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Abstract

This work introduces a notion of counterfactual causality in the Halpern and Pearl sense that is com-

positional with respect to the interleaving of non-communicating transition systems. The underlying

logic is Hennessy Milner logic. This is an abstract based on a paper accepted in CREST 2016.

Introduction. Determining and computing causalities is a frequently addressed issue in the
philosophy of science and engineering, for instance when causally relating system faults to
system failures. A notion of causality that is frequently used in relation to technical systems
relies on counterfactual reasoning [17]. In short, the counterfactual argument defines when
an event is considered a cause for some effect, in the following way: a) whenever the event
presumed to be a cause occurs, the effect occurs as well, and b) when the presumed cause does
not occur, the effect will not occur either. The seminal paper [11] describes an event model and
a notion of actual causation encompassing the counterfactual argument. Most relevant for our
work are the contributions in [16, 15]. The latter provide an interpretation of the results in [11]
in the context of transition systems and trace models for concurrent system computations.

The objective of this paper is to consider the notion of counterfactual causality reasoning and
actual causation in the context of labeled transition systems (LTS’s). In our setting the LTS’s
represent system models and Hennessy Milner logic (HML) [12] formulae specify the system
properties for whose violation actual causes are sought. We also establish first results on
computing causalities in this setting using (de-)compositional verification. This is an abstract
of the paper [3], accepted in CREST 20161. For the complete definitions and proofs we refer
the interested reader to [3].

Preliminaries. Next, we provide a brief overview of LTS’s and their computations, and HML.
A labeled transition system (LTS) is a triple T = (S, s0, A,→), where S is the set of states, s0 ∈ S
is the initial state, A is the action alphabet and →⊆ S × A × S is the transition relation. We
write −→→ ⊆ S×A∗ × S, to denote the reflexive and transitive closure of →.

Let D, Di range over possibly infinite lists of words in A∗; we write ε for the empty word.
We say that such lists are size-compatible if they are finite lists of the same length, or if
they are all infinite lists. Let π = (s0, l0,D0), . . . (sn, ln,Dn), sn+1 ∈ (S × A × [A∗])∗ × S.
Assume that D0, . . . ,Dn are size-compatible. Intuitively, we write traces(π) to denote the
pairwise extensions of l0 . . . ln with words “at the same level” in D0, . . . ,Dn. For instance, if
π = (s0, l0, [w

0
1, w

0
2]), (s1, l1, [w

1
1, w

1
2]), s2, then traces(π) = {l0w0

1l1w
1
1, l0w

0
2l1w

1
2}. We say that

π is a computation of T whenever the following hold: (i) s0
l0−→ s1 . . .

ln−→ sn+1, (ii) D0, . . . ,Dn
are size-compatible, and (iii) for all w ∈ traces(π) there exists s ∈ S such that s0

w−→→ s. sub(π)
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stands for the set of all computations π′ = (s0, l
′
0,D′0), . . . , (sm, l

′
m,D′m), s′m+1 such that l′0 . . . l

′
m

is a sub-word of l0 . . . ln.
We consider formulae in Hennessy-Milner logic (HML) [12] given by the following grammar:

φ, ψ ::= > | 〈a〉φ | [a]φ | ¬φ | φ ∧ ψ | φ ∨ ψ (a ∈ A).

The associated satisfaction relation � is defined in the standard way, over states s ∈ S and
HML formulae. We call formulae φ that hold in the initial state of a system immediate effects.

Defining causality. Our notion of causality complies with that of “actual causation” pro-
posed in [11] and further adapted to the setting of concurrent systems in [15]. Consider a
transition system T = (S, s0, A,→); causal traces for an HML property φ in T denoted by
Causes(φ, T ) is the set of all computations π = (s0, l0,D0), . . . , (sn, ln,Dn), sn+1 such that

1. s0
l0−→ . . . sn

ln−→ sn+1 ∧ sn+1 � φ (Positive causality)

2. ∃χ ∈ A∗, s′ ∈ S : s0
χ−→→ s′ ∧ s′ � ¬φ (Counter-factual)

3. ∀χ′ = l0χ0 . . . lnχn ∈ {l0 . . . ln}∪(A∗\traces(π)), s′ ∈ S : s0
χ′

−→→ s′ ⇒ s′ � φ (Occurrence)

4. ∀χ′ ∈ traces(π) \ {l0 . . . ln}, s′ ∈ S : s0
χ′

−→→ s′ ⇒ s′ � ¬φ (Non-occurrence)
5. ∀π′ ∈ sub(π) : π′ does not satisfy items 1. – 4. above (Minimality)

Consider, for an example, the following LTS and the HML formula φ = 〈h〉>:

s0 s6

s3 s2 s1 s4 s5

a

b b b

h

h

Item 1 above suggests that action a should be a cause for φ. Item 2 indicates that the hazard

formula does not hold trivially everywhere as, for instance, s0
abb−−→ s3 and s3 6� φ. Item 3 states

that ab cannot be considered a cause as it can non-deterministically lead to s2 and s3 and only
s4 � φ holds. Item 4 states that (s0, a, [ε]), s1 is not a cause for φ because extending a with bb,
for instance, violates φ and thereby violates item 3. However, (s0, a, [h, bb, bh]), s1 is a cause,
because a leads to a hazard, all possible extensions of a with anything but h, bb or bh, the only
ones being ε and b, also keep the hazard. Item 5 states that (s0, a, [ε, ε]), (s1, b, [h, b]), s4 is not
a cause because it is not minimal. This is because its sub-computation (s0, a, [h, bb, bh]), s1 is
a cause as previously discussed.

(De-)composing causality. A causal projection of T = (S, s0, A,→) with respect to a prop-
erty φ, is T ′ = (S′, s0, A,→′) such that S′ = {si | 0 ≤ i ≤ n+1∧(s0, l0,D0), . . . , (sn, ln,Dn), sn+1

∈ Causes(φ, T )} and →′= {(si, li, si+1) | 0 ≤ i ≤ n ∧ (s0, l0,D0), . . . , (sn, ln,Dn), sn+1 ∈
Causes(φ, T )}. We write T ↓ φ to denote the causal projection of T with respect to φ. Intu-
itively, a causal projection is an LTS whose executions capture precisely all causal traces.

Theorem 1 and Theorem 2 below show that reasoning on causality with respect to disjunc-
tions and, respectively, conjunctions of HML formulae in the context of interleaved LTS’s can
be reduced to reasoning on causality in the corresponding interleaved components. We consider
standard notions of interleaving (||) and non-deterministic (+) choice between LTS’s [18].
Theorem 1. Consider LTS’s T = (S, s0, A,→) and T ′ = (S′, s′0, B,→′) such that A ∩ B = ∅.
Assume two HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not
immediate effects, the following holds: T || T ′ ↓ (φ ∨ ψ) ' T ↓ φ+ T ′ ↓ ψ.
Theorem 2. Consider T = (S, s0, A,→) and T ′ = (S′, s′0, B,→′) such that A∩B = ∅. Assume
two HML formulae φ and ψ over A and B, respectively. Whenever φ and ψ are not immediate
effects, the following holds: T || T ′ ↓ (φ ∧ ψ) = (T ↓ φ) || (T ′ ↓ ψ).
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Discussion. Counterfactual arguments have become the basis for a number of fault analysis,
failure localization and software debugging techniques, such as delta debugging [23], nearest
neighbor queries [20], counterexample explanation in model checking [10, 9] and why-because-
analysis [13]. (De-)compositional verification has been studied in contexts such as model-
checking [2, 4, 22] and model-based conformance testing [19, 21]. Our approach is based on
our earlier work on decompositional verification of modal mu-calculus formulae [1]. Regarding
compositional verification of causality, we are only aware of the line of work in [7, 5, 6, 8]. Our
initial results only concern interleaving components, but our long-term vision is that modal
decomposition will enable mechanized decomposition of the modal formula for communicating
components, following the approach of [14, 1].
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