ is by evolving s′0, but only ”safely” guided by traces in χ ′ ∈
Causes(ψ,T ′), as in step 2. above.
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At this point, the reasoning whether µ complies to AC1–AC2(b) in Definition 4 is as follows.

• AC1 is satisfied for µ as a consequence of AC1 being satisfied for π .

• AC2(a) is trivially satisfied for µ as φ and ψ are not immediate effects.

• AC2(b) and AC2(c) follow by the construction of D i’s in steps 1.–3.above.

Lemma 8. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects,
the following holds. If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 satisfies AC1–AC2(c) in
Definition 4 w.r.t. φ ∨ψ , then exists

π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 satisfying AC1–AC2(c) w.r.t. φ ∨ψ or

π ′ = (s′p, l
′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
n+1 satisfying AC1–AC2(c) w.r.t. φ ∨ψ .

For all k ≤ i ≤ m: (si, li,D i) corresponds to (si || s′i, li,Di) in µ , whenever li ∈ A. For all p ≤ j ≤ q:
(s′j, l

′
j,D

′
j) corresponds to (s j || s′j, l

′
j,D

′
j) in µ , whenever l′j ∈ B. Moreover, lk . . . lm = l0 . . . ln ↓ A,

l′p . . . l
′
q = l0 . . . ln ↓ B.

Proof. First construct the lists D i and D
′
j above. Then we proceed by reductio ad absurdum.

For all k ≤ i ≤ m and p ≤ j ≤ q, set D i = D
′
j = []. Assume, without loss of generality, that

lk = l0 ∈ A; that is, s0 ”executes” the first step in µ . Then, for all sequences χ = l0χ0 . . . lnχn ∈
traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln}, built according AC2(c) in Definition 4, proceed as follows:

(a) For all maximal sequences liχil′i+1χ ′i+1 . . . l
′
jχ
′
j in χ insert χi(χ

′
i+1 ↓ A) . . .(χ ′j ↓ A) into D i.

(b) For all maximal sequences l′i χ
′
i li+1χi+1 . . . l jχ j in χ consider χ

′
i = χ ′i (χi+1 ↓ B) . . .(χ j ↓ B).

(b.1) If χ0 ∈ A∗ then, insert each of the aforementioned χ
′
i into D

′
i.

(b.2) Else, if χ0 ↓ B = χ
′
0 6= ε then, let χ

′ = l′pχ
′
p . . . l

′
qχ
′
q.

(b.2.1) If ∀s′: s′0
χ
′

−→→ s′⇒ s′ � ¬ψ then insert each of the χ
′
i above into their corresponding D

′
i.

This step is to correctly ”encode” causal sequences χ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln} satisfying
AC2(c) by definition, into traces((lk,Dk) . . .(lm,Dm)) and, respectively, traces((l′p,D

′
p) . . .(l

′
q,D

′
q)), via

the projections of χ on A and, respectively, B that satisfy AC2(c) as well.
Furthermore, for all sequences χ = l0χ0 . . . lnχn ∈ {l0 . . . ln}∪ (A∪B)∗ \ traces((l0,D0) . . .(ln,Dn)),

built according to AC2(b) in Definition 4, proceed as follows:

(c) For all maximal sequences liχil′i+1χ ′i+1 . . . l
′
jχ
′
j in χ consider χ i = χi(χ

′
i+1 ↓ A) . . .(χ ′j ↓ A). Let

χ = lkχk . . . lmχm. If ∀s: s0
χ−→→ s⇒ s �¬φ then insert each of the χ i before into their corresponding

D i.

(d) Symmetrically, for all maximal sequences l′i χ
′
i li+1χi+1 . . . l jχ j let χ

′
i = χ ′i (χi+1 ↓ B) . . .(χ j ↓ B).

Consider χ
′ = l′pχ

′
p . . . l

′
qχ
′
q. If ∀s′: s′0

χ
′

−→→ s′⇒ s′ � ¬ψ then insert each of the χ
′
i before into their

corresponding D
′
i.
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Intuitively, steps (b) and (c), respectively, can be seen as ”cleaning” steps that identify subtraces χ and
χ
′ of χ that always lead to states satisfying ¬φ or ¬ψ , respectively. Recall that according to AC2(b), if

χ = l0χ0 . . . lnχn ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln} then ∀s,s′ : s0 || s′0
χ−→→ s || s′⇒ s || s′ � φ ∨ψ .

The constructions in (c) and (d) above ensure that, for instance, whenever the projection χ of χ on A is

”of type” AC2(c), or, more formally, ∀s : s0
χ−→→ s⇒ s � ¬φ , the information is ”encoded” within the

lists D i of π via the corresponding χ i as in (c). Symmetrically for the projection χ
′ of χ on B in (d).

For all k ≤ i ≤ m and p ≤ j ≤ q, let D i and D
′
j be the lists constructed in (a)–(d). Next, in order to

prove the statement in Lemma 8, we proceed by reductio ad absurdum. Assume π and π ′ do not satisfy
AC1–AC2(c) in Definition 4. The following hold.

1. First, observe that AC2(a) in Definition 4 is satisfied by any of π and π ′ as both s0 � ¬φ and
s′0 � ¬ψ by hypothesis (φ and ψ are not immediate effects).

2. Then, observe that AC2(c) is satisfied by both π and π ′ based on the constructions in steps (a)–(d)
above.

3. Note that AC1 cannot be violated by both π and π ′. If AC1 is violated by both π and π ′ then AC1
is violated by µ as well. This contradicts the hypothesis.

4. Assume AC1 is violated for π , whereas AC2(b) is violated for π ′. More explicitly:

• sk
lk−→ . . .sm

lm−→ sn+1 ∧ sn+1 � ¬φ

• ∃χ
′ = l′pχ

′
p . . . l

′
qχ
′
q ∈ {l′p . . . l′q}∪ (B∗ \ traces((l′p,D

′
p) . . .(l

′
q,D

′
q))), s′ : s′p

χ
′

−→→ s′⇒ s′ � ¬ψ

First, note that if χ
′ = l′p . . . l

′
q, we violate AC1 for µ . Next, let χ = l0χ0 . . . lnχn ∈ lk . . . lm || χ

′

such that χ 6= l0 . . . ln, s0 || s′0
χ−→→ sn+1 || s′ and sn+1 || s′ � ¬φ ∧¬ψ hold. As, by hypothesis, µ

satisfies AC2(b), it follows that χ ∈ traces((l0,D0) . . .(ln,Dn)) \ {l0 . . . ln}. Therefore, based on
the construction in (b) above, χ

′ ∈ traces((l′p,D
′
p) . . .(l

′
q,D

′
q)), which is a contradiction.

5. Showing that we reach a contradiction by assuming that AC2(b) is violated for π and AC1 is
violated for π ′ follows the reasoning in 4. above.

6. Assume AC2(b) is violated for both π and π ′. Then:

• ∃χ = lkχk . . . lmχm ∈ {lk . . . lm}∪ (A∗ \ traces((lk,Dk) . . .(lm,Dm))), s : sk
χ−→→ s⇒ s � ¬φ

• ∃χ
′ = l′pχ

′
p . . . l

′
qχ
′
q ∈ {l′p . . . l′q}∪ (B∗ \ traces((l′p,D

′
p) . . .(l

′
q,D

′
q))), s′ : s′p

χ
′

−→→ s′⇒ s′ � ¬ψ

If χ = lk . . . lm or, respectively, χ ′ = l′p . . . l
′
q, we reach a contradiction based on 4. or, respectively,

5. above.
For the rest of the cases, let χ = l0χ0 . . . lnχn ∈ χ || χ ′ such that s0 || s′0

χ−→→ s || s′ and s || s′ � ¬φ ∧
¬ψ hold. As, by hypothesis, µ satisfies AC2(b), it follows that χ ∈ traces((l0,D0) . . .(ln,Dn)) \
{l0 . . . ln}. Then, by the construction in (a) above, it follows that χ ∈ traces((lk,Dk) . . .(lm,Dm)),
or χ

′ ∈ traces((l′p,D
′
p) . . .(l

′
q,D

′
q)), which is a contradiction.

At this point we showed that no matter how π and π ′ violate AC1–AC2(b), we reach a contradiction.
It is, therefore, clear that our initial assumption that none of π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 or
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s′n+1 satisfies AC1–AC2(c) was wrong.

Lemma 2. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:
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If π = (s0, l0,D0), . . . ,(sn, ln,Dn),sn+1 ∈ Causes(φ ,T ) then exists
µ = (s0 || s′0, l0,D0), . . . ,(sn || s′0, ln,Dn),sn+1 || s′0 ∈ Causes(φ ∨ψ,T || T ′).

Proof. By Lemma 7 it follows that we can build a computation µ as above, satisfying AC1-AC2(c) in
Definition 4.

In order to show that µ satisfies AC3 as well, we proceed by reductio ad absurdum. We assume
that there is µ ′ ∈ sub(µ) satisfying AC1–AC2(c). In this case, one can easily construct from µ ′, by
Lemma 8, a computation π ′ ∈ sub(π) that satisfies AC1–AC2(c). This would contradict the hypothesis
π ∈ Causes(φ ,T ), hence µ satisfies AC3.

We conclude that µ ∈ Causes(φ ∨ψ,T || T ′).

Lemma 3. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′) then exists
π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 ∈ Causes(φ ,T ) or
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
n+1 ∈ Causes(ψ,T ′).

For all k ≤ i ≤ m: (si, li,D i) corresponds to (si || s′i, li,Di) in µ , whenever li ∈ A. For all p ≤ j ≤ q:
(s′j, l

′
j,D

′
j) corresponds to (s j || s′j, l

′
j,D

′
j) in µ , whenever l′j ∈ B. Moreover, lk . . . lm = l0 . . . ln ↓ A,

l′p . . . l
′
q = l0 . . . ln ↓ B.

Proof. By Lemma 8 we can show that there exists π or π ′ satisfying AC1–AC2(c) in Definition 4, as the
cause µ satisfies AC1–AC2(c) by hypothesis.

Moreover, note that AC3 cannot be violated by any of π and π ′. Without loss of generality, assume,
by contradiction, that π violates AC3. Equivalently, for k ≤ r and t ≤ m, there exists a computation
π̃ = (sr, lr,D̃r), . . . ,(st , lt ,D̃t),st+1 ∈ sub(π) such that π̃ satisfies conditions AC1–AC2(c) in Definition 4.
By following the ”recipe” in the proof of Lemma 7, steps 1.–3., we can build a computation µ̂ = (sr ||
s′0, lr,D̂r), . . . ,(st || s′0, lt ,D̂t),st+1 || s′0 ∈ sub(µ), satisfying conditions AC1–AC2(c) as well. This violates
the minimality of µ , hence contradicting the hypothesis µ ∈ Causes(φ ∨ψ,T || T ′).

We conclude that π ∈ Causes(φ ,T ) or π ∈ Causes(ψ,T ′).

Corollary 1. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′) then

• if l0 ∈ A then exists π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sn+1 ∈ Causes(φ ,T ); otherwise

• if l0 ∈ B then exists π ′ = (s′p, l
′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
n+1 ∈ Causes(ψ,T ′).

For all k ≤ i ≤ m: (si, li,D i) corresponds to (si || s′i, li,Di) in µ , whenever li ∈ A. For all p ≤ j ≤ q:
(s′j, l

′
j,D

′
j) corresponds to (s j || s′j, l

′
j,D

′
j) in µ , whenever l′j ∈ B. Moreover, lk . . . lm = l0 . . . ln ↓ A,

l′p . . . l
′
q = l0 . . . ln ↓ B.

Proof. The result follows immediately by Lemma 3, Lemma 2 and the minimality condition AC3 in
Definition 4.
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Lemma 4. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects and
µ ∈ Causes(φ ∨ψ,T || T ′), then either

µ = (sk || s′0, lk,Dk), . . . ,(sm || s′0, lm,Dm),sn+1 || s′0, or
µ = (s0 || s′p, l′p,D ′p), . . . ,(s0 || s′q, l′q,D ′q),s0 || s′n+1.

such that, for all k ≤ i≤ m and p≤ j ≤ q: si ∈ S, s′j ∈ S′, li ∈ A, l′j ∈ B, Di ∈ A∗ and D ′j ∈ B∗.

Proof. Assume µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∨ψ,T || T ′). Assume,
without loss of generality, that by Lemma 3 there exists a computation:

π̃ = (sk, lk,D̃k), . . . ,(sm, lm,D̃m),sn+1 ∈ Causes(φ ,T )

such that for all k ≤ i ≤ m: (si, li,D̃i) corresponds to (si || s′i, li,D i) in µ , whenever li ∈ A. Moreover,
lk . . . lm = l0 . . . ln ↓ A.

Then, by Lemma 2, it follows that there exists a computation

µ̂ = (sk || s′0, lk,D̂k), . . . ,(sm || s′0, lm,D̂m),sn+1 || s′0 ∈ Causes(φ ∨ψ,T || T ′).

Additionally, observe that µ̂ ∈ sub(µ). This violates the minimality condition AC3 for µ , unless µ = µ̂ .
This proves our initial statement.

Theorem 1. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds:

T || T ′ ↓ (φ ∨ψ) ' T ↓ φ +T ′ ↓ ψ. (3)

Proof. Let (S||,s0 || s′0,A∪B,→||)= (T || T ′) ↓ (φ ∨ψ) and (S+,s0+s′0,A∪B,→+)= (T ↓ φ)+(T ′ ↓ψ),
respectively. The result follows immediately by Corollary 1, Lemma 4 and the semantics of the non-
deterministic choice operator (+), where the isomorphic structure is underlined by:

f : S||→ S+ f−1 : S+→ S||
f (s0 || s′0) = s0 + s′0

f (p || q) =

{
p if q = s′0∧ p 6= s0
q if p = s0∧q 6= s′0

f−1(s0 + s′0) = s0 || s′0
f−1(p) =

{
p || s′0 if p ∈ S∧ p 6= s0
s0 || p if p ∈ S′∧ p 6= s′0
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B (De-)Composing Conjunction – Complete Proofs

Lemma 9. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds.

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 satisfies AC1–AC2(c) in Definition 4 w.r.t.
φ ∧ψ , then there exist

π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 satisfying AC1–AC2(c) in Definition 4 w.r.t. φ and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
q+1 satisfying AC1–AC2(c) in Definition 4 w.r.t. ψ

where sk
lk−→ . . .sm

lm−→ sm+1 || s′p
l′p−→ . . .s′q

l′q−→ s′q+1 includes the execution sequence s0 || s′0
l0−→ . . .sn || s′n

ln−→
sn+1 || s′n+1, and sk || s′p = s0 || s′0, sm || s′q = sn || s′n, sm+1 || s′q+1 = sn+1 || s′n+1, lk . . . lm = l0 . . . ln ↓ A and
l′p . . . l

′
q = l0 . . . ln ↓ B.

Proof. We proceed by first building the lists Di and D ′j as above.

1. We start with empty lists Di and D ′j.

2. Then, we ”encode” causal sequences χ ∈ traces((l0,D0) . . .(ln,Dn))\{l0 . . . ln} satisfying AC2(c)
by definition, into traces((lk,Dk) . . .(lm,Dm)) and, respectively, traces((l′p,D

′
p) . . .(l

′
q,D

′
q)) as fol-

lows. Whenever χ always leads to states satisfying ¬φ , make the corresponding additions to Di

such that the projection of χ on A is stored within traces((lk,Dk) . . .(lm,Dm)). Symmetrically,
repeat the procedure for causal sequences χ that always lead to states satisfying ¬ψ .

3. Eventually, we ”prepare” π for satisfying AC2(b). We identify all sequences χ ∈A∗\traces((lk,Dk)
. . .(lm,Dm)) that always lead to s � ¬φ . For each such χ we make the necessary insertions into
the lists D i, so that χ is stored as a causal trace of π . We repeat the ”preparation” process for π ′

as well.

Note that AC1 holds for both π and π ′ as AC1 holds for µ , by hypothesis. Then, note that AC2(a)
trivially holds for π and π ′ as φ and ψ are not immediate effects. Additionally, observe that AC2(c)
holds for π and π ′ by the definition of Di’s and D ′j’s as above.

Further, assume, without loss of generality, that l0 ∈A. Hence, AC2(b) holds for π by the construction
of lists Di’s and by the fact that µ satisfies AC2(b). Assume, by reductio at absurdum, that AC2(b) does
not hold for π ′, i.e.:

∃χ
′ = l′pχ

′
p . . . l

′
qχ
′
q ∈ {l′p . . . l′q}∪ (B∗ \ traces((l′p,D

′
p) . . .(l

′
q,D

′
q))), s′ ∈ S′ : s′0

χ ′−→→ s′⇒ s′ � ¬ψ

Therefore, it holds that

∃χ ′′ ∈ {l0, . . . , ln}∪ ((A∪B)∗ \ traces((l0,D0) . . .(ln,Dn))), s ∈ S,s′ ∈ S′ :

(χ ′′ ↓ B = χ ′)∧ (s0 || s′0
χ ′′−→→ s || s′)∧ (s || s′ � φ ∧¬ψ).

This contradicts the hypothesis that µ satisfies AC2(b), hence our assumption is false. It holds that π ′

satisfies AC2(b) as well.

Lemma 10. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds. If
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π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 satisfies AC1–AC2(c) in Definition 4 w.r.t. φ and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
q+1 satisfies AC1–AC2(c) in Definition 4 w.r.t. ψ then

µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 satisfies AC1–AC2(c) in Definition 4 w.r.t.
φ ∧ψ

for all µ such that s0 || s′0
l0−→ . . .sn || s′n

ln−→ sn+1 || s′n+1 is an execution sequence in sk
lk−→ . . .sm

lm−→ sm+1 ||

s′p
l′p−→ . . .s′q

l′q−→ s′q+1, and s0 || s′0 = sk || s′p, sn || s′n = sm || s′q, sn+1 || s′n+1 = sm+1 || s′q+1, l0 . . . ln ↓A= lk . . . lm
and l0 . . . ln ↓ B = l′p . . . l

′
q.

Proof. We proceed by constructing the lists D i’s above.

1. We start with D i’s set to the empty list [ ].

2. Then, note that all causal traces χ corresponding to π are causal for ¬φ ∨¬ψ as well. Hence, we
consider sequences χ from the interleaving of such χ with χ ′ ∈ B∗ and make the corresponding
additions to all D i’s, such that χ is captured within traces((l0,D0) . . .(ln,Dn)) as well. Symmet-
rically, repeat the procedure for all causal traces corresponding to π ′.
Intuitively, this step works also as a ”cleaning” step preparing µ to satisfy AC2(b) w.r.t. φ ∧ψ .

Showing that µ satisfies AC1 and AC2(a) is immediate, by the assumption that both π and π ′ satisfy
AC1, AC2(a) and the fact that φ and ψ are not immediate effects. Furthermore, AC2(b) and AC2(c) hold
for µ by the construction of lists D i above.

Lemma 5 Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds. If

π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 ∈ Causes(φ ,T ) and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
q+1 ∈ Causes(ψ,T ′) then

µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∧ψ,T || T ′)

for all µ such that s0 || s′0
l0−→ . . .sn || s′n

ln−→ sn+1 || s′n+1 is an execution sequence in sk
lk−→ . . .sm

lm−→ sm+1 ||

s′p
l′p−→ . . .s′q

l′q−→ s′q+1, and s0 || s′0 = sk || s′p, sn || s′n = sm || s′q, sn+1 || s′n+1 = sm+1 || s′q+1, l0 . . . ln ↓A= lk . . . lm
and l0 . . . ln ↓ B = l′p . . . l

′
q.

Proof. First, note that one can build µ as above, such that µ satisfies conditions AC1–AC2(c) in Defini-
tion 4 w.r.t. φ ∧ψ , by Lemma 10.

Proving minimality of µ follows by reductio ad absurdum. Assume there exists µ̃ ∈ sub(µ) such that
µ̃ satisfies AC1–AC2(c). Then, by Lemma 9, one can build π̃ ∈ sub(π) satisfying AC1–AC2(c) w.r.t. φ

and π̃ ′ ∈ sub(π ′) satisfying AC1–AC2(c) w.r.t. ψ . This contradicts the hypothesis π ∈ Causes(φ ,T ) and
π ′ ∈ Causes(ψ,T ′), hence our assumption is false.

We conclude that µ ∈ Causes(φ ∧ψ,T || T ′).

Lemma 6. Consider LTS’s T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two
HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the
following holds.

If µ = (s0 || s′0, l0,D0), . . . ,(sn || s′n, ln,Dn),sn+1 || s′n+1 ∈ Causes(φ ∧ψ,T || T ′), then there exist
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π = (sk, lk,Dk), . . . ,(sm, lm,Dm),sm+1 ∈ Causes(φ ,T ) and
π ′ = (s′p, l

′
p,D

′
p), . . . ,(s

′
q, l
′
q,D

′
q),s

′
q+1 ∈ Causes(ψ,T ′)

where sk
lk−→ . . .sm

lm−→ sm+1 || s′p
l′p−→ . . .s′q

l′q−→ s′q+1 includes the execution sequence s0 || s′0
l0−→ . . .sn || s′n

ln−→
sn+1 || s′n+1, and sk || s′p = s0 || s′0, sm || s′q = sn || s′n, sm+1 || s′q+1 = sn+1 || s′n+1, lk . . . lm = l0 . . . ln ↓ A and
l′p . . . l

′
q = l0 . . . ln ↓ B.

Proof. First, note that one can build π and π ′ as above, such that π and π ′ satisfy conditions AC1–AC2(c)
in Definition 4, by Lemma 9.

Showing that π and π ′ have to satisfy AC3 follows by proof by contradiction. Assume there exists
π̃ ∈ sub(π) satisfying AC1–AC2(c) w.r.t. φ and π̃ ′ ∈ sub(π ′) satisfying AC1–AC2(c) w.r.t. ψ . By
Lemma 10 one can construct µ̃ ∈ sub(µ) such that µ̃ satisfies AC1–AC2(c) w.r.t. φ ∧ψ . This contradicts
the hypothesis µ ∈ Causes(φ ∧ψ,T || T ′), hence our assumption is false. The reasoning is similar for
the cases:

• π satisfies AC3 and π ′ does not satisfy AC3;

• π does not satisfy AC3 and π ′ satisfies AC3.

We conclude that π ∈ Causes(φ ,T ) and π ′ ∈ Causes(ψ,T ′).

Theorem 2. Consider T = (S,s0,A,→) and T ′ = (S′,s′0,B,→′) such that A∩B = /0. Assume two HML
formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate effects, the following
holds:

T || T ′ ↓ (φ ∧ψ) = (T ↓ φ) || (T ′ ↓ ψ). (4)

Proof. The result is immediate by Lemma 5 and Lemma 6.
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