
SysML to NuSMV model transformation via
object-orientation

Georgiana Caltais1, Florian Leitner-Fischer2, Stefan Leue1 and Jannis Weiser1

1 Department for Computer and Information Science
University of Konstanz, Germany

[Georgiana.Caltais, Stefan.Leue, Jannis.Weiser]@uni-konstanz.de
2 ZF Friedrichshafen AG, Active & Passive Safety Technology

florian.leitner-fischer@zf.com

Abstract. This paper proposes a transformation of SysML models into
the NuSMV input language. The transformation is performed automati-
cally using SysMV-Ja and relies on a notion of intermediate model struc-
turing the relevant SysML components in an object-oriented fashion.

1 Introduction

The complexity and size of safety-critical systems is steadily growing as tech-
nology advances. Hence, (semi-) formal approaches to the design, modelling and
reasoning on the correctness of such systems plays a very important rôle. Never-
theless, introducing “friendly” formal frameworks into industrial settings is not
at all a trivial task.

The OMG System Modelling Language (SysML) [14, 17] is a graphical mod-
elling language fairly intuitive and easy to learn by software engineers. SysML
has been successfully used in practice. Nevertheless, the application of rigorous
verification techniques such as model-checking on SysML-based inputs is usually
not something that engineers are keen or trained to do.

In this paper, we propose a model transformation from SysML to the input
language of the NuSMV symbolic model-checker [8], implemented in the auto-
mated tool SysML-Ja. Our approach exploits a SysML intermediate model. In
short, the intermediate model provides an object-oriented view of the SysML
modelling concepts relevant for the work in this paper.

The intermediate representation is then exploited to guide a 2-step trans-
formation from SysML to NuSMV input, in a structured way. Advantages of
considering such an intermediate model include: the familiarity of engineers with
the Object-Oriented Programming-paradigm, the modularity of the approach,
and the possibility of tracing back into the model potential sources of unwanted
behaviour, as reported by the model-checker.

Related work. There is a considerable amount of literature on providing (formal)
semantics of SysML/UML, or on automatically translating associated models
into inputs for different analysis tools.

The work in [9], for instance, presents a systematic, but direct translation of
statecharts to SMV. As the approach is strictly tailored for the input language of
SMV, it cannot be easily adapted for other model checkers or verification tools.

Hugo/RT [1] is a tool that translates UML into corresponding input for the
Spin [18] model checker, via the so-called UTE intermediate format. UTE is
a textual format that most of the engineers and programmers have to become
acquainted with, in contrast to the more familiar Object Oriented Programming-
paradigm exploited in our paper. Another approach for verifying UML models
using Spin is given in [23]. Even though the translation from UML to Promela
–the input language of Spin– is straightforward and thus, little reusable, the
automated tool vUML provides intuitive feedback to the user in case an error
was found during verification.

In [21], SysML specifications are automatically translated into equivalent
behavioural UML models. The latter are further used to derive test cases and
executable test scripts, in the context of a model-based testing tool. The main
difference with the work in [21] is that we use the Object-Oriented Programming-
paradigm in order to model both the static and the dynamic structure of systems.
The approach in [21] uses UML Class Diagrams to represent the static structure
of systems and UML State Machines to represent their dynamics. Moreover, the
unifying framework of object orientation enables us to define stereotypes and
facilitates extensions of the standard SysML/UML semantics, if so desired. Nev-
ertheless, our work does not tackle the issue of combining multiple profiles and
avoiding specification conflicts. For a contribution along this research direction
we refer, for instance, to [13] where some of the challenges of combining SysML
and the OMG MARTE profile [15] are addressed.

More theoretical approaches, usually less appealing for engineers and software
developers, propose formalisations of SysML/UML as Process Algebras [16, 4]
and Petri Nets [10, 12]. Model checking of hierarchical state machines has been
addressed in [3], for instance, where Kripke structures were employed as their
formalisation.

A formal intermediate model of UML behavioural diagrams was also pro-
posed in [11], in terms of the so-called Configuration Transition Systems (CTS’s).
Similarly to our approach, the results in [11] provide a systematic way of generat-
ing inputs for the NuSMV model checker based on intermediate models. In [11],
the authors also emphasise on the importance of exploiting intermediate models
in order to provide useful feedback to the designer. In accordance, the CTS’s
can be graphically visualised.

Labelled Transition Systems and Structural Operational Semantics [25] were
exploited in [26] in order to provide a modular semantics of UML-RT –a di-
alect of UML that supports the development of hierarchical systems following a
component-oriented approach. As for the case of UML-RT, rigorous formalisa-
tions are easier to define over textual terms. Such representations, however, are
difficult to use and follow in practice. For an attempt to overcome this type of
issues, we refer to the results in [19] where the authors present a graphical user
interface-based tool that supports a visual language called v-Promela. This lan-

2

guage is the graphical extension of Promela, and the v-Promela notation inherits
largely from the aforementioned UML-RT notation. Additionally, a semantics of
UML-RT in AsmL –an object-oriented software specification language based on
the theory of Abstract State Machines– was proposed in [22]. In connection with
our current work, the idea of employing a meta-model defining the syntactic
structure of the UML-RT modelling concepts was exploited as well. One the
one hand, in our context, following the AsmL approach is not necessary as the
syntactic structure of SysML/UML models can be expressed by means of Block
Definition Diagrams. On the other hand, AsmL is a language that most of the
engineers and developers would have to acquire.

The work in [24] is a classical reference on how to implement statecharts in
Promela/SPIN using hierarchical automata defined based on operational seman-
tics as intermediate format. A denotational meta-modelling of the semantics of
a part of UML suitable for describing and constraining object structures was
proposed in [20]. The results in [7] pave the way to a formalisation of UML in
terms of the so-called System Models consisting of elements that describe the
structure, behaviour and interaction of systems.

These more formal approaches are orthogonal works that go beyond the
scope of providing a recipe for translating SysML/UML in terms of intuitive
(intermediate) models, for the practical-minded. For a more detailed survey on
model checking statecharts we refer to [6].

Structure of paper. In Section 2 we provide a brief overview of SysML modelling
and NuSMV, by emphasising on the corresponding concepts relevant for our
work. In Section 3 we introduce the intermediate model used for the transforma-
tion of SysML models into NuSMV-compatible inputs. In Section 4 we illustrate
how the intermediate model can be exploited for the aforementioned transfor-
mation into NuSMV. Section 5 introduces SysMV-Ja, a Java-based tool for the
automated model transformation. Two case studies, a railway and an airbag
system are also discussed. In Section 6 we draw the conclusions and provide
pointers to future work.

2 Preliminaries

In this section we proceed by first introducing a railway example, used through-
out the paper in order to explain our approach.

Example 1 (Running example). The scenario considers a railroad track that is
crossed by a street. On the crossing there is a gate, that can close when a train
approaches, thus blocking cars from entering the crossing. A car or a train can
be in one of four states: approaching, entering, being in the crossing or leaving
the crossing. The gate can be in one of the two states: opened or closed. The
situation that one does not want in this example is a train and a car in the
crossing at the same time, as this would determine a crash.

3

In what follows, we provide a brief overview of SysML, the modelling lan-
guage used by practitioners for designing systems such as the one in Example 1.
Afterwards, we succinctly introduce the NuSMV model checker –a tool that can
automatically detect hazardous situations such as a car-train crash.

The OMG System Modelling Language (SysML) [14, 17] is an industry stan-
dard for specifying and designing a broad range of systems. SysML was created
as a general purpose modelling language for systems that may include anything
from hardware and software to staff and facilities.

On the one hand, SysML can be used for the intuitive modelling of systems;
we refer to Fig. 1 for a representation of the railway in Example 1. On the other
hand, SysML can be employed similarly to a meta-modelling language defining
the syntactic composition of the SysML modelling concepts considered by our
approach. For instance, iBDD and iStateMachine in Fig. 3 define the parts
(that are relevant for our approach) that constitute SysML Block Definition
Diagrams and State Machine Diagrams, respectively.

Intuitively, SysML Block Definition Diagrams (BDD’s) and State Machine
Diagrams (STM’s) are used in order to define the static aspects of systems, and to
capture the dynamics of systems, respectively. BDD’s are built on top of the so-
called SysML blocks, and enable the modelling of systems in a modular fashion.
Blocks correspond to units of a system description. See, for instance the block
Gate in Fig. 1, that corresponds to the UML representation of the gate system
in Example 1. A block can include properties of certain types and references
to other blocks. For instance, the gate being open/closed corresponds to the
boolean property “open” in Fig. 1 being set to true/false. Moreover, BDD’s can
capture relationships between blocks such as associations, and dependencies.
For an example, we refer to Fig. 3. An aggregation stating that one iModel
(intuitively, the railway system) consists of one or more iBDD’s (intuitively,
the car, train and gate in the railway example) is illustrated via the connector
�1––––1..

∗
with multiplicities one: 1 and one or more: 1..∗.

Behaviours can be associated to BDD’s via properties of type StateChart. In
Fig. 1, for instance, the train is associated a behaviour via the “operation” prop-
erty. At this point it is important to mention that, in our approach, concurrent
behaviour is modelled by synchronising multiple BDD’s via events. Events occur
in the context of triggers that specify points in the definition of a behaviour at
which some effect can be observed.

STM’s, or statecharts, are a form of finite state automata used in order to
model the behaviour of systems. States in an STM can express different statuses
in a behaviour of a system. For instance, the gate being either open or closed
is captured by two simple sates “gate open” and “gate closed”, respectively, in
Fig. 2(c).

States can enclose so-called regions denoting behaviour fragments that may
execute concurrently. Each region contains the nested disjoint states and corre-
sponding transitions. Consequently, there exist the following kinds of composite
states: simple composite –whenever the state contains exactly one region, and
orthogonal –whenever it contains multiple regions. In this paper we only con-

4

Fig. 1. The BDD’s for the railway in Example 1.

sider simple composite states. A submachine state refers to an entire STM nested
within the state.

Either simple, composite or submachines, states can specify “entry”, “exit”
or “doActivity” behaviours. In short, entry (respectively, exit) behaviours are
executed when the state is entered (respectively, exited) via an external tran-
sition. “doActivity” executes concurrently with any other behaviour associated
with the state, as soon as the state entry behaviour has completed. An instance
of a “doActivity” is the operation “close gate” in Figure 2(c).

Another special kind of states are the so-called pseudostates. Pseudostates
are states with special behaviour. For instance, the initial pseudostate is the
state in which an STM is initialised (see, for an example, the three bullet-like
initial states in Fig. 2), or exit pseudostates. Additionally, the system cannot be
in a pseudostate. As soon as a pseudostate is entered, it is left again in a single
atomic step. In this paper we only handle initial pseudo states.

Transitions can be seen as valid fragments of behaviour illustrating how the
system evolves from one “source” state to a “target” state. A “guard” enables
a transition whenever it is evaluated to true. We refer, for an example, to the
guard “[Gate.open = true]” in Fig. 2(a) that enables the car to enter the crossing
whenever the gate is open. The “effect” behaviour is enabled when the transition
is executed. The effect “open = false” in Fig. 2(b) sets the value of the gate prop-
erty “open” in Fig. 1 to false. A “trigger” specifies an event whose occurrence
determines the execution of a transition. For instance, the event “close gate” in
Fig. 2(b) determines the gate to close. Recall that “close gate” is also a “doAc-
tivity” in the state corresponding to train approaching in Fig. 2(c). Hence, its
purpose is to simulate the synchronised communication between the train and
the gate.

NuSMV [8] is a symbolic model checker successfully used for the verification
of synchronous and asynchronous finite state systems. In short, NuSMV analyses
specifications expressed in Computation Tree Logic (CTL) and Linear Temporal
Logic (LTL) [5], using BDD-based and SAT-based model checking techniques.

In this section, we focus on the parts of the NuSMV input language rele-
vant for our work. For a thorough description of NuSMV inputs, we refer the

5

(a) Car behaviour. (b) Gate behaviour.

(c) Train behaviour.

Fig. 2. The STM’s for the railway in Example 1.

interested reader to the user manual in the distribution package3 of the NUSMV
model checker.

Intuitively, a NuSMV program consists of a list of modules further instan-
tiated to so-called processes that model interleaving. A “process” has a special
boolean variable associated with it, called “running”, whose value is true if and
only if the corresponding process instance is currently selected for execution.
Each module is associated an identifier and a series of parameters. The body
of a module consists of elements that can denote variable declarations, variable
initialisations / assignments, LTL specifications or, for instance, behaviours de-
fined based on transitions. Transitions are introduced by the “TRANS” keyword,
followed by a boolean expression expressing whether or not two states belong
to the transition relation. Therefore, the aforementioned boolean expression can
include the “next” operator in order to relate the current and the next state
variables, and express transitions in the state-machine corresponding to the be-
haviour of the module.

3 The intermediate model

In this section we provide an object-oriented representation of the relevant
SysML components we consider for modelling the static and dynamic aspects
of concurrent safety-critical systems. This representation serves as an intermedi-
ate step in the model transformation from SysML to NuSMV. The advantages
of using the object-orientation paradigm include engineers’ familiarity with the
concept and enables a structured, modular model transformation flexible to fur-
ther extensions, and appropriate for automation.

3 http://nusmv.fbk.eu

6

The translation of the SysML relevant components into the intermediate
model follows naturally. The iModel comprises all the elements of the system.
All information that is obtained during the transformation from SysML to this
intermediate model is either directly, as an attribute, or indirectly, as an at-
tribute of one of its attributes, contained in the iModel. Directly contained
as attributes in the iModel are all components, events, global variables which
do not belong to any component, and the properties of the model captured by
iStateConfigurations.

Each instance of iStateConfiguration stands for a safety or reachability
property. These properties are expressed by the configuration states that shall
“never be reached” or “eventually be reached”, connected via “AND”/“OR”
configuration operations.

Another element is the iAttribute, representing variables of the system. It
can have a default value, saved as a string. If the attribute is an integer then it
has a lower and upper bound and and a type given by strings such as “integer”
or “boolean”, for instance. An iAttribute can be either a global variable, in
which case it is saved in the iModel, or part of a system component, saved as
an attribute in the corresponding iBDD.

An iBDD corresponds to a BDD and is characterised by the associated
attributes. The connection with the STM’s defining its normal and failure be-
haviours is established via class attributes of type iStateMachine.

The iStateMachine contains all the important information from an STM:
all its states, including the initial one, and all its transitions. A type is associ-
ated in order to mark the behaviour of the iStateMachine as being normal
or a failure one. As expected, an iState, corresponds to the concept of SysML
state. An iState, encapsulates the entry, exit and during (“doActivity”) be-
haviours a SysML state can display. iStates also include a list of incoming and
outgoing transitions. If the state has submachines, then they are given by the
submachines attribute. Note that only the initial pseudostate has a translation
into the intermediate model as the “intialState” attribute of the iStateMa-
chine class. SysML transitions are represented in this model via iTransition.
The source and target states are the states from which the transition originates
and to which it leads. The guard is a boolean formula that enables the transition
whenever is evaluated to true. Intuitively, action collects all changes to attributes
that happen when the transition is executed and it encodes the triggers and the
behaviour of the transition. Finally, a transition can have a corresponding event.
If that is the case, then the transition is only enabled if the event was triggered.
SysML events are captured by the iEvent class which contains the transitions
that are triggered by the event.

Moreover, note that all the blocks in Fig. 3 have a “name” and an “ID”,
as they inherit from iElement. We omit explicitly depicting the inheritance
relationships, for readability reasons.

7

Fig. 3. The SysML intermediate model.

4 Transformations to NuSMV input

In this section we provide an overview of the translation from SysML constructs
into NuSMV input. We emphasise on the usefulness of the intermediate model
in Fig. 3, as it enables a top-down, structured approach.

First, the main NuSMV module, corresponding to the iModel in Fig. 3 is
implemented to contain the declaration of a series of modules, as given by its
iBDD components. Each module in NuSMV is created as a “process”. This
enables the use of the “running” variable. NuSMV always chooses exactly one
“process” for which “running” has the value true, and for all others the value
false. This is useful to guarantee that only one module changes its state at a cer-
tain time. Then, all variables (attributes) are declared within the main module.
The attributes are further initialised with the initial value from the associated
element in the intermediate model, or if they do not have one, with the default
values. The assignments are performed in the corresponding module of each
variable. Relevant fragments of the NuSMV modules and variables declarations
corresponding to the railway scenario in Example 1 are as follows:

8

Module main

[...]

VAR gate: process Gate(self);

VAR car: process Car(self);

VAR train: process Train(self);

VAR Gate_open: boolean;

VAR open_gate_active: boolean;

Module Gate(g)

[...]

ASSIGN init(g.Gate_open) := TRUE

Module Car(g) [...]

Module Train(g) [...]

Translations of STM’s, or iStateMachines, is less straightforward as states
and transitions are strongly interrelated. In the NuSMV code, the state, or the
iState itself is integrated into the transition system. As illustrated later, state
behaviours are translated into variable changes handled in the context of transi-
tion executions. Note that we combine the during behaviour of a state (“doAc-
tion”) with its “exit” behaviour, as changes can not be modelled as happening
over time.

Moreover, in order to be identified within the NuSMV code, states are num-
bered in an ascending order. For the case of the gate, for instance, we can declare
VAR Gate_states: 0..10 in the main module. Additionally, recall that states
in an STM can have a hierarchical structure. In our context, they can be simple
composite. Assume an STM with three states, out of which one is an STM with
four states, as in Fig. 4(a). By recursively apply the numbering procedure we
assign, for example, values 1, 2 and 7 to the states of the STM as in Fig. 4(b).

Regarding the modelling of transitions out of submachines: in short, initial
pseudostates and normal states in a submachine can exit the submachine be-
haviour at any time. Hence, we translate a transition (with target s) out of a
submachine, to one transition (with target s) enabled in each state of the subma-
chine. The original transition out of the submachine is then removed. This transi-
tion distribution procedure is represented via the dashed transitions in Fig. 4(b).
The soundness of this approach is guaranteed by the fact that each newly added
dashed transition inherits the “exit” behaviour and the “doAction” of the en-
closing state (numbered 2 in our example). Moreover, each dashed transition has
to execute the action corresponding to the transition out of submachine.

Recall that the transition structure in NuSMV is introduced via the “TRANS”
keyword, followed by a boolean statement. This statement can be divided into
three parts: (a) the transitions which can be executed when the module is run-
ning, together with statements regarding changed/unchanged variables, (b) the
statement about what happens when the module is not running and (c) a state-
ment to define when the module cannot perform any transitions and therefore
has to stop running. In the context of (b), we assert that the variables do not
change while the module is not running. Nevertheless, there is one exception to
this: if there is a trigger to an event where a variable can change if the event is
consumed by another module. Because of the way NuSMV parses a model, all
variables that are not changed must be specified as such. This has to be done
only for the variables of that module. A sketch-example of a transition system
is as follows:

9

(a) 3-state STM with transition out of submachine.

(b) STM with numbered states and distributed transitions.

Fig. 4. Handling simple composite STM’s.

TRANS

-- (a) When the module is running

(running &

(next(g.event) = iTransitionID1 &

(g.BlockName_states = currentState) &

(g.BlockName_AttributeName = TRUE) & -- guard for the transition

-- changed variables

next(g.BlockName_states) = nextState &

next(g.BlockName_AttributeName) = FALSE

-- unchanged variables

next(g.BlockName_AttributeName2) = g.BlockName_AttributeName2)

-- (b) When the module is not running

| !running &

next(g.BlockName_states) = g.BlockName_states &

next(g.BlockName_AttributeName) = g.BlockName_AttributeName

next(g.BlockName_AttributeName2) = g.BlockName_AttributeName2)

-- (c) When the module has to stop running

& !(next(g.event) = iTransitionID1 & g.BlockName_states = currentState)

-> !running)

In the listing above g stands for the constructor of the current module
BlockName. In the railway example these can be represented, for instance, by
self and Gate, respectively. Block_Name_states and Block_AttributeName /
Block_AttributeName2 stand for the states and some attributes of the current
module. These can be Gate_states and Gate_open, for instance. currentState
is the number associated to the current state. iTransitionID1 is the “ID” of
a transition. Recall from Section 3 that iTransition has an “ID” field, as it
inherits from iElement. As expected, g.event denotes an event.

10

In NuSMV, events are translated as boolean variables. See, for instance, the
variable declaration VAR open_gate_active: boolean; in the main module.
Its value is set to true when a state or transition includes a trigger for the event
in its behaviour, or to false after the execution of a transition that requires the
event to be enabled.

An important aspect is that, in order to ensure module synchronisation via
triggers, we have to enrich the NuSMV model. In case the module associated
with the trigger is not running, the trigger variable has to be handled differently
from normal variables because it has to be synchronised with the other modules
that consume the trigger. This is done by specifying that the value of the trigger
variable stays the same except when the next transition is the event transition:

TRANS [...]

& (! (next(g.event) = triggeredEventName)

-> next(g.triggeredEventName_active) = g. triggeredEventName_active)

Regarding the properties of the model captured by iStateConfigurations
in Fig. 3: note that we are currently handling only safety, or reachability, speci-
fications. Intuitively, these are of form “never the case to be in all of these states
at once” or “never the case to be in at least one of these states”. As expected,
the former case is modelled via the logical “AND” operator, whereas the latter
case is modelled using “OR”. Consider, for a generic example, the following:

-- if the operator is AND

LTLSPEC G! ((Comp1_states = a) & (Comp2_states = b) & (Comp3_states = c))

-- if the operator is OR

LTLSPEC G! ((Comp1_states = a) & (Comp2_states = b) & (Comp3_states = c))

Above, Comp1_states can be, for instance, Train_states, whereas a, b and
c denote state numbers.

5 SysMV-Ja at work

Given a SysML model, the transformation to the corresponding NuSMV input
via the intermediate model as described in Section 3 and Section 4, can be
performed automatically using the SysMV-Ja tool. SysMV-Ja is a Java applica-
tion with a simple graphical user interface that enables specifying the path to
the XMI file of the SysML model, and the path of the output folder where the
NuSMV-compatible input will be generated. The repository4 containing the tool,
instructions on how to use it, and the SysML models for the two case studies
discussed in this paper can be accessed with the username “anon”.

5.1 Case study: a railway system

The first case study we consider is the railway system in Example 1. After
generating the corresponding NuSMV code, we used the model checker to find a

4 https://svn.uni-konstanz.de/soft/SysMV-Ja/release

11

counterexample for the safety property “never car and train in the crossing at the
same time”. NuSMV successfully identified a counterexample. Even though the
generated state space consists of approximately 700 000 states (including those
associated to some extra bounded integers from BlockName_states definitions),
the reachable states are approximately 300 –in the order of what we expected:

NuSMV > print_reachable_states

##

system diameter: 17

reachable states: 314 (2^8.29462) out of 684288 (2^19.3842)

##

5.2 Case study: an airbag system

We further consider the transformation of an industrial size model of an airbag
system taken from [2]. The architecture of this system was provided by TRW
Automotive GmbH, and is schematically shown in Figure 5. The airbag system
can be divided into three major parts: sensors, crash evaluation and actuators.
The system consists of two acceleration sensors (main and safety) for detecting
front or rear crashes, one microcontroller to perform the crash evaluation, and
an actuator that controls the deployment of the airbag. The deployment of the
airbag is also secured by two redundant protection mechanisms. The Field Effect
Transistor (FET) controls the power supply for the airbag squibs that ignite the
airbag. If the Field Effect Transistor is not armed, which means that the FET-
pin is not high, the airbag squib does not have enough electrical power to ignite
the airbag. The second protection mechanism is the Firing Application Specific
Integrated Circuit (FASIC) which controls the airbag squib. Only if it receives
first an “arm” command and then a “fire” command from the microcontroller it
will ignite the airbag squib which leads to the pyrotechnical detonation inflating
the airbag.

Although airbags are meant to save lives in crash situations, they may cause
fatal accidents if they are inadvertently deployed. This is because the driver may
lose control of the car when an inadvertent deployment of the airbag occurs. It
is a pivotal safety requirement that an airbag is never deployed if there is no
crash situation. Intuitively, the corresponding safety property can be stated as
“never no-crash and airbag deployed”.

In short, the SysML model (also included in the repository of SysMV-Ja)
consists of five BDD’s and five STM’s, each one associated to one component
of the airbag system. The largest STM consists of twelve states, out of which
two sates with submachines. The remaining STM’s enclose at most five states.
When running the NuSMV model checker on the input generated via SysMV-
Ja from the corresponding SysML modelling, we obtain a state space of size
approximately 210, with about 1 000 reachable states that can be analysed for
inadvertent deployment almost instantaneously.

12

Fig. 5. Architecture of the airbag system.

6 Conclusions

In this paper we provide a model transformation from SysML to NuSMV input,
implemented in the automated tool SysMV-Ja. The proposed translation relies
on an object-oriented intermediate model of SysML, thus making the whole
approach more structured and easy to follow, possibly serving as a recipe for
other model-transformations. We also discussed the results of model-checking
models corresponding to a railway and an airbag system, generated with SysMV-
Ja.

Ideas for future work include the integration of an LTL property editor within
SysMV-JA. At the moment, LTL specifications are added by hand at the end of
the NuSMV input file. Apart from safety, we would also like to handle liveness
properties as well.

We plan to investigate to what extent the translation procedure can be
adapted to include other types of SysML diagrams such as activity charts, for
instance.

Another interesting extension would be the integration of orthogonal subma-
chines. For the time being, we only consider simple composite ones. Nevertheless,
this kind of limitation can be overcome by providing an equivalent modelling of
orthogonal submachines via multiple simple composite ones, synchronised via
events.

Furthermore, the transformation of pseudostates can be enhanced in some
ways. For optimisation purposes, the initial state can be replaced by its de-
scendant, as initial states have at most one outgoing edge and can not have
a behaviour. It is a minor enhancement, though, since it only decreases the
state space minimally. Nevertheless, such an approach might make the generated
NuSMV code smaller and therefore, easier to read and maintain. We would also
like to allow “exit” pseudo states. However, we foresee that this would change
the handling of transitions out of submachines, as in Fig. 4.

13

The formal correctness of the model would be another thing that is interesting
to look into. For this, a formal semantics of the intermediate model might have
to be created and the transformation rewritten as a set of functions/rules.

Last, but not least, we want to analyse the proposed approach for more case
studies, and we want to perform efficiency studies as well.

References

1. Hugo/RT. https://www.informatik.uni-augsburg.de/en/chairs/swt/sse/hugort.
2. Husain Aljazzar, Manuel Fischer, Lars Grunske, Matthias Kuntz, Florian Leitner-

Fischer, and Stefan Leue. Safety analysis of an airbag system using probabilistic
FMEA and probabilistic counterexamples. In QEST 2009, Sixth International
Conference on the Quantitative Evaluation of Systems, Budapest, Hungary, 13-16
September 2009, pages 299–308. IEEE Computer Society, 2009.

3. Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state ma-
chines. ACM Trans. Program. Lang. Syst., 23(3):273–303, 2001.

4. Takahiro Ando, Hirokazu Yatsu, Weiqiang Kong, Kenji Hisazumi, and Akira
Fukuda. Translation rules of SysML state machine diagrams into CSP# toward
formal model checking. IJWIS, 10(2):151–169, 2014.

5. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

6. Purandar Bhaduri and S. Ramesh. Model checking of statechart models: Survey
and research directions. CoRR, cs.SE/0407038, 2004.

7. Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein, Barbara Paech,
Bernhard Rumpe, and Veronika Thurner. Towards a formalization of the Uni-
fied Modeling Language. In ECOOP, pages 344–366, 1997.

8. Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A new symbolic model checker. STTT, 2(4):410–425, 2000.

9. E. M. Clarke and W. Heinle. Modular Translation of Statecharts to SMV. Technical
report, 2000.

10. Ermeson Carneiro de Andrade, Paulo Romero Martins Maciel, Gustavo Rau
de Almeida Callou, and Bruno Costa e Silva Nogueira. A methodology for mapping
SysML activity diagram to time petri net for requirement validation of embedded
real-time systems with energy constraints. In Third International Conference on
the Digital Society (ICDS 2009), February 1-7, 2009, Cancun, Mexico, pages 266–
271. IEEE Computer Society, 2009.

11. Mourad Debbabi, Fawzi Hassäıne, Yosr Jarraya, Andrei Soeanu, and Luay
Alawneh. Verification and Validation in Systems Engineering - Assessing UML
/ SysML Design Models. Springer, 2010.

12. Claudia Ermel. Visual modelling and analysis of model transformations based on
graph transformation. Bulletin of the EATCS, 99:135–152, 2009.

13. Huáscar Espinoza, Daniela Cancila, Bran Selic, and Sébastien Gérard. Challenges
in combining SysML and MARTE for model-based design of embedded systems.
In Richard F. Paige, Alan Hartman, and Arend Rensink, editors, Model Driven
Architecture - Foundations and Applications, 5th European Conference, ECMDA-
FA 2009, Enschede, The Netherlands, June 23-26, 2009. Proceedings, volume 5562
of Lecture Notes in Computer Science, pages 98–113. Springer, 2009.

14. Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML:
Systems Modeling Language. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

14

15. Susanne Graf, Sébastien Gérard, Øystein Haugen, Iulian Ober, and Bran Selic.
Modelling and analysis of real time and embedded systems - using UML. In Thomas
Kühne, editor, Models in Software Engineering, Workshops and Symposia at MoD-
ELS 2006, Genoa, Italy, October 1-6, 2006, Reports and Revised Selected Papers,
volume 4364 of Lecture Notes in Computer Science, pages 126–130. Springer, 2006.

16. Helle Hvid Hansen, Jeroen Ketema, Bas Luttik, Mohammad Reza Mousavi, and
Jaco van de Pol. Towards model checking executable UML specifications in
mCRL2. ISSE, 6(1-2):83–90, 2010.

17. Matthew Hause. The SysML modelling language. In Fifteenth European Systems
Engineering Conference, 2006.

18. Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

19. Moataz Kamel and Stefan Leue. VIP: A visual editor and compiler for v-Promela.
In Susanne Graf and Michael I. Schwartzbach, editors, Tools and Algorithms for
Construction and Analysis of Systems, 6th International Conference, TACAS 2000,
Held as Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings,
volume 1785 of Lecture Notes in Computer Science, pages 471–486. Springer, 2000.

20. Stuart Kent, Stephen Gaito, and Niall Ross. A meta-model semantics for struc-
tural constraints in UML. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Specifications of Businesses and Systems, volume 523 of The
Kluwer International Series in Engineering and Computer Science, pages 123–139.
Springer, 1999.

21. Jonathan Lasalle, Fabrice Bouquet, Bruno Legeard, and Fabien Peureux. SysML to
UML model transformation for test generation purpose. ACM SIGSOFT Software
Engineering Notes, 36(1):1–8, 2011.

22. Stefan Leue, Alin Stefanescu, and Wei Wei. An AsmL semantics for dynamic
structures and run time schedulability in UML-RT. In Richard F. Paige and
Bertrand Meyer, editors, Objects, Components, Models and Patterns, 46th Interna-
tional Conference, TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July 4,
2008. Proceedings, volume 11 of Lecture Notes in Business Information Processing,
pages 238–257. Springer, 2008.

23. Johan Lilius and Ivan Paltor. vUML: A tool for verifying UML models. In The 14th
IEEE International Conference on Automated Software Engineering, ASE 1999,
Cocoa Beach, Florida, USA, 12-15 October 1999, pages 255–258. IEEE Computer
Society, 1999.

24. Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holzmann. Imple-
menting statecharts in PROMELA/SPIN. In 2nd Workshop on Industrial-Strength
Formal Specification Techniques (WIFT ’98), October 20-23, 1998, Boca Raton,
FL, USA, pages 90–101. IEEE Computer Society, 1998.

25. Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004.

26. Michael von der Beeck. A formal semantics of UML-RT. In Oscar Nierstrasz,
Jon Whittle, David Harel, and Gianna Reggio, editors, Model Driven Engineering
Languages and Systems, 9th International Conference, MoDELS 2006, Genova,
Italy, October 1-6, 2006, Proceedings, volume 4199 of Lecture Notes in Computer
Science, pages 768–782. Springer, 2006.

15

