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Abstract

The complexity of modern safety-critical systems is steadily increasing due to the

amount of functionality that is implemented in those systems. In order to be able

to asses the correctness and safety of these systems in a comprehensive manner

automated or, at least, computer-aided techniques are needed. Model checking, a

formal verification technique, provides an automated algorithmic analysis of system

models and is able to check whether a formalized requirement is satisfied by the

system. If the requirement is violated the model checker provides error traces, called

counterexamples, which serve as witnesses for the requirement violation. While the

counterexamples can be used as a debugging aid, they do not provide any obvious

insight into which events are causal for the requirement violation. In order to derive

the causal events from a set of counterexamples, the events of all error traces need

to be manually inspected, which is an error prone and time consuming task.

We propose a method complementing model checking that is called causality

checking. Causality checking algorithmically computes the causal events for the

violation of a requirement that is formalized as a non-reachability property. The

notion of causality that we use is based on the actual cause definition by Halpern and

Pearl, which in turn is based on the counterfactual argument by Lewis. Causality

checking is able to compute the causal events for a property violation and also takes

the order in which the events appear into account as a causal factor. Furthermore,

causality checking identifies the causal non-occurrence of events. We propose a

causality checking algorithm and show how it can be integrated into the state-space

exploration algorithms used in qualitative model checking.

The hardware of an embedded system may fail due to deterioration and affect

the software that is running on this hardware and thereby cause a requirement vi-

olation. In industry negative exponentially distributed rates are used in order to

specify the occurrence probability of such a hardware failure in a given time frame.

In order to support a probabilistic analysis of the system we extend the causality

checking approach to be applicable to probabilistic system models. The proposed

probabilistic causality checking approach enables us to compute the probabilities of

certain combinations of events that cause a property violation. A pure probabilistic

causality checking method, as will become clear in this thesis, entails a high per-

formance penalty for the necessary probabilistic counterexample computation. We

will show how this bottleneck can be mitigated by a combination of qualitative and

probabilistic causality checking.

While a full state-space exploration of the case studies that we analyze is pos-

sible, we discuss the implications of an incomplete state-space exploration of the

analysis model with respect to soundness and completeness of the causality checking

result and present strategies that can be applied in order to increase the scalability

of the causality checking approach.

Furthermore, we discuss how the causality checking method can be integrated



VI

into the QuantUM framework, a method that allows for the generation of the anal-

ysis models from higher-level architectural description languages such as the unified

modeling language (UML) or the systems modeling language (SysML). For the re-

sult representation we propose a temporal logic called event order logic which allows

for a concise and formal representation of the causal events and the causal orderings.

Furthermore, we show how formulas in event order logic, that have been computed

by the causality checker, can be represented by fault trees, a method used in in-

dustry to reason about causal relationships between property violations and events.

The mapping to fault trees facilitates the interpretation of the causality checking

results and is a representation that is already known and used in industry.

We demonstrate the applicability and usefulness of the causality checking ap-

proach on several case studies from industry and academia and discuss how causality

checking can be used in an industrial safety engineering process.



Zusammenfassung

Die Komplexität moderner sicherheitskritischer Systeme steigt, aufgrund der Menge

an Funktionalität, welche in diesen Systemen implementiert ist, stetig an. Um

in der Lage zu sein, die Korrektheit und Sicherheit dieser System in einer um-

fassenden Art und Weise zu beurteilen, bedarf es an automatisierten oder zumin-

dest rechnergestützten Techniken. Model Checking, eine formale Verifikationstech-

nik, stellt eine automatische, algorithmische Analyse von Systemmodellen zur Ver-

fügung und ermöglicht es zu prüfen, ob eine formale Anforderung vom System

erfüllt wird. Falls die Anforderung verletzt wird, liefert der Model Checker eine

fehlerhafte Ausführungsfolge, ein sogenanntes Gegenbeispiel, welche als Nachweis

für die Anforderungsverletzung dient. Obwohl Gegenbeispiele die Fehlersuche un-

terstützten, geben sie keinen Aufschluss darüber, welche Ereignisse kausal für die

Anforderungsverletzung sind. Um die kausalen Ereignisse aus einer Menge von

Gegenbeispielen herzuleiten, müssen die Ereignisse aller fehlerhaften Aufführungs-

folgen untersucht werden. Dies ist eine fehleranfällige und zeitaufwendige Aufgabe.

Wir schlagen eine Methode namens Causality Checking vor, welche das Model

Checking ergänzt. Causality Checking berechnet algorithmisch die kausalen

Ereignisse für die Verletzung einer als Nicht-Erreichbarkeits-Eigenschaft formal-

isierten Anforderung. Der Kausalitätsbegriff den wir benutzen basiert auf der “ac-

tual cause”-Definition von Halpern und Pearl, welche wiederum auf dem kontrafak-

tischen Argument von Lewis basiert. Mittels Causality Checking ist es möglich die

kausalen Ereignisse für eine Eigenschaftsverletzung zu berechnen und zusätzlich die

Ordnung der Ereignisse als kausalen Faktor zu berücksichtigen. Außerdem erkennt

Causality Checking das kausale nicht-auftreten von Ereignissen. Wir schlagen einen

Causality Checking Algorithmus vor und zeigen, wie sich dieser in die Algorithmen

zur Zustandsraumexploration, welche für das qualitative Model Checking benutzt

werden, integrieren lässt.

Die Hardware eines eingebetteten Systems kann durch Alterung ausfallen und

die Software, welche auf der Hardware ausgeführt wird, beinträchtigen und so eine

Anforderungsverletzung verursachen. In der Industrie werden Raten mit negativer

Exponentialverteilungen benutzt um die Auftretenswahrscheinlichkeit eines solchen

Hardwarefehlers innerhalb eines bestimmten Zeitrahmen zu spezifizieren. Um eine

probabilistische Analyse des Systems zu ermöglichen, erweitern wir den Causality

Checking Ansatz, um ihn für probabilistische Systemmodelle anwendbar zu machen.

Der vorgeschlagene probabilistische Causality Checking Ansatz ermöglicht es die

Wahrscheinlichkeiten bestimmter Kombinationen von Ereignissen, welche kausal

für die Eigenschaftsverletzung sind zu berechnen. In dieser Arbeit zeigt sich, dass

eine reine probabilistische Causality Checking Methode, aufgrund der notwendi-

gen Berechnung der probabilistischen Gegenbeispielen zu hohen Leistungseinbussen

führt. Wir zeigen wie, dieser Flaschenhals durch eine Kombination aus qualitativem

und probabilistischem Causality Checking umgangen werden kann.
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Obwohl eine vollständige Exploration des Zustandsraum für die analysierten

Fallstudien möglich ist, diskutieren wir welche Auswirkungen eine unvollständige

Exploration des Zustandsraums des Analyse Models auf die Korrektheit und die

Vollständigkeit des Causality Checking Ergebnis hat und präsentieren Strategien die

angewendet werden können um die Skalierbarkeit des Causality Checking Ansatzes

zu erhöhen.

Zudem diskutieren wir, wie die Causality Checking Methode in den Quan-

tUM Ansatz, einer Methode zur Generierung von Analysemodellen aus Architek-

turbeschreibungssprachen auf höherer Ebene, wie die Unified Modeling Language

(UML) oder die Systems Modeling Language (SysML), integriert werden kann.

Zur Ergebnisrepräsentation schlagen wir eine temporale Logik namens Event Order

Logic vor, welche eine präzise und formale Repräsentation der kausalen Ereignisse

und der kausalen Ordnungen ermöglicht. Zusätzlich zeigen wir, wie Formeln in der

Event Order Logic, welche vom Causality Checker berechnet wurden, als Fehler-

bäume dargestellt werden können. Fehlerbäume sind eine in der Industrie verwen-

dete Methode, um Kausalitätsbeziehungen zwischen Eigenschaftsverletzungen und

Ereignissen darzustellen. Die Abbildung auf Fehlerbäume vereinfacht die Inter-

pretation des Causality Checking Ergebnisses und ist eine Darstellung, die in der

Industrie bereits verwendet wird.

Wir demonstrieren die Verwendbarkeit und den Nutzen des Causality Checking

Ansatzes an einigen akademischen und industriellen Fallstudien und diskutieren, wie

Causality Checking in einem industriellen Sicherheitsanalyseprozess eingebunden

werden kann.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Own Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

Nowadays software intensive embedded systems control cars, aircraft, trains, nuclear

power plants and many other systems. A failure of such a system may lead to a

catastrophic crash, the loss of life, severe injuries, great environmental, or financial

damage. Such systems are also called safety-critical systems.

Ensuring the safe and correct functionality of safety-critical systems is of

paramount importance and is governed by development standards for safety-critical

systems, such as IEC 61508 [54] applicable to electrical systems, DO-178C/ED-

12C [91] for software in airborne systems, CENELEC EN 50128 [27] for railway

systems or the ISO 26262 [55] for automotive systems.

The complexity of modern safety-critical systems is steadily increasing due to the

amount of functionality that is implemented in those systems. With the increasing

complexity of safety-critical systems, the need for methods which support engineers

to asses the safe and correct functionality of the systems becomes evident. Due

to the size and complexity of the systems traditional techniques for safety analysis

and fault localization like reviews [51], testing, manual fault tree analysis [97] or

failure mode and effect analysis [53], can only be applied to limited parts of the

system. The main reason for this limitation lies in the vast amount of time and

resources that is consumed by manually executing those techniques. In order to be

able to asses the correctness and safety of these systems in a comprehensive manner

automated or, at least, computer-aided techniques are needed.

Model checking [8, 31] is an established technique for the automated analysis of

system properties. If a model of the system and a formalized property is given to

the model checker, it automatically checks whether it can find a property violating

state. In case the property is violated, the model checker returns a counterexample,

which consists of a system execution trace leading to the property violation. While
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a counterexample helps in retracing the system execution leading to the property

violation, it does not identify causes of the property violation and represents merely

one possible execution of the system. In order to deduce all causal event combina-

tions for a property violation using model checking, one has to manually analyze

and compare all possible counterexamples generated by the model checker, which

is a time-intensive and tedious task. In addition, the number of the possible coun-

terexamples generated by the model checker is usually very large, even for small

models.

The goal of this thesis is to develop an approach that allows for the identification

of the events that are causal for the violation of a system property. We propose

a method called causality checking which aims at providing insight into why a

property was violated during model checking. Causality checking uses an adaption

of the actual cause definition by Halpern and Pearl [46] in order to algorithmically

compute the causal events for a property violation. The actual cause definition by

Halpern and Pearl [46] is based on the counterfactual reasoning argument and the

related alternative world semantics of Lewis [32, 81]. The counterfactual causality

criterion according to Lewis is as follows: event A is causal for the occurrence of

event B if and only if, were A not to happen, B would not occur. The testing of

this condition hinges upon the availability of alternative worlds. A causality can be

inferred if there is a world in which A and B occur, whereas in an alternative world

neither A nor B occurs. Halpern and Pearl extend the Lewis counterfactual model

to what they refer to as structural equation model (SEM) [46]. It encompasses the

notion of actual causes being logical combinations of events as well as a distinction of

relevant and irrelevant causes. In the SEM events are represented by variable values

and the minimal number of causal variable valuation combinations is determined.

In order to do so the counterfactual test is extended by contingencies. Contingencies

can be viewed as possible alternative worlds, where a variable value is changed. A

variable X is causal if there exists a contingency, that is a variable valuation for

other variables, that makes X counterfactual. We adapt the actual cause definition

from [46] so that it can be applied to the system models used for model checking.

The systems that we aim to analyze are concurrent systems and, consequently, the

order in which the events occur also needs to be considered as a causal factor for the

property violation. This is necessary since one execution trace might entail a race

condition and lead to a property violation while another execution trace consisting

of the same events might not violate the property. Consequently, we extend the

adapted actual cause definition in order to take the ordering of events into account

as a causal factor. We propose an algorithm that computes the events causing a

property violation, together with the order in which the events have to occur to be

causal. Furthermore, we show how this algorithm can be integrated into the state-

space exploration algorithms used for model checking. When analyzing a model

of, for instance, a railroad crossing the causal events for a crash identified by the

causality checker are, for example, a train and a car are approaching the railroad

crossing, the gate securing the railroad crossing fails to close, and both the car and

the train enter the crossing. In addition, the causality checker will, for instance,
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show that it is not causal whether the train or the car is approaching the crossing

first.

While causality checking gives an answer to the question “which events, in what

order, cause a property violation?” it does not give any information on the frequency

or likelihood of the events causing the property violation. For software systems we

can assume that a software once it was verified will not deteriorate. This assumption

no longer holds for software in an embedded system, since the hardware in which

the software is embedded might deteriorate and exhibit certain failure behavior that

impacts the software, such as for example bit flips in the memory that is used by

the software. In industry negative exponentially distributed rates, also called failure

rates, are used to estimate the occurrence probability of such hardware failures in

a given time frame [95, 96]. In previous work [2] it was shown that probabilistic

model checking [8] can be used to compute the probability of a property violation

and probabilistic counterexamples [5, 47] can be used for the debugging of the

system. In the case of probabilistic model checking the debugging of the system

becomes even more difficult. While in qualitative model checking a single trace

often provides valuable information for the debugging of the system, a single trace

is most often not sufficient to form a probabilistic counterexample. Due to the

fact that the violation of a probabilistic property with a probability-bound can

hardly ever be traced back to a single error trace. In almost all cases a set of

error traces is needed to provide an accumulated probability mass that violates

the probability-bound of the specified probabilistic property. With an increasing

number of error traces that are needed to form the probabilistic counterexample,

an increasing number of different error traces need to be manually retraced and

interpreted in order to gain insight into why the property was violated. We extend

our causality checking approach to be applicable to probabilistic system models.

The proposed probabilistic causality checking approach enables us to compute the

probabilities of certain combinations of events that cause a property violation.

Two major concerns that have to be considered when developing a method for

the analysis of systems are on one hand, how the analysis models needed for the anal-

ysis can be generated in a straightforward way and how the results of the analysis

can be represented in a concise and easy to understand form. Thus we integrate our

causality checking method into the QuantUM framework [72], a method that allows

for the generation of the analysis models from higher-level architectural description

languages such as the unified modeling language (UML) [86] or the systems mod-

eling language (SysML) [52]. For the result representation we propose a temporal

logic called event order logic which allows for a concise and formal representation

of the causal events and the causal orderings. Furthermore, we show how formu-

las in event order logic, that have been computed by the causality checker, can be

represented by fault trees [97], a method used in industry to reason about causal

relationships between property violations and events. The mapping to fault trees

facilitates the interpretation of the causality checking results and is a representation

that is already known and used in industry.



4 Chapter 1. Introduction

1.2 Contributions

The contributions of this thesis can be summarized as follows:

• The event order logic, proposed in this thesis, is a temporal logic that allows

to formally capture the occurrence and order of events and is used to represent

the results of the causality checking method.

• We show how causal relationships can be inferred in system models based on

an adapted version of the actual cause definition by Halpern and Pearl and

how the order of the events can be taken into account as a causal factor.

• We propose a causality checking algorithm and show how it can be integrated

into the state-space exploration algorithms used in qualitative model checking.

• Furthermore, we extend the causality checking method in order to be appli-

cable to probabilistic system models.

• A pure probabilistic causality checking method, as will become clear in this

thesis, entails a high performance penalty for the necessary probabilistic coun-

terexample computation. We will show how this bottleneck can be mitigated

by a combination of qualitative and probabilistic causality checking.

• We will demonstrate the applicability and usefulness of causality checking on

several case studies from industry and academia and discuss how causality

checking can be pushed beyond the limits of scalability.

• In order to make the results of causality checking easy to interpret for engi-

neers, we propose a mapping of event order logic formulas to fault trees, a

method used in industry to reason about the relationships between a property

violation and the corresponding causal events.

• In addition, we discuss how causality checking can be used in an industrial

setting, and how it can be integrated into the QuantUM method, a framework

for the automated safety analysis of system and software architectures.

1.3 Outline

Chapter 2 presents the state of the art and related work.

Chapter 3 contains a brief introduction into the foundations on which causality

checking is build upon.

Chapter 4 proposes the event order logic and discusses the relationship of event

order logic with linear temporal logic and ω-automata.

Chapter 5 discusses how causal relationships can be inferred in formal system

models.
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Chapter 6 presents a causality checking algorithm that is integrated into the state-

space exploration algorithms used for qualitative model checking.

Chapter 7 shows how causality checking can be applied to probabilistic system

models.

Chapter 8 proposes a combination of qualitative and probabilistic causality check-

ing which reduces the memory and runtime that is needed in order to perform

probabilistic causality checking.

Chapter 9 discusses how causality checking behaves at the limits of scalability and

proposes strategies to increase the scalability for practical application scenarios.

Chapter 10 shows how the event order logic formulas returned by the causality

checker can be mapped to fault trees.

Chapter 11 discusses how causality checking can be used in an industrial setting

and shows how causality checking can be integrated into the QuantUM method.

Chapter 12 concludes the thesis and suggests future work.

1.4 Own Publications

Parts of this thesis have been previously published in [13, 14, 16, 61, 62, 73, 74, 75,

76, 77, 78, 79, 80]. All of the aforementioned publications were co-authored and

supervised by Stefan Leue. Our first results about probabilistic causality analysis

were published in [61] and an extended version in [62]. In these papers we discuss

how causal relationships can be inferred from a set of good- and bad-execution

traces and present a first version of the event order logic. Matthias Kuntz provided

initial ideas for the probabilistic analysis part of [61, 62]. Furthermore, we show how

event order logic formulas can be mapped to fault trees. A refined version of the

probabilistic causality checking algorithm was published in [78]. The work published

in [61, 62, 78] is included in Chapter 4, Chapter 5, Chapter 7, and Chapter 10. The

qualitative causality checking approach described in Chapter 6 was first proposed

in [75] further refined in [74] and finally published in [76]. The combination of the

qualitative causality checking approach presented in Chapter 8 was published in [77]

and an extended version in [79]. In [16], which results from joint work with Adrian

Beer, the syntax and semantics of the event order logic is refined and the relationship

of event order logic and linear temporal logic is discussed, Adrian Beer contributed

some initial ideas on the event order logic to linear temporal logic translation.

Chapter 4 includes the work from [16]. In [13, 14] causality checking was applied to

the industrial case study of an airport surveillance radar, we use this jointly authored

case study by Beer et al. for experimental evaluation in Chapter 6, Chapter 7,

Chapter 8, and Chapter 9. The software tool SpinCause which implements the

algorithms proposed in this thesis was described in [80] and can be downloaded
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from the URL http://se.uni-konstanz.de/research1/tools/spincause/. The

contents of Chapter 9 have not been previously published. Chapter 10 contains

unpublished work on the refinement of causality relationships, the relationship to

minimal cut set analysis and a graphical representation of event order logic formula.

Parts of the discussion in Chapter 11, on how causality checking and the QuantUM

approach can be used within the context of the ISO 26262, have previously been

published in [73].

http://se.uni-konstanz.de/research1/tools/spincause/
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2.1 Causality Reasoning in System Models

There are two important use cases for formal verification techniques, like model

checking [31]. The first one is the verification of the correctness of the system,

where the goal is to prove that there are no errors in the system. The second

one is the debugging of the system. While in the first case it is sufficient, if the

formal verification tool reports whether a formalized property is satisfied or not,

additional information is needed in order to debug the system. For the debugging

of the system it is necessary to have an intuition of why the system is violating

the property. While it is sufficient to detect one error at a time when debugging a

system, this is not sufficient if the goal is to present evidence that can be used to

compile a safety case for a safety-critical system. A safety case [54] is a structured

argument that demonstrates that the a system is acceptably safe. In order to do so

all possible combination of events that can lead to a property violation have to be

known and it has to be shown that these events are either controlled with some fault

tolerance or safety mechanism or that their occurrence probability is low enough to

be acceptable.

Traditionally when a property is violated, the formal verification tool will return

error traces or counterexamples. By manually retracing the different steps of the

counterexamples one can derive an intuition on why the property was violated in a

particular case. Usually such a manual debugging process using counterexamples is

an iterative and time consuming task. There are several possible approaches known

in the literature that can be used to automatically explain a property violation.

One possibility is to perform a static analysis of the system, like it is done by Ball

et al. in [9]. Ball et al. propose a method that uses static analysis to localize errors

in counterexamples and that can be applied to error traces of C programs. Another
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possibility is to combine systematic debugging techniques and data mining as was

done by Zeller in [104]. Third it is possible to use a dynamic analysis technique, such

as model checking, and to compare the counterexamples generated by the model

checker in order to derive an explanation for the property violation as it was done,

among others, by Beer et al. in [17, 18] and Groce et al. in [45].

All of the aforementioned approaches have in common that they either implic-

itly or explicitly use some sort of causality reasoning in order to explain the cause

for the property violation. The are several notions of causality that are used in

the literature on error localization and debugging. Examples include the notion of

precedence established by Lamport clocks [70], which while it captures a partial

order of the observed events there is no evidence whether this partial order has

an impact on causality or not. Petri nets [89] and event structures [102] are used

in [85] to establish causality in system models. Another very commonly used notion

of causality used in the analysis of system models is the counterfactual reasoning

argument and the related alternative world semantics of Lewis [32, 81]. The naive

interpretation of the Lewis counterfactual test, however, leads to a number of in-

adequate or even fallacious inferences of causes, in particular if causes are given

by logical conditions on the combinations of multiple events. The problematic is-

sues include common or hidden causes, the disjunction and conjunction of causal

events, the non-occurrence of events, and the preemption of failure causes due to,

e.g., repair mechanisms. A comprehensive discussion of these issues can be found in

Section 5.1 and in the critical literature on counterfactual reasoning, e.g., [32]. The

actual cause definition by Halpern and Pearl [46] is based on the counterfactual

reasoning argument of Lewis and encompasses the notion of causes being logical

combinations of events as well as a distinction of relevant and irrelevant causes and

thus solves the shortcomings of the counterfactual reasoning argument. A short-

coming of the actual cause definition by Halpern and Pearl is that it does not take

the order in which the events occur into account as a causal factor and, hence, is

not directly applicable to concurrent systems.

In [44] a formal framework for reasoning about global contract violations is

presented. In order to derive causality the notion of precedence established by

Lamport clocks [70] is used. The proposed algorithm decides whether a prefix of

a local trace is the cause for a global property violation or not, thus focusing on

individual traces instead of a set of traces. The main objective of the causality

definitions in [44] is to assign blame for a contract violation which entails that no

alternative sequence is allowed to violate the contract or else it is not possible to

assign the blame to one of the sequences. The approach from [44] is extended in [100]

in order to support causality analysis of component-based real-time systems.

The approaches proposed in [45, 60, 104] are based on the counterfactual rea-

soning argument by Lewis. Due to the shortcomings of the naive counterfactual rea-

soning the approaches in [45, 60, 104] do not support complex logical relationships

as causes. Furthermore, Zeller’s approach [104] is mainly applicable to sequential

software programs, and is not directly applicable to concurrent software and hard-

ware systems. Work by Groce et al. published in [45] establishes causality based on
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counterfactual reasoning by computing distance metrics between execution traces.

The delta between the counterexample and the most similar good execution is iden-

tified as causal for the bad behavior. The main difference between the approach

by Groce et al. and our approach is that Groce et al. aim at explaining causal

relationships in a single counterexample whereas we aim at identifying all possible

causal combinations of events that can lead to a property violation. Similarly to

[45] in [60] an approach is proposed where the delta of a good and a bad execution

trace is used to localize errors in the behavior model of a system.

Work documented in [17, 18] uses the Halpern and Pearl approach to explain

counterexamples in computational tree logic model checking by determining causal-

ity. However, this approach considers only single counterexamples. Furthermore, it

focuses on the causality of variable value-changes for the violation of computational

tree logic sub-formulas. Consider the example of a railroad crossing where the com-

putational tree logic formula representing the hazardous state where both the train

and the car are on the crossing at the same time, consists of the two boolean vari-

ables train on crossing and car on crossing. Obviously, both variables changing to

true is causal for a crash. The approach proposed in [17] will indicate the variable

value-change of train on crossing and car on crossing from false to true as being

causal. However, this obvious answer does not give any insight on why the train

and the car are on the crossing at the same time. A notion for causality very similar

to the actual cause definition by Halpern and Pearl is proposed in [21] for the ex-

planation of data-flow based counterexamples of SCADE models [41]. Chockler et

al. define in [29] a coverage measure for model checking based on the actual cause

definition by Halpern and Pearl, which allows to assign a component of a system a

quantitative measure of its relevance to the satisfaction of a property.

For all the above mentioned approaches it is necessary to compute the counterex-

amples prior to the causality analysis, which is then performed as a post-processing

step. To the best of our knowledge we are not aware of any other causality checking

algorithm that can be integrated with explicit state-space exploration algorithms

and which works on-the-fly.

The approaches described in [24, 25, 42, 88] do not aim at identify the causal

events for a property violation, but instead verify whether some manually specified

events are causal for a property violation. These approaches require that the user

has some intuition on which events could potentially be causal and, consequently,

the completeness of the results depends on the complete identification of potential

causal events by the user. The symbolic approach for fault tree generation presented

in [24, 25] checks whether some events given as an input are causal for a property

violation. The deductive cause-consequence analysis presented in [88] can be used

to deduce the cause-consequence relationship between a predefined set of potentially

causal events and a property violation. A combination of traditional manual safety

analysis methods and causal reasoning is presented in [42].

The work in [12] is based on the causality checking approach proposed in this

thesis and extends the causality checking algorithm in a way that it can be integrated

into a bounded model checker based on Boolean satisfiability (SAT) solving. Since
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the approach in [12] is based on bounded model checking [20] the results are only

complete and sound with respect to the predefined bound k.

2.2 Probabilistic Causality Reasoning

As already discussed, the debugging of the probabilistic system models used in

probabilistic model checking becomes even more difficult, since in almost all cases

a set of error traces is needed to form a probabilistic counterexample [5, 47].

Work in [47] documents how probabilistic counterexamples for discrete-time

Markov chains can be represented by regular expressions. While the regular ex-

pressions define an equivalence class for some traces in the counterexample, there is

the possibility that not all possible traces are represented by the regular expression

and, consequently, not all causal event combinations are captured by the regular

expression.

In [5, 101] probabilistic counterexamples are represented by identifying a portion

of an analyzed Markov chain in which the probability to reach a safety-critical state

exceeds the probability bound specified by an upper-bounded reachability property.

The method proposed in this thesis improves these approaches by identifying not

only a portion of the Markov chain, but all causal event combinations and their

corresponding order. Aljazzar et al. propose in [4] an interactive visualization of

probabilistic counterexamples that while it facilitates the analysis of probabilistic

counterexamples, still requires a manual inspection of a large number of error traces.

The approach of [22] computes minimal-cut sets, which are minimal combina-

tions of events that are causal for a property violation, and their corresponding

probabilities. Our approach extends and improves this approach by considering the

event order as a causal factor.

In addition none of the approaches in [4, 5, 22, 47, 101] is able to reveal that

the non-occurrence of an event is causal.

In [23], a formalization of the semantics of dynamic fault trees [37] and a prob-

abilistic analysis framework for dynamic fault trees based on interactive Markov

chains [48] is presented. The approach in [23] takes the dynamic fault tree as an

input. As a consequence, while this approach allows for a probabilistic analysis of

the events in the dynamic fault tree, no causality computation is performed and the

user has to specify the causal event combinations in the form of a dynamic fault

tree. Furthermore, there is no possibility to combine the analysis with a model

containing the events of the dynamic fault tree.

In [34, 35] the approach from [17, 18] (cf. Section 2.1) is applied to discrete-time

Markov chains and continuous-time Markov chains. The approach focuses on single

counterexamples and the causality of variable value-changes for the violation of sub-

formulas of the property, and suffers from the same shortcomings as the approach

from [17, 18].
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2.3 Conclusion

While there is ample research on using various notions of causality to aid in debug-

ging and explaining single counterexamples, there does not exist an approach that

identifies all causal combinations of events for a property violation and takes the

causality of the event ordering for the property violation as well as the causality of

the non-occurrence of events into account. In the debugging of a single error trace

obtained from a sequential model this restriction might not restrain the analysis,

since often the property violation can be traced back to one single causal event.

In concurrent safety-critical systems consisting of both hardware and software it is

usually the case that a property violation can not be caused by a single event, but

instead requires multiple events to occur, sometimes even in a specific order. As a

consequence, there is a need for a formal causality reasoning approach that allows

for the analysis of concurrent safety-critical systems.

The objective of this thesis is to address this issue and to develop a novel ap-

proach for causality reasoning in concurrent system models that allows for the

identification of all causal event combinations for a property violation. It shall be

possible to consider complex event combinations consisting of disjunctions or con-

junctions of event combinations or of single events as causes. Furthermore, the

causality of the event orderings for a property violation shall be taken into account

and it shall be detected if the non-occurrence of an event is causal for the prop-

erty violation. The proposed method shall be applicable to both qualitative model

checking and probabilistic model checking.
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3.1 Introduction

In this chapter we briefly introduce into the foundations on which causality check-

ing is build upon. We first present in Section 3.2 the running example of a railroad

crossing that we use throughout the thesis to illustrate the proposed concepts. In

Section 3.3 we briefly introduce the formal system model used for quantitative model

checking and the logic used to formalize the requirements that shall be analyzed

with the model checker. Furthermore, we introduce the Promela language which

is the input language of the model checker that we use in this thesis. Probabilis-

tic model checking and its underlying system model, as well as the logic used for

the specification of probabilistic requirements and the notion of probabilistic coun-

terexamples, are introduced in Section 3.4. In Section 3.4 we also introduce the

input language of the probabilistic model checker that we use in this thesis. Fault

trees which we will use in Chapter 10 to visualize the causality checking results

are introduced in Section 3.5. In Chapter 4 we define a translation from event

order logic formula to alternating automata. Alternating automata are introduced

in Section 3.6. Finally, in Section 3.7 we introduce the QuantUM approach for

model-based safety analysis. In Chapter 11 we discuss the integration of causality

checking into the QuantUM approach.

3.2 Running Example: Railroad Crossing

We will demonstrate the definitions presented in this thesis on a running example

of a railroad crossing system. In the running example a train can approach the
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crossing, cross the crossing and finally leave the crossing. Whenever a train is

approaching, the gate should close and will open when the train has left the crossing.

It might also be the case that the gate fails. The car approaches the crossing and

crosses the crossing if the gate is open and finally leaves the crossing. We are

interested in finding those events that lead to a hazard state in which both the car

and the train are in the crossing. In the following we will use the event identifiers

defined in Table 3.1 to identify the events.

Identifier Event

Ta Train is approaching

Tc Train is on the crossing

Tl Train left the crossing

Gc Gate is closed

Go Gate is open

Gf Gate failed

Ca Car is approaching

Cc Car is on the crossing

Cl Car left the crossing

Table 3.1: Event identifiers of the railroad example.

3.3 Model Checking

Model checking [31] is an established technique for the verification of system mod-

els. For a formal model of the system and a formalized property the model checker

automatically checks whether the model satisfies the property. In case the prop-

erty is not satisfied, a trace from the initial system state into a state violating the

property is produced by the model checker. This error trace is called a counterex-

ample. Counterexamples can be used to retrace the steps of the system that lead

to a particular property violating state.

The system models we use in this thesis for the model checking are transition

systems which are introduced in Section 3.3.1. For the formalization of the require-

ments we use the linear temporal logic which is introduced in Section 3.3.2.

In this thesis we use the SpinJa [33] model checker, a Java re-implementation of

the explicit state model checker Spin [50]. We use SpinJa instead of Spin, because

SpinJa is written in an object-oriented programming language and its interfaces are

cleanly engineered and thus it can be more easily to extend The input language of

Spin which is also used by SpinJa is called Promela [50] which we briefly introduce

in Section 3.3.3.

3.3.1 Transition System

The systems that we apply causality checking to are concurrent systems. For the

formalization of the system model we follow the formalization of a model for concur-

rent computing systems proposed in [8]. The system model is given by a Transition
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System which is defined as follows:

Definition 1. Transition System. A transition system TS is a tuple (S,Act, →,
I,AP, L) where S is a finite set of states, Act is a finite set of actions, → ⊆
S ×Act × S is a transition relation, I ⊆ S is a set of initial states, AP is a set of

atomic propositions, and L ∶ S → 2AP is a labeling function.

A Transition System defines a Kripke structure. Each state s ∈ S is labeled

with the set L(s) of all atomic state propositions that are true in this state. The

set Act contains all actions that can trigger the system to transit from some state

into a successor state. The execution semantics of a transition system is defined as

follows:

Definition 2. Execution Trace of a Transition System. Let T = (S,Act,→,
I,AP, L) be a transition system. A finite execution σ of T is an alternating se-

quence of states s ∈ S and actions α ∈ Act ending with a state. σ = s0 α1 s1 α2 ...

αn sn s.t. si
αi+1ÐÐ→ si+1 for all 0 ≤ i < n.

In the following we will use short-hand notation σ = “aα1 ,aα2 , ... , aαn” for an

execution trace σ = s0 α1 s1 α2 ... αn sn. The trace σ = “Ta, Ca, Gf, Cc, Tc”, for

instance, is a trace of the railroad example from Sec. 3.2 where the train and the car

are approaching the crossing (Ta, Ca), the gate fails to close (Gf), the car crosses

the crossing (Cc) and finally the train crosses the crossing (Tc).

3.3.2 Linear Temporal Logic

Causality checking aims at identifying the causal events for the violation of func-

tional safety requirements. Such a violation is also referred to as a hazard. We use

linear time temporal logic (LTL) using the syntax and semantics as defined in [82]

in order to specify hazards.

We use T ⊧l ϕ to express that the LTL formula ϕ holds for the transition system

T and σ ⊧l ϕ respectively for execution traces.

Definition 3. Syntax of LTL. Formulas in LTL over the set AP of atomic propo-

sition are formed according to the following grammar given in BNF:

ϕ ∶∶= true ∣ a ∣ ϕ1 ∧ ϕ2 ∣ ¬ϕ ∣◯ ϕ ∣ ϕ1 U ϕ2

where a ∈ AP . Additionally the following operators are defined as syntactic sugaring

of those above:

◇ϕ = true U ϕ and ◻ ϕ = ¬◇ ¬ϕ

Definition 4. Semantics of LTL over Executions and States. Let T = (S,Act,
→, I,AP, L) be a transition system, let ϕ an LTL formula over AP and σ a finite

execution of T and σ[j...] the suffix of σ starting at sj. Then the semantic is defined

by induction on the structure of ϕ

• σ ⊧l true
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• σ /⊧l false

• σ ⊧l p iff p ∈ L(s0)

• σ ⊧l ¬ϕ iff σ /⊧l ϕ

• σ ⊧l ϕ1 ∧ ϕ2 iff σ ⊧l ϕ1 and σ ⊧l ϕ2

• σ ⊧l ϕ1 ∨ ϕ2 iff σ ⊧l ϕ1 or σ ⊧l ϕ2

• σ ⊧l ◯ ϕ iff σ[1...] ⊧l ϕ

• σ ⊧l ϕ1U ϕ2 iff ∃k ≥ 0 . σ[k...] ⊧l ϕ2 and ∀0 ≤ j < k . σ[j...] ⊧l ϕ1

and for the derived operators ◇ and ◻.

• σ ⊧l ◇ϕ iff ∃j ∶ j ≥ 0 . σ[j..] ⊧l ϕ

• σ ⊧l ◻ϕ iff ∀j ∶ j ≥ 0 . σ[j..] ⊧l ϕ

Hazards imply the reachability of unsafe states and they hence belong to the

class of reachability properties. An unsafe state is reachable if a finite path sat-

isfying the LTL property ◇unsafe exists. For a system to be safe we require the

non-reachability of unsafe states, which is expressed by the LTL formula ◻¬unsafe.

A counterexample for a non-reachability property is a finite execution trace frag-

ment from the initial state to the unsafe state. Hence we only need to consider

finite execution fragments [8]. Non-reachability properties fall within the class of

safety properties in the commonly used classification scheme of safety and liveness

properties [69].

The non-reachability of the hazard in our railroad example can be characterized

by the LTL formula ϕ = ◻¬(car crossing ∧ train crossing).
We can partition the set of all possible execution traces Σ of a transition system

T into the set of “good” execution traces, denoted ΣG, where the LTL formula

characterizing the non-reachability of the hazard is not violated and the set of

“bad” execution traces, denoted ΣB, where the LTL formula characterizing the

non-reachability of the hazard is violated. The elements of ΣB are also referred

to as counterexamples in model checking. The trace σ = “Ta, Ca, Gf, Cc, Tc” we

already discussed above is a “bad” execution trace, since both the car and the train

are on the crossing at the same time and thus the LTL property is violated. An

example for a “good” trace is σ′ =“Ta, Ca, Gf, Cc, Cl, Tc” where the car leaves the

crossing (Cl) before the train is crossing (Tc) and, consequently, the train and the

car are not on the crossing at the same time and the LTL formula is not violated.

Definition 5. Good and Bad Execution Traces. Let T = (S,Act, →, I,AP, L) be a

transition system, let ϕ an LTL formula over AP and Σ that set of all possible finite

executions of T. The set Σ is divided into into the set of “good” execution traces ΣG

and in the set of “bad” execution traces ΣB as follows: ΣG = {σ ∈ Σ ∣ σ ⊧l ϕ},

ΣB = {σ ∈ Σ ∣ σ /⊧l ϕ} and ΣG ∪ΣB = Σ and ΣG ∩ΣB = ∅.
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3.3.3 The Promela Language

We briefly introduce the Promela language used as an input language for the Spin

and SpinJa model checkers. For an in-depth introduction to Promela we refer

to [50]. The Promela language is a C-like language that supports asynchronous

communication as well as synchronous communication via rendezvous channels and

synchronization via shared variables. A Promela model is composed of concurrent

processes modeled by proctypes. If a process is marked as being an active proctype

it is automatically started when the model is executed. In Figure 3.1 an example

of a Promela proctype is given. The proctype comprises one boolean variable with

the name var1 which is initially false and one integer variable named var2 which

is initially 0. The do-loop is executed as long as the Promela model is executed.

If the guard (var2 < 4) evaluates to true, var2 will be incremented by 1. If the

guard (var2 = 2) evaluates to true, var1 will be set to true. In case two guards in a

do-loop evaluate to true at the same time a non-deterministic choice will be made.

The atomic command ensures that all commands enclosed by the atomic block are

executed atomically which means that they are executed at the same time as if they

were a single statement.

1 active proctype procA()

2 {

3 bool var1 = false;

4 int var2 = 0;

5

6 do

7 :: atomic {(var2 < 4) -> var2 = var2 + 1};

8 :: atomic {(var2 = 4) -> var1 = true};

9 od;

10 }

Listing 3.1: Example Promela code.

3.4 Probabilistic Model Checking

Probabilistic model checking [64] is an established automated analysis technique

used amongst others in the analysis of safety-critical systems.

Probabilistic model checking requires two inputs:

• a description of the system to be analyzed, typically given in some model

checker specific modeling language and

• a formal specification of quantitative properties of the system, relating for

example to its performance or reliability that are to be analyzed.

From the first of these inputs, a probabilistic model checker constructs the corre-

sponding probabilistic model. The probabilistic system models which we use in
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this thesis are labeled continuous-time Markov chains which are introduced in Sec-

tion 3.4.1. For the formalization of the requirements we use the continuous stochas-

tic logic which is introduced in Section 3.4.2. The probabilistic model checker

constructs the state space of the model in an exhaustive fashion, based on a sys-

tematic exploration of all possible states that can occur. In contrast to, for instance

discrete-event simulation techniques [94] or statistical model checking[103], which

generate approximate results by averaging results from a large number of random

samples, probabilistic model checking applies numerical computation to yield exact

results. The notion of probabilistic counterexamples that we use in this thesis is

introduced in Section 3.4.3.

We use the probabilistic model checker PRISM [65], which is an open-source

tool developed at the University of Oxford. The input language of PRISM, which

is also called PRISM, is introduced in Section 3.4.4.

3.4.1 Labeled Continuous-time Markov Chain

The probabilistic system model used in probabilistic model checking is a proba-

bilistic variant of a state-transition system, where each state represents a possible

configuration of the system being modeled and each transition represents a possible

evolution of the system from one configuration to another over time. The transi-

tions are labeled with quantitative information specifying the probability and/or

timing of the transition’s occurrence. In the case of continuous-time Markov chain

(CTMC) [59], which we use in this thesis, transitions are assigned positive, real

values that are interpreted as the rates of negative exponential distributions.

Definition 6. Labeled Continuous-time Markov Chain (CTMC). A labeled

continuous-time Markov Chain C is a tuple (S, s0,R,L), where S is a finite set

of states, s0 ∈ S is the initial state, R ∶ S × S → R≥0 is a transition rate matrix and

L ∶ S → 2AP is a labeling function, which assigns to each state a subset of the set of

atomic propositions AP.

Since the notion of counterexample that we introduce in Section 3.4.3 is de-

fined for discrete-time Markov chains (DTMC), we introduce the uniformization

method [7] that is used to turn a CTMC into a DTMC. The uniformization method

turns a given CTMC C = (S, s0,R,L) into a discrete-time Markov chain (DTMC)

DC = (S, s0,P,L), called the uniformized DTMC, where S is a finite set of states,

s0 ∈ S is the initial state, P ∶ S × S → [0,1] is a probability matrix and L ∶ S → 2AP

is a labeling function, which assigns to each state a subset of the set of atomic

propositions AP. The uniformized DTMC is embedded into a Poisson process. The

probability matrix P of the uniformized DTMC q is obtained by normalizing all

rates in C with respect to the uniformization rate q, which is a real number such

that q ≥ max{ Λ(s) ∣ s ∈ S }, where Λ(s) refers to the total exit rate of s, i.e.

Λ(s) = ∑
s′∈S

R(s, s′). This means, the transition probability P(s, s′) = R(s, s′)
q is as-

signed for each transition (s, s′). Each hop in the uniformized DTMC corresponds
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to a time delay, which is exponentially distributed with a rate q. For each state s

with Λ(s) < q, a self loop with the transition probability P(s, s) = q−Λ(s)
q is added.

3.4.2 Continuous Stochastic Logic

The quantitative properties of the system that are to be analyzed are specified using

a variant of temporal logic. The temporal logic used for specifying properties over

CTMCs is the Continuous Stochastic Logic (CSL) [1, 7]. This section provides a

short introduction into CSL for a more comprehensive description we refer to [7].

CSL is a stochastic variant of the Computation Tree Logic (CTL) [30] with state

and path formulas based on the work of Aziz et al. [6]. The state formulas are

interpreted over states of a CTMC, whereas the path formulas are interpreted over

paths in a CTMC. CSL extends CTL with two probabilistic operators that refer to

the steady state and transient behavior of the model. The steady-state operator

refers to the probability of residing in a particular set of states, specified by a state

formula, in the long run. The transient operator allows us to refer to the probability

of the occurrence of particular paths in the CTMC. In order to express the time

span of a certain path, the path operators until (U) and next (X) are extended

with a parameter that specifies a time interval.

We use the standard syntax and semantics of CSL as defined in [7].

Definition 7. Syntax of CSL. The syntax of a CSL formula is defined as follows:

φ ∶= true ∣ false ∣ a ∣ ¬ φ ∣ φ ∨ φ ∣ φ ∧ φ ∣ P&p(ϕ),

where & is one of the operators <, ≤, > or ≥, p ∈ [0, 1] and ϕ is a path formula the

syntax of which is defined as:

ϕ ∶= φ U φ ∣ φ U≤tφ,

where t ∈ R≥0 is a non-negative real number.

If a path σ of a CTMC C fulfills the CSL formula ϕ we denote this by σ ⊧CSL ϕ.

Since we want to compute the probability for a specific hazard to occur, the

CSL property characterizes the reachability of the hazard. This is in contrast to

the qualitative model checking where we use an LTL property characterizing the

non-reachability of the hazard.

3.4.3 Probabilistic Counterexamples

Given an appropriate system model and a CSL property, probabilistic model check-

ing tools such as PRISM can verify automatically whether the model satisfies the

property. Probabilistic model checkers do not automatically provide counterex-

amples, but the computation of counterexamples has recently been addressed in,

amongst others, [5, 47].

For the purpose of this thesis it suffices to consider only upper bounded proba-

bilistic timed reachability properties. They require that the probability of reaching
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a certain state, often corresponding to an undesired system state, does not exceed

a certain upper probability bound p. In CSL such properties can be expressed by

formulas of the form P≤p(ϕ), where ϕ is a path formula specifying undesired behav-

ior of the system. A counterexample for an upper bounded property is a set ΣC of

paths leading from the initial state to a state satisfying ϕ such that the accumulated

probability of ΣC violates the probability constraint ≤ p.
The probability of paths originating at the initial state of a Markov chain M is

measurable by the probability measure PrM . In [8] is is shown that the underlying

σ-algebra is formed by the cylinder sets which are induced by finite paths in M
starting at s0. The cylinder set spanned by the finite path fragments inM is defined

as follows.

Definition 8. Cylinder Set. Each finite path s0, . . . , sn induces a cylinder set

cyl(s0, . . . , sn) = {σ ∈ PathsM(s0) ∣ σ(n) = s0, . . . , sn}.

The probability of this cylinder set is defined in [8] as follows.

Definition 9. Probability of a Cylinder Set.

PrM(Cyl(s0...sn)) = P (s0...sn)

where

P (s0...sn) = ∏
0≤i<n

P (si, si+1)

and for path fragments of length zero let P (s0) = 1.

The probability measure PrM(X) for a set X of diagnostic paths is defined as

Definition 10. PrM(X) for a set X of diagnostic paths.

PrM(X) = ∑
σ∈X

P(σ)

A probabilistic counterexample is defined in [5] as follows.

Definition 11. Probabilistic Counterexample. Let M be a Markov chain which

violates the upper-bounded formula P◁p(ϕ), where ◁ is either < or ≤. A proba-

bilistic counterexample of P◁p(ϕ) is a subset of diagnostic paths, i.e. X ⊆ { σ ∈
PathsM(ŝ) ∣ σ ⊧CSL ϕ }, which is measurable and for which PrM(X)◁ p does not

hold.

If the CSL formula P=? (ϕ) is used, the probability of the path formula ϕ to hold

is computed and the counterexample contains all paths fulfilling ϕ. The probability

of the counterexample is computed using a probabilistic model checker, in our case

PRISM. Notice that in the setting of this thesis the counterexample is computed

completely, i.e., all paths leading into the undesired system state are enumerated

in the counterexample.
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3.4.4 The PRISM Language

We present an overview of the input language of the probabilistic model checker

PRISM [65], for a precise definition of the semantics refer to [49]. In Section 8.2

we present a mapping from probabilistic PRISM models to qualitative Promela

models. A PRISM model is composed of a number of modules which can interact

with each other. A module contains a number of local variables. The values of these

variables at any given time constitute the state of the module. The global state of

the entire model is determined by the local state of all modules. The behavior

of each module is described by a set of commands. A command takes the form:

“[action label] guard → rate1 ∶ update1&...& updaten;”. The guard is a predicate

over all variables in the model. The update commands describe a transition which

the module can make if the guard is true. A transition is specified by giving the

new values of the variables in the module, possibly as a function of other variables.

A rate is assigned to each transition. The action label is used for synchronizing

transitions of different modules. If two transitions are synchronized they can only

be executed if the guards of both transitions evaluate to true. The rate of the

resulting synchronized transition is the product of the two individual transitions.

An example of a PRISM model is given in Listing 3.2. The module named moduleA

contains two variables: var1, which is of type Boolean and is initially false, and var2,

which is a numeric variable and has initially the value 0. If the guard (var2 < 4)
evaluates to true, the update (var2′ = var2 + 1) is executed with a rate of 0.8. If

the guard (var2 = 2) evaluates to true, the update (var1′ = true) is executed with a

rate of 1.0.

1 module moduleA

2 var1: bool init false;

3 var2: [0..11] init 0;

4 [Count] (var2 < 4) -> 0.8: ( var2 ’= var2 + 1);

5 [End] (var2 = 4) -> 1.0: ( var1 ’= true);

6 endmodule

7 module moduleB

8 var3: [0..2] init 0;

9 [Count] (var3 < 2) -> 1.0: ( var3 ’= var3 + 1);

10 [Count] (var3 = 2) -> 1.0: ( var3 ’= 0);

11 endmodule

Listing 3.2: Example code in the PRISM language.

The transitions with the action label Count of the modules moduleA and mod-

uleB are synchronized. If the guard of the transition of moduleA labeled with Count

evaluates to true and one of the guards of the transitions of moduleB labeled with

Count evaluates to true, then the transition of moduleA will be executed simulta-

neously with the transition of moduleB for which the guard evaluates to true. If the

guard of the transition of moduleA labeled with Count evaluates to true and both

of the guards of the transitions of moduleB evaluate to true, one of the transitions
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of moduleB will be selected by a stochastic race and executed simultaneously with

the transition of moduleA. If only the guard of the transition in moduleA labeled

with Count evaluates to true, or only the guards of one or both of the transition in

moduleB labeled with Count evaluate to true no transition will be executed.

3.5 Fault Trees

Fault trees (FTs) [97] are being used extensively in industrial practice, in particular

in fault prediction and analysis, to illustrate graphically under which conditions

systems can fail, or have failed. We use fault trees in Chapter 10 in order to provide

a graphical representation of the causality checking results.

In the context of this thesis, we need the following elements of fault trees:

1. Basic event: represents an atomic event. In the context of this work an atomic

event is the transition from one state in the transition system to another state.

2. AND-gate: represents a failure, if all of its input elements fail.

3. OR-gate: represents a failure, if at least one of its input elements fails.

4. Priority-AND (PAND): represents a failure, if all of its input elements fail in

the specified order. The required input failure order is usually read from left

to right or specified by an order constraint connected to the PAND-gate.

5. Intermediate Event: failure events that are caused by their child nodes. The

probability of the intermediate event to occur is denoted by the number in the

lower right corner. A top level event (TLE) is a special case of an intermediate

event, representing the system hazard.

The graphical representation of these elements can be found in Fig. 3.1. The AND,

OR and PAND gates are used to express that their top events are caused by their

input events.

Figure 3.1: Fault Tree Elements.

Figure 3.2 shows an example fault tree of the railroad crossing example intro-

duced in Section 3.2. The top level event represents the cases where both the car

and the train are on the crossing. There are two possibilities for the TLE to happen,

which are represented by the two branches of the fault tree that are connected with

the TLE by an OR-gate. The events of each of the two branches are connected by

an AND-gate, which means that all of the events have to occur in order for the



3.6. Alternating Automata 23

TLE to occur. Note that no information on the order of the events is given in the

example.

1. If both a train (Ta) and a car (Ca) are approaching and the gate fails this

results in a hazardous situation if the car is on the crossing (Cc) and does not

leave the crossing (Cl) and the train (Tc) enters the crossing.

2. If both a train (Ta) and a car (Ca) are approaching and the gate closes (Gc)

when the car (Cc) is already on the railroad crossing and is not able to leave

(Cl) and the train is crossing (Tc), this also corresponds to a hazardous situ-

ation.

For an in-depth discussion of fault trees we refer the reader to [97].

Figure 3.2: Example fault tree of the railroad crossing example.

3.6 Alternating Automata

Alternating automata [28, 98] are a generalization of nondeterministic automata in

which choices along a path can be marked existential, meaning that some path has
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to reach an accepting state, or universal, which means that all paths have to reach

an accepting state.

In Chapter 4 we show how formulas in the event order logic proposed in this

thesis can be translated into alternating automata, which we use in Chapter 8 in

order to speed up the probability computation for causal event combinations.

We use the definition of alternating automata from [83], which differs from the

definitions in [28, 98] in that the automata are not defined with input symbols

labeling the edges but with input symbols labeling the nodes instead. We use the

definition from [83] because a graphical representation for alternating automata

defined according to [83] exists.

Definition 12. Alternating Automaton. An alternating automaton A is defined

recursively as follows:

A ∶∶= εA (empty automaton)

∣ ⟨v, δ, f⟩ (single node)

∣ A1 ∧A2 (conjunction of two automata)

∣ A1 ∨A2 (disjunction of two automata)

where v is a state formula, which can be either a propositional or a first-order

formula, δ is an alternating automaton expressing the next-state relation, and f

indicates whether the node is accepting (denoted by +) or rejecting (−). We require

the automaton to be finite.

The set of nodes of an automaton A, denoted by N (A) is formally defined as

N (εA) = ∅
N (⟨v, δ, f⟩) = ⟨v, δ, f⟩ ∪N (δ)
N (A1 ∧A2) = N (A1) ∪N (A2)
N (A1 ∨A2) = N (A1) ∪N (A2)

We denote with Nrej(A) the set of nodes of A that are rejecting, that is

Nrej(A) = {n ∈ N (A)∣f(n) = −}

.

A path through an ω-automaton is an infinite sequence of nodes. A “path”

through an alternating ω-automaton is, in general, a tree.

Definition 13. Tree. A tree is defined recursively as follows:

T ∶∶= εT (empty tree)

∣ T ⋅ T (composition)

∣ ⟨⟨v, δ, f⟩, T ⟩ (single node with child tree)

A tree may have both finite and infinite branches.
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The alternating automaton A1 = ⟨true,A2 ∧ ⟨a,A3,+⟩,+⟩ where A2 = ⟨b,A2,+⟩
and A3 = ⟨true,A3,+⟩ can be graphically represented by the automaton in Fig-

ure 3.3. The arc between two edges denotes an “and” choice where both paths have

to be accepting. The absence of the arc would denote an “or” choice, where only

one of the paths has to be accepting. The automaton A1 accepts only sequences of

the form ⟨?, ?⟩, ⟨b, a⟩, ⟨b, ?⟩, ⟨b, ?⟩, ..., where ? denotes a “don’t care”:

true

(+) b (+) a

(+) true

Figure 3.3: Graphical representation of the alternating automaton A1 = ⟨true,A2 ∧
⟨a,A3,+⟩,+⟩ where A2 = ⟨b,A2,+⟩ and A3 = ⟨true,A3,+⟩.

Definition 14. Run of an Alternating Automaton. Given an infinite sequence of

states σ = s0, ..., sn−1 and an automaton A, a tree T is called a run of σ in A if one

of the following holds:

A = εA and T = εT
A = ⟨v, δ, f⟩ and n > 1, T = ⟨⟨v, δ, f⟩, T ′⟩, s0 ⊧ v and T ′ is a run of s1, ..., sn−1

in δ, or n = 1, T = ⟨⟨v, δ, f⟩, εT ⟩ and s0 ⊧ v
A = A1 ∧A2 and T = T1 ⋅ T2, which means that T is the composition of T1 and T2

where T1 is a run of A1 and T2 is a run of A2

A = A1 ∨A2 and T is a run of A1 or T is a run of A2

Definition 15. Finite Accepting Run. A finite run T is accepting if every path

through the tree ends in an accepting node.

Definition 16. Infinite Accepting Run. A infinite run T is accepting if every

infinite branch contains infinitely many accepting nodes.

A run of the sequence ⟨b, a⟩, ⟨b, a⟩, ⟨b,¬a⟩, ⟨b, a⟩, ... in the automaton A1 in Fig-

ure 3.3 is shown in Figure 3.4. Both branches of the tree contain infinitely many

accepting nodes and thus the run is accepting.

Alternating ω-automata can be used to represent temporal formulas. It was

shown in [99, 84] that each LTL formula can be translated into an alternating ω-

automaton.
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true

(+) b

(+) b

(+) b

⋮

(+) a

(+) true

(+) true

⋮

Figure 3.4: Run of the sequence ⟨b, a⟩, ⟨b, a⟩, ⟨b,¬a⟩, ⟨b, a⟩, ... in the automaton A1.

Definition 17. Alternating Automaton for an LTL formula. Given an LTL formula

ϕ, an alternating automaton A(ϕ) is constructed, as follows.

For a state formula p:

A(p) = ⟨p, εA,+⟩

For LTL formulas ϕ, ϕ1, and ϕ2:

A(ϕ1 ∧ ϕ2) = A(ϕ1) ∧A(ϕ2)
A(ϕ1 ∨ ϕ2) = A(ϕ1) ∨A(ϕ2)
A(◯ϕ) = ⟨true,A(ϕ),+⟩
A(◻ϕ) = ⟨true,A(◻ϕ),+⟩ ∧A(ϕ)
A(◇ϕ) = ⟨true,A(◇ϕ),−⟩ ∨A(ϕ)
A(ϕ1Uϕ2) = A(ϕ2) ∨ (⟨true,A(ϕ1Uϕ2),−⟩ ∧A(ϕ1))

Example 1. Figure 3.5 shows the alternating automaton for the LTL formula ◻a.

(+) true (+) a

Figure 3.5: Graphical representation of the alternating automaton representing the

LTL formula ◻a.
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3.7 The QuantUM Approach

The QuantUM approach [71, 72] was introduced in order to close the gap between

modern model-based development processes and state-of-the-art model checking

techniques. We will briefly introduce the QuantUM approach here, a detailed de-

scription of QuantUM is given in [71, 72]. In Chapter 11 we discuss how the causal-

ity checking approach can be integrated into QuantUM. QuantUM supports the

specification and analysis of system dependability requirements at the high level

of architectural description that UML and SysML models offer. Using QuantUM,

the information that is required as input for a safety analysis, like for instance fail-

ure modes and rates, can be specified directly in the UML/SysML models using

stereotypes [86, 52]. Stereotypes contain meta information which is added to the

model. The translation of the UML/SysML models to the PRISM language is fully

automated. The PRISM model checker is encapsulated by QuantUM and its use

is made fully transparent to the user, hence lowering the acceptance bar that for-

mal methods often face in industrial engineering practice. Users do not have to

understand the underlying formal verification technology in detail. A feature of

QuantUM is that it can cooperate with many industrial practice UML CASE tools.

The analysis in QuantUM is fully automated, since a manual analysis would be

entirely infeasible, due to the inherent system complexity.

The QuantUM approach can be summarized by identifying the following steps:

1. The QuantUM UML/SysML profile extension is used to annotate the UML /

SysML model with all information that is needed to perform a dependability

analysis. The editing of the model can be performed in the standard industrial

CASE tool which is used by the user.

2. The annotated UML model is exported in the XML Metadata Interchange

[87] format, which is the standard format for exchanging UML models. The

XMI format is supported by most CASE tools used in the industry.

3. Subsequently, the QuantUM tool parses the generated XMI file and gener-

ates an analysis model in the input language of the Spin model checker or

the probabilistic model checker PRISM. QuantUM also generates a formal

specification of the properties to be verified.

The QuantUM extension of the UML allows for a direct annotation of UML models

within the case tool that is used to design the system. This allows for an convenient

integration of the QuantUM approach into the development process of safety-critical

systems.
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Event Order Logic

The content of this chapter is based on the publications [16, 61, 62, 78].
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4.1 Introduction

In order to be able to reason about the causality of events we have to formally

capture the occurrence of events. In order to do so we propose the Event Order

Logic (EOL) which can be fully translated into LTL and allows to formally capture

the order and occurrence of events on an execution trace of a transition system.

We propose the event order logic instead of using LTL because we need a logic

to represent execution traces in as simple a way as possible. Furthermore, the EOL

is used to represent the result of the causality checking process and, hence, needs

to be easily understandable and the formulas should be as compact as possible.

As an alternative to the event order logic we also investigated the usage of the

interval logics [93] and [36]. Given the fact that interval logics are overly expressive

for the relatively simple ordering constraints, we decided to define our own tailored,

relatively simple event order logic.

We define the syntax and semantics of the EOL in Section 4.2. In Section 4.3

we show that each EOL formula can be translated into an equivalent LTL formula.

The relationship of EOL to ω-automata is discussed in Section 4.4.

4.2 Syntax and Semantics

We assume that for a given execution trace σ of a transition system T , the set Act

of actions contains the events that we wish to reason about. For an LTL formula

ϕ specifying a safety requirement and an execution trace σ, the hazard specified by

the safety requirement occurs on σ if and only if σ /⊧l ϕ holds. Note that since each

transition is only labeled with one action, only one event can occur per transition.
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We assume that there exists a set A of event variables that contains a boolean

variable a for each action α ∈ Act for some given transition system. The variable

aTa, for instance, represents the event “train approaching the crossing”.

We distinguish between event types that represent the type of an event and

event occurrences which is the actual instance of an event type. The causality

checking approach defined in this thesis will identify the event occurrences that are

causal for a property violation. If multiple instances of one event type occur on one

execution trace, the variables representing them are numbered according to their

occurrence. For example, the two train approaching events on “Ta,Gc,Tc,Tl,Go,Ta”

are numbered as aTa1 and aTa2 . The numbering of multiple instances of one event

type is important in order to detect cases where an event of a specific event type

has to occur more than once in order to cause the hazard. Consider the example of

a system that will fail when two sensors have failed. The event of the type sensor

failure, consequently, has to occur at least two times in order for the system to fail.

If only event types would be considered for the causality analysis, it would not be

possible to detect that the sensor failure has to occur at least two times.

In other words, the i-th occurrence of some action of type α will be represented

by the boolean variable aαi . In the following we also abbreviate the event variable

aTa by Ta.

Definition 18. Events, Event Types and Event Variables. Let T = (S,Act,→,
I,AP, L) a transition system and σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace

of T. We define the following: each α ∈ Act defines an event type α. αi of σ denotes

the i-th occurrence of an event of the event type α. The variable representing the

occurrence of the event αi is denoted by aαi, and the set A = {aα1 , ..., aαn} contains

a boolean variable for each occurrence of an event.

Each execution trace σ of a transition system T specifies an assignment of the

boolean values true and false to the variables in the set A. If an event αi occurs on

σ its value is set to true. If the event does not occur on σ its value is set to false.

We define a function valA(σ) that represents the valuation of all variables in A for

a given σ.

Definition 19. Valuation of the Set of Event Variables. Let T = (S,Act,→,
I,AP, L) a transition system, σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of

T and A the set of event variables then we define the function valA(σ) as follows:

valA(σ) = (aα1 , ..., aαn) ∣ aαi = { true, if σ ⊧e aαi
false, else

.

Further we define valA(σ) = valA(σ′) if for all aαi ∈ A the values assigned by

valA(σ) and valA(σ′) are equal and valA(σ) ≠ valA(σ′) else.

Event variables allow us to reason about the occurrence of single events, but

since we want to reason about the combination of events, we need a formalism that

allows us to express the occurrence of event combinations. The event order logic
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allows one to connect event variables from A with the boolean connectives ∧, ∨ and

¬. To express the ordering of events we introduce the ordered conjunction operator

.. The formula a . b with events a and b is satisfied if and only if events a and b

occur in a trace and a occurs before b. In addition to the . operator we introduce

the interval operators .[, .], and .< φ .>, which define an interval in which an

event has to hold in all states. These interval operators are necessary to express

the causal non-occurrence of events.

Definition 20. Syntax of Event Order Logic (EOL). Simple EOL formulas over a

set A of event variables are formed according to the following grammar:

φ ∶∶= a ∣ φ1 ∧ φ2 ∣ ¬φ ∣ φ1 ∨ φ2

where a ∈ A and φ, φ1 and φ2 are simple EOL formulas. Complex EOL formulas

are formed according to the following grammar:

ψ ∶∶= φ ∣ ψ1 ∧ ψ2 ∣ ψ1 ∨ ψ2 ∣ ψ1 . ψ2 ∣ ψ .[ φ ∣ φ .] ψ ∣ ψ1 .< φ .> ψ2

where φ is a simple EOL formula and ψ1 and ψ2 are complex EOL formulas. Note

that the ¬ operator binds more tightly than the ., .[, .], and .< φ .>, operators

and those bind more tightly than the ∨ and ∧ operator.

Note that only simple event order logic formulas can be negated. The negation

of complex event order logic formulas is not allowed. Furthermore, De Morgan’s

laws do not apply to event order logic formulas as the semantics definition will show.

The formal semantics of the event order logic is defined over execution traces.

Notice that the ., .[, .], and .< φ .> operators are linear temporal logic operators

and that the execution trace σ is akin to a linearly ordered Kripke structure.

Definition 21. Semantics of Event Order Logic (EOL). Let T = (S,Act,→, I,AP,
L) a transition system, let φ, φ1, φ2 simple EOL formulas, let ψ, ψ1, ψ2 complex

EOL formulas, and let A a set of event variables, with aαi ∈ A, over which φ,

φ1, φ2 are built. Let σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of T and

σ[i..r] = si, αi+1, si+1, αi+2, . . . αr, sr a partial trace. We define that an execution

trace σ satisfies an event order logic formula ψ, written as σ ⊧e ψ, as follows:

sj ⊧e aαi iff sj−1
αiÐ→ sj (4.1)

sj ⊧e ¬φ iff not sj ⊧e φ (4.2)

σ[i..r] ⊧e φ iff ∃j ∶ i ≤ j ≤ r . sj ⊧e φ (4.3)

σ[i..r] ⊧e ¬φ iff ∀j ∶ i ≤ j ≤ r . sj ⊧e ¬φ (4.4)

σ ⊧e ψ iff σ[0..n] ⊧e ψ, where n is the length of σ. (4.5)

σ[i..r] ⊧e φ1 ∧ φ2 iff σ[i..r] ⊧e φ1 and σ[i..r] ⊧e φ2 (4.6)

σ[i..r] ⊧e φ1 ∨ φ2 iff σ[i..r] ⊧e φ1 or σ[i..r] ⊧e φ2 (4.7)

σ[i..r] ⊧e ¬(φ1 ∧ φ2) iff σ[i..r] ⊧e ¬φ1 and σ[i..r] ⊧e ¬φ2 (4.8)

σ[i..r] ⊧e ¬(φ1 ∨ φ2) iff σ[i..r] ⊧e ¬φ1 and σ[i..r] ⊧e ¬φ2 (4.9)
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σ[i..r] ⊧e ψ1 ∧ ψ2 iff σ[i..r] ⊧e ψ1 and σ[i..r] ⊧e ψ2 (4.10)

σ[i..r] ⊧e ψ1 ∨ ψ2 iff σ[i..r] ⊧e ψ1 or σ[i..r] ⊧e ψ2 (4.11)

σ[i..r] ⊧e ψ1 . ψ2 iff ∃j, k ∶ i ≤ j < k ≤ r . σ[i..j] ⊧e ψ1 and σ[k..r] ⊧e ψ2 (4.12)

σ[i..r] ⊧e ψ .[ φ iff (∃j ∶ i ≤ j ≤ r . σ[j..j] ⊧e ψ
and (∀k ∶ j ≤ k ≤ r . σ[k..k] ⊧e φ)) (4.13)

σ[i..r] ⊧e φ .] ψ iff (∃j ∶ i ≤ j ≤ r . σ[j..j] ⊧e ψ
and (∀k ∶ 0 ≤ k ≤ j . σ[k..k] ⊧e φ)) (4.14)

σ[i..r] ⊧e ψ1 .< φ .> ψ2 iff (∃j, k ∶ i ≤ j < k ≤ r . σ[j..j] ⊧e ψ1 and σ[k..r] ⊧e ψ2

and (∀l ∶ j ≤ l ≤ k . σ[l..l] ⊧e φ)) (4.15)

We define that the transition system T satisfies the formula ψ, written as T ⊧e ψ,

iff ∃σ ∈ T . σ ⊧e ψ.

Note that the event order logic semantics that we have defined is an existential

semantics. Consequently, if there exists one trace of a transition system that satisfies

an event order logic formula, the event order logic formula holds for the transition

system. The existential semantics is sufficient for causality checking since we want

to formally capture the existence of event combinations and event orders.

In fact, we can represent an execution trace by an EOL formula. Suppose we

want to represent the execution trace σ = “Ta, Ca, Gf, Cc, Tc” by an EOL formula.

We partition the set A of event variables in the set Z containing all the event

variables of the events that occur on σ and the set W containing all the event

variables of the events that do not occur on σ. Consequently, Z contains Ta, Ca,

Gf, Cc, and Tc. The resulting EOL formula over Z is ψ = Ta .Ca .Gf .Cc .Tc.

Definition 22. Event Order Logic (EOL) Formula over Executions. Let T =
(S,Act, →, I,AP, L) a transition system, and σ = s0 α1 s1 α2 ... αn sn an exe-

cution trace of T. The event order logic formula over the execution σ denoted by

ψσ is defined as follows: We partition the set A into the set Z and the set W

such that Z ⊆ A, W ⊆ A, Z ∩W = ∅, Z ∪W = A and ∀aαi ∈ Z ∶ σ ⊧e aα1 and

∀aαj ∈W ∶ σ /⊧e aα1. The EOL formula ψσ is formed over the event variables in Z

by connecting the event variables with the .-operator ψσ = aαi . aαj . ... . aαn such

that i < j < n and σ ⊧e ψσ.

Furthermore, we define the subset operator for EOL formulas as follows.

Definition 23. EOL Formula Subset Relationship. Let ψ1 and ψ2 EOL formulas,

where ψ1 is built over the set of event variables Z1 and ψ2 is built over the set of

event variables Z2.

⊆: ψ1 ⊆ ψ2 iff Z1 ⊆ Z2.

⊂: ψ1 ⊂ ψ2 iff Z1 ⊆ Z2 and not Z1 = Z2.
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We will now show that there are EOL formulas that are different with respect to

syntax but equivalent with respect to the semantics and, consequently, evaluate to

the same truth-value under all interpretations. These equivalences can be used to

rewrite EOL formulas, which we will later need in order to translate EOL formulas

into LTL formulas.

Definition 24. Equivalences of EOL formulas. Let T = (S,Act,→, I,AP, L) a

transition system, let φ1, φ2 simple EOL formulas, let ψ1, ψ2, ψ3 complex EOL

formulas, and let A a set of event variables, with aαi ∈ A, over which φ, φ1,

φ2 are built. Let σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of T and

σ[i..r] = si, αi+1, si+1, αi+2, . . . αr, sr a partial trace. Two EOL formulas ψ1 and

ψ2 are equivalent, denoted by ψ1 ≡ ψ2 iff σ[i..r] ⊧e ψ1 ⇔ σ[i..r] ⊧e ψ2.

An example of two equivalent formulas from the railroad crossing example from

Section 3.2 are ψ1 = Ta.Tc∧Ca.Cc and ψ2 = Ca.Cc∧Ta.Tc both of which state

that the event train approaching (Ta) happens before train crossing (Tc) and car

approaching (Ca) happens before car crossing (Cc) without imposing a restriction

on the order of, for instance, train approaching and car approaching. Another

example is ψ3 = (¬Gc∧¬Gf).] Ca and ψ4 = ¬Gc.] Ca∧¬Gf.] Ca which both state

that before the car approaching event neither the gate closing event (Gc) nor the

gate failed (Gf) occurs.

Figure 4.1 shows some equivalences rules for EOL which are proven by Theo-

rem 1 to Theorem 27.

Note that ¬(φ1 ∧ φ2) /≡ (¬φ1 ∨ ¬φ2) since, for instance, the trace σ = “Ta,Ca”

satisfies (¬Gf ∨ ¬Ta) but does not satisfy ¬(Gf ∧Ta).

Theorem 1. ¬(φ1 ∧ φ2) ≡ ¬φ1 ∧ ¬φ2

Proof. ¬(φ1 ∧ φ2) ≡ ¬φ1 ∧ ¬φ2 holds if for any transition system T and all traces σ

in T: σ ⊧e ¬(φ1 ∧ φ2)⇔ σ ⊧e ¬φ1 ∧ ¬φ2.

σ[i..r] ⊧e ¬(φ1 ∧ φ2)⇔ σ[i..r] ⊧e ¬φ1 and σ[i..r] ⊧e ¬φ2 (Def. 21 (4.8))

⇔ σ[i..r] ⊧e ¬φ1 ∧ ¬φ2 (Def. 21 (4.6))

Theorem 2. ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2

Proof. ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2 holds if for any transition system T and all traces σ

in T: σ ⊧e ¬(φ1 ∨ φ2)⇔ σ ⊧e ¬φ1 ∧ ¬φ2.

σ[i..r] ⊧e ¬(φ1 ∨ φ2)⇔ σ[i..r] ⊧e ¬φ1 and σ[i..r] ⊧e ¬φ2 (Def. 21 (4.9))

⇔ σ[i..r] ⊧e ¬φ1 ∧ ¬φ2 (Def. 21 (4.6))
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¬(φ1 ∧ φ2) ≡ ¬φ1 ∧ ¬φ2

¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2

¬(φ1 ∧ φ2) ≡ ¬(φ1 ∨ φ2)
ψ1 ∧ ψ2 ≡ ψ1 . ψ2 ∨ ψ2 . ψ1

(ψ1 ∧ ψ2) . ψ3 ≡ ψ1 . ψ3 ∧ ψ2 . ψ3

ψ1 . (ψ2 ∧ ψ3) ≡ ψ1 . ψ2 ∧ ψ1 . ψ3

(ψ1 ∨ ψ2) . ψ3 ≡ ψ1 . ψ3 ∨ ψ2 . ψ3

ψ1 . (ψ2 ∨ ψ3) ≡ ψ1 . ψ2 ∨ ψ1 . ψ3

ψ1 . ψ2 ∧ ψ1 . ψ3 ≡ ψ1 . ψ3 ∧ ψ1 . ψ2

ψ1 . ψ2 . ψ3 ≡ ψ1 . ψ2 ∧ ψ1 . ψ3 ∧ ψ2 . ψ3

ψ1 .[ (φ1 ∧ φ2) ≡ ψ1 .[ φ1 ∧ ψ1 .[ φ2

ψ1 .[ (φ1 ∨ φ2) ≡ ψ1 .[ φ1 ∨ ψ1 .[ φ2

ψ1 . ψ2 .[ φ ≡ ψ1 . ψ2 ∧ ψ2 .[ φ

(ψ1 ∨ ψ2) .[ φ ≡ ψ1 .[ φ ∨ ψ2 .[ φ

(ψ1 ∧ ψ2) .[ φ ≡ ψ1 . ψ2 .[ φ ∨ ψ2 . ψ1 .[ φ

(φ1 ∧ φ2) .] ψ1 ≡ φ1 .] ψ1 ∧ φ2 .] ψ1

(φ1 ∨ φ2) .] ψ1 ≡ φ1 .] ψ1 ∨ φ2 .] ψ1

φ .] ψ1 . ψ2 ≡ φ .] ψ1 ∧ ψ1 . ψ2

φ .] (ψ1 ∨ ψ2) ≡ φ .] ψ1 ∨ φ .] ψ2

φ .] (ψ1 ∧ ψ2) ≡ φ .] ψ1 . ψ2 ∨ φ .] ψ2 . ψ1

ψ1 .< (φ1 ∨ φ2) .> ψ2 ≡ ψ1 .< φ1 .> ψ2 ∨ ψ1 .< φ2 .> ψ2

ψ1 . ψ2 .< φ .> ψ3 ≡ ψ1 . ψ2 ∧ ψ2 .< φ .> ψ3

ψ1 .< φ .> ψ2 . ψ3 ≡ ψ1 .< φ .> ψ2 ∧ ψ2 . ψ3

(ψ1 ∨ ψ2) .< φ .> ψ3 ≡ ψ1 .< φ .> ψ3 ∨ ψ2 .< φ .> ψ3

(ψ1 ∧ ψ2) .< φ .> ψ3 ≡ ψ1 . ψ2 .< φ .> ψ3 ∨ ψ2 . ψ1 .< φ .> ψ3

ψ1 .< φ .> (ψ2 ∨ ψ3) ≡ ψ1 .< φ .> ψ2 ∨ ψ1 .< φ .> ψ3

ψ1 .< φ .> (ψ2 ∧ ψ3) ≡ ψ1 .< φ .> ψ2 . ψ3 ∨ ψ1 .< φ .> ψ3 . ψ2

Figure 4.1: EOL equivalence rules.

Theorem 3. ¬(φ1 ∧ φ2) ≡ ¬(φ1 ∨ φ2)

Proof. ¬(φ1 ∧φ2) ≡ ¬(φ1 ∨φ2) holds if for any transition system T and all traces σ

in T: σ ⊧e ¬(φ1 ∧ φ2)⇔ σ ⊧e ¬(φ1 ∨ φ2).

σ[i..r] ⊧e ¬(φ1 ∧ φ2)⇔ σ[i..r] ⊧e ¬φ1 and σ[i..r] ⊧e ¬φ2 (Def. 21 (4.8))

⇔ σ[i..r] ⊧e ¬φ1 ∧ ¬φ2 (Def. 21 (4.6))

⇔ σ[i..r] ⊧e ¬(φ1 ∨ φ2) (Theorem 4.2)

Theorem 4. ψ1 ∧ ψ2 ≡ ψ1 . ψ2 ∨ ψ2 . ψ1
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Proof. ψ1 ∧ψ2 ≡ ψ1 .ψ2 ∨ψ2 .ψ1 holds if for any transition system T and all traces

σ in T: σ ⊧e ψ1 ∧ ψ2 ⇔ σ ⊧e ψ1 . ψ2 ∨ ψ2 . ψ1.

σ[i..r] ⊧e ψ1 ∧ ψ2 ⇔ σ[i..r] ⊧e ψ1 and σ[i..r] ⊧e ψ2 (Def. 21 (4.6))

⇔ ∃j ∶ i ≤ j ≤ r . σ[i..j] ⊧e ψ1

or σ[j..r] ⊧e ψ1 (Def. 21 (4.3))

and σ[i..j] ⊧e ψ2

or σ[j..r] ⊧e ψ2

⇔ ∃j ∶ i ≤ j ≤ r . σ[i..j] ⊧e ψ1

and σ[j..r] ⊧e ψ2

or σ[i..j] ⊧e ψ2

and σ[j..r] ⊧e ψ1

⇔ σ[i..r] ⊧e ψ1 . ψ2 ∨ ψ2 . ψ1 (Def. 21 (4.7) & (4.12))

Theorem 5. (ψ1 ∧ ψ2) . ψ3 ≡ ψ1 . ψ3 ∧ ψ2 . ψ3

Proof. (ψ1 ∧ ψ2) . ψ3 ≡ ψ1 . ψ3 ∧ ψ2 . ψ3 holds if for any transition system T and

all traces σ in T: σ ⊧e (ψ1 ∧ ψ2) . ψ3 ⇔ σ ⊧e ψ1 . ψ3 ∧ ψ2 . ψ3.

σ[i..r] ⊧e (ψ1 ∧ ψ2) . ψ3 ⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e (ψ1 ∧ ψ2)
and σ[k..r] ⊧e ψ3

⇔ ∃j, k ∶ i ≤ j < k ≤ r .
σ[i..j] ⊧e ψ1 (Def. 21 (4.6))

and σ[i..j] ⊧e ψ2

and σ[k..r] ⊧e ψ3

⇔ ∃j, l, k ∶ i ≤ j < k ≤ r
and i ≤ l < k ≤ r .
σ[i..j] ⊧e ψ1

and σ[i..l] ⊧e ψ2

and σ[k..r] ⊧e ψ3

⇔ ∃j, l, k ∶ i ≤ j < k ≤ r
and i ≤ l < k ≤ r .
σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e ψ3
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and σ[i..l] ⊧e ψ2

and σ[k..r] ⊧e ψ3

⇔ σ[i..r] ⊧e ψ1 . ψ3 ∧ ψ2 . ψ3 (Def. 21 (4.6) & (4.12))

Theorem 6. ψ1 . (ψ2 ∧ ψ3) ≡ ψ1 . ψ2 ∧ ψ1 . ψ3

Proof. ψ1 . (ψ2 ∧ ψ3) ≡ ψ1 . ψ2 ∧ ψ1 . ψ3 holds if for any transition system T and

all traces σ in T: σ ⊧e ψ1 . (ψ2 ∧ ψ3)⇔ σ ⊧e ψ1 . ψ2 ∧ ψ1 . ψ3.

σ[i..r] ⊧e ψ1 . (ψ2 ∧ ψ3)⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e (ψ2 ∧ ψ3)
⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.6))

σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e ψ2

and σ[k..r] ⊧e ψ3

⇔ ∃j, k ∶ i ≤ j < k ≤ r .
σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e ψ2

and σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e ψ3

⇔ σ[i..r] ⊧e ψ1 . ψ2 ∧ ψ1 . ψ3 (Def. 21 (4.6) & (4.12))

Theorem 7. (ψ1 ∨ ψ2) . ψ3 ≡ ψ1 . ψ3 ∨ ψ2 . ψ3

Proof. (ψ1 ∨ ψ2) . ψ3 ≡ ψ1 . ψ3 ∨ ψ2 . ψ3 holds if for any transition system T and

all traces σ in T: σ ⊧e (ψ1 ∨ ψ2) . ψ3 ⇔ σ ⊧e ψ1 . ψ3 ∨ ψ2 . ψ3.

σ[i..r] ⊧e (ψ1 ∨ ψ2) . ψ3 ⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e (ψ1 ∨ ψ2)
and σ[k..r] ⊧e ψ3

⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.7))

(σ[i..j] ⊧e ψ1

or σ[i..j] ⊧e ψ2)
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and σ[k..r] ⊧e ψ3

⇔ ∃j, l, k ∶ i ≤ j < k ≤ r
and i ≤ l < k ≤ r .
(σ[i..j] ⊧e ψ1

or σ[i..l] ⊧e ψ2)
and σ[k..r] ⊧e ψ3

⇔ ∃j, l, k ∶ i ≤ j < k ≤ r
and i ≤ l < k ≤ r .
(σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e ψ3)
or (σ[i..l] ⊧e ψ2

and σ[k..r] ⊧e ψ3)
⇔ σ[i..r] ⊧e ψ1 . ψ3 ∨ ψ2 . ψ3 (Def. 21 (4.7) & (4.12))

Theorem 8. ψ1 . (ψ2 ∨ ψ3) ≡ ψ1 . ψ2 ∨ ψ1 . ψ3

Proof. ψ1 . (ψ2 ∨ ψ3) ≡ ψ1 . ψ2 ∨ ψ1 . ψ3 holds if for any transition system T and

all traces σ in T: σ ⊧e ψ1 . (ψ2 ∨ ψ3)⇔ σ ⊧e ψ1 . ψ2 ∨ ψ1 . ψ3.

σ[i..r] ⊧e ψ1 . (ψ2 ∨ ψ3)⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e (ψ2 ∨ ψ3)
⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.7))

σ[i..j] ⊧e ψ1

and (σ[k..r] ⊧e ψ2

or σ[k..r] ⊧e ψ3)
⇔ ∃j, k ∶ i ≤ j < k ≤ r .

σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e ψ2

or σ[i..j] ⊧e ψ1

and σ[k..r] ⊧e ψ3

⇔ σ[i..r] ⊧e ψ1 . ψ2 ∨ ψ1 . ψ3 (Def. 21 (4.7) & (4.12))

Theorem 9. ψ1 . ψ2 ∧ ψ1 . ψ3 ≡ ψ1 . ψ3 ∧ ψ1 . ψ2
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Proof. ψ1 .ψ2 ∧ψ1 .ψ3 ≡ ψ1 .ψ3 ∧ψ1 .ψ2 holds if for any transition system T and

all traces σ in T: σ ⊧e ψ1 . ψ2 ∧ ψ1 . ψ3 ⇔ σ ⊧e ψ1 . ψ3 ∧ ψ1 . ψ2.

σ[i..r] ⊧e ψ1 . ψ2 ∧ ψ1 . ψ3 ⇔ σ[i..r] ⊧e ψ1 . ψ2 (Def. 21 (4.6))

and σ[i..r] ⊧e ψ1 . ψ3

⇔ σ[i..r] ⊧e ψ1 . ψ3 ∧ ψ1 . ψ2 (Def. 21 (4.6))

Theorem 10. ψ1 . ψ2 . ψ3 ≡ ψ1 . ψ2 ∧ ψ1 . ψ3 ∧ ψ2 . ψ3

Proof. ψ1 . ψ2 . ψ3 ≡ ψ1 . ψ2 ∧ ψ1 . ψ3 ∧ ψ2 . ψ3 holds if for any transition system

T and all traces σ in T: σ ⊧e ψ1 . ψ2 . ψ3 ⇔ σ ⊧e ψ1 . ψ2 ∧ ψ1 . ψ3 ∧ ψ2 . ψ3.

σ[i..r] ⊧e ψ1 . ψ2 . ψ3 ⇔ ∃j, k, l ∶ i ≤ j < k < l ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e ψ1

and σ[k..l − 1] ⊧e ψ2

and σ[l..r] ⊧e ψ3

⇔ σ[i..r] ⊧e ψ1 . ψ2 ∧ ψ1 . ψ3 ∧ ψ2 . ψ3 (Def. 21 (4.6)

& (4.12))

Theorem 11. ψ1 .[ (φ1 ∧ φ2) ≡ ψ1 .[ φ1 ∧ ψ1 .[ φ2

Proof. ψ1 .[ (φ1 ∧ φ2) ≡ ψ1 .[ φ1 ∧ψ1 .[ φ2 holds if for any transition system T and

all traces σ in T: σ ⊧e ψ1 .[ (φ1 ∧ φ2)⇔ σ ⊧e ψ1 .[ φ1 ∧ ψ1 .[ φ2.

σ[i..r] ⊧e ψ1 .[ (φ1 ∧ φ2)⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.13))

σ[j..j] ⊧e ψ1 and

(∀k ∶ j ≤ k ≤ r .
σ[k..k] ⊧e (φ1 ∧ φ2)))

⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.6))

σ[j..j] ⊧e ψ1 and

(∀k ∶ j ≤ k ≤ r .
σ[k..k] ⊧e φ1

and σ[k..k] ⊧e φ2))
⇔ σ[i..r] ⊧e ψ1 .[ φ1 ∧ ψ1 .[ φ2 (Def. 21 (4.13))
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Theorem 12. ψ1 .[ (φ1 ∨ φ2) ≡ ψ1 .[ φ1 ∨ ψ1 .[ φ2

Proof. ψ1 .[ (φ1 ∨ φ2) ≡ ψ1 .[ φ1 ∨ψ1 .[ φ2 holds if for any transition system T and

all traces σ in T: σ ⊧e ψ1 .[ (φ1 ∨ φ2)⇔ σ ⊧e ψ1 .[ φ1 ∨ ψ1 .[ φ2.

σ[i..r] ⊧e ψ1 .[ (φ1 ∨ φ2)⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.13))

σ[j..j] ⊧e ψ1 and

(∀k ∶ j ≤ k ≤ r .
σ[k..k] ⊧e (φ1 ∨ φ2)))

⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.7))

σ[j..j] ⊧e ψ1 and

(∀k ∶ j ≤ k ≤ r .
σ[k..k] ⊧e φ1

or σ[k..k] ⊧e φ2))
⇔ σ[i..r] ⊧e ψ1 .[ φ1 ∨ ψ1 .[ φ2 (Def. 21 (4.13))

Theorem 13. ψ1 . ψ2 .[ φ ≡ ψ1 . ψ2 ∧ ψ2 .[ φ

Proof. ψ1 . ψ2 .[ φ ≡ ψ1 . ψ2 ∧ ψ2 .[ φ holds if for any transition system T and all

traces σ in T: σ ⊧e ψ1 . ψ2 .[ φ⇔ σ ⊧e ψ1 . ψ2 ∧ ψ2 .[ φ.

σ[i..r] ⊧e ψ1 . ψ2 .[ φ⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e ψ1 and

σ[k..r] ⊧e ψ2 .[ φ

⇔ (∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.13))

σ[i..j] ⊧e ψ1 and

σ[k..k] ⊧e ψ2 and

(∀l ∶ k ≤ l ≤ r .
σ[l..l] ⊧e φ)

⇔ σ[i..r] ⊧e ψ1 . ψ2 ∧ ψ2 .[ φ (Def. 21 (4.6), (4.12)

& (4.13))

Theorem 14. (ψ1 ∨ ψ2) .[ φ ≡ ψ1 .[ φ ∨ ψ2 .[ φ

Proof. (ψ1 ∨ψ2).[ φ ≡ ψ1 .[ φ∨ψ2 .[ φ holds if for any transition system T and all

traces σ in T: σ ⊧e (ψ1 ∨ ψ2) .[ φ⇔ σ ⊧e ψ1 .[ φ ∨ ψ2 .[ φ.
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σ[i..r] ⊧e (ψ1 ∨ ψ2) .[ φ⇔ ψ1 .[ φ ∨ ψ2 .[ φ (Theo. 7 & Def. 21 (4.13))

Theorem 15. (ψ1 ∧ ψ2) .[ φ ≡ ψ1 . ψ2 .[ φ ∨ ψ2 . ψ1 .[ φ

Proof. (ψ1 ∧ψ2) .[ φ ≡ ψ1 .ψ2 .[ φ ∨ψ2 .ψ1 .[ φ holds if for any transition system

T and all traces σ in T: σ ⊧e (ψ1 ∧ ψ2) .[ φ⇔ σ ⊧e ψ1 . ψ2 .[ φ ∨ ψ2 . ψ1 .[ φ.

σ[i..r] ⊧e (ψ1 ∧ ψ2) .[ φ⇔ (ψ1 . ψ2 ∨ ψ2 . ψ1) .[ φ (Theo. 4)

⇔ σ[i..r] ⊧e ψ1 . ψ2 .[ φ ∨ ψ2 . ψ1 .[ φ (Theo. 14)

Theorem 16. (φ1 ∧ φ2) .] ψ1 ≡ φ1 .] ψ1 ∧ φ2 .] ψ1

Proof. (φ1 ∧ φ2) .] ψ1 ≡ φ1 .] ψ1 ∧ φ2 .] ψ1 holds if for any transition system T and

all traces σ in T: σ ⊧e (φ1 ∧ φ2) .] ψ1 ⇔ σ ⊧e φ1 .] ψ1 ∧ φ2 .] ψ1.

σ[i..r] ⊧e (φ1 ∧ φ2) .] ψ1 ⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.14))

σ[j..j] ⊧e ψ1 and

(∀k ∶ 0 ≤ k ≤ j .
σ[k..k] ⊧e (φ1 ∧ φ2)))

⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.6))

σ[j..j] ⊧e ψ1 and

(∀k ∶ 0 ≤ k ≤ j .
σ[k..k] ⊧e φ1

and σ[k..k] ⊧e φ2))
⇔ σ[i..r] ⊧e φ1 .] ψ1 ∧ φ2 .] ψ1 (Def. 21 (4.14))

Theorem 17. (φ1 ∨ φ2) .] ψ1 ≡ φ1 .] ψ1 ∨ φ2 .] ψ1

Proof. (φ1 ∨ φ2) .] ψ1 ≡ φ1 .] ψ1 ∨ φ2 .] ψ1 holds if for any transition system T and

all traces σ in T: σ ⊧e (φ1 ∨ φ2) .] ψ1 ⇔ σ ⊧e φ1 .] ψ1 ∨ φ2 .] ψ1.

σ[i..r] ⊧e (φ1 ∨ φ2) .] ψ1 ⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.14))

σ[j..j] ⊧e ψ1 and

(∀k ∶ 0 ≤ k ≤ j .
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σ[k..k] ⊧e (φ1 ∨ φ2)))
⇔ (∃j ∶ i ≤ j ≤ r . (Def. 21 (4.7))

σ[j..j] ⊧e ψ1 and

(∀k ∶ 0 ≤ k ≤ j .
σ[k..k] ⊧e φ1

or σ[k..k] ⊧e φ2))
⇔ σ[i..r] ⊧e φ1 .] ψ1 ∨ φ2 .] ψ1 (Def. 21 (4.14))

Theorem 18. φ .] ψ1 . ψ2 ≡ φ .] ψ1 ∧ ψ1 . ψ2

Proof. φ .] ψ1 . ψ2 ≡ φ .] ψ1 ∧ ψ1 . ψ2 holds if for any transition system T and all

traces σ in T: σ ⊧e φ .] ψ1 . ψ2 ⇔ σ ⊧e φ .] ψ1 ∧ ψ1 . ψ2.

σ[i..r] ⊧e φ .] ψ1 . ψ2 ⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e φ .] ψ1 and

σ[k..r] ⊧e ψ2

⇔ (∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.13))

σ[j..j] ⊧e ψ1 and

(∀l ∶ i ≤ l ≤ j .
σ[l..l] ⊧e φ) and

σ[k..r] ⊧e ψ2

⇔ σ[i..r] ⊧e φ .] ψ1 ∧ ψ1 . ψ2 (Def. 21 (4.6), (4.12)

& (4.13))

Theorem 19. φ .] (ψ1 ∨ ψ2) ≡ φ .] ψ1 ∨ φ .] ψ2

Proof. φ.] (ψ1 ∨ψ2) ≡ φ.] ψ1 ∨φ.] ψ2 holds if for any transition system T and all

traces σ in T: σ ⊧e φ .] (ψ1 ∨ ψ2)⇔ σ ⊧e φ .] ψ1 ∨ φ .] ψ2.

σ[i..r] ⊧e φ .] (ψ1 ∨ ψ2)⇔ σ ⊧e φ .] ψ1 ∨ φ .] ψ2 (Theo. 8 & Def. 21 (4.13))

Theorem 20. φ .] (ψ1 ∧ ψ2) ≡ φ .] ψ1 . ψ2 ∨ φ .] ψ2 . ψ1

Proof. φ .] (ψ1 ∧ψ2) ≡ ψ1 .ψ2 .[ φ ∨ψ2 .ψ1 .[ φ holds if for any transition system

T and all traces σ in T: σ ⊧e φ .] (ψ1 ∧ ψ2)⇔ σ ⊧e φ .] ψ1 . ψ2 ∨ φ .] ψ2 . ψ1.
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σ[i..r] ⊧e φ .] (ψ1 ∧ ψ2)⇔ φ .] (ψ1 . ψ2 ∨ ψ2 . ψ1) (Theo. 4)

⇔ σ[i..r] ⊧e φ .] ψ1 . ψ2 ∨ φ .] ψ2 . ψ1 (Theo. 19)

Theorem 21. ψ1 .< (φ1 ∨ φ2) .> ψ2 ≡ ψ1 .< φ1 .> ψ2 ∨ ψ1 .< φ2 .> ψ2

Proof. ψ1 .< (φ1 ∨ φ2) .> ψ2 ≡ ψ1 .< φ1 .> ψ2 ∨ ψ1 .< φ2 .> ψ2 holds if for any

transition system T and all traces σ in T: σ ⊧e ψ1 .< (φ1 ∨ φ2) .> ψ2 ⇔ σ ⊧e
ψ1 .< φ1 .> ψ2 ∨ ψ1 .< φ2 .> ψ2.

σ[i..r] ⊧e ψ1 .< (φ1 ∨ φ2) .> ψ2 ⇔ (∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.15))

σ[j..j] ⊧e ψ1

and σ[k..k] ⊧e ψ2

and (∀l ∶ j ≤ l ≤ k .
σ[l..l] ⊧e (φ1 ∨ φ2)))

⇔ (∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.7))

σ[j..j] ⊧e ψ1

and σ[k..k] ⊧e ψ2

and (∀l ∶ j ≤ l ≤ k .
σ[l..l] ⊧e φ1

or σ[l..l] ⊧e φ2))
⇔ ψ1 .< φ1 .> ψ2

∨ ψ1 .< φ2 .> ψ2 (Def. 21 (4.15))

Theorem 22. ψ1 . ψ2 .< φ .> ψ3 ≡ ψ1 . ψ2 ∧ ψ2 .< φ .> ψ3

Proof. ψ1 .ψ2 .< φ.> ψ3 ≡ ψ1 .ψ2 ∧ψ2 .< φ.> ψ3 holds if for any transition system

T and all traces σ in T: σ ⊧e ψ1 . ψ2 .< φ .> ψ3 ⇔ σ ⊧e ψ1 . ψ2 ∧ ψ2 .< φ .> ψ3.

σ[i..r] ⊧e ψ1 . ψ2 .< φ .> ψ3 ⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e ψ1 and

σ[k..r] ⊧e ψ2 .< φ .> ψ3

⇔ (∃j, k, l ∶ i ≤ j < k < l ≤ r . (Def. 21 (4.15))

σ[i..j] ⊧e ψ1

and σ[k..k] ⊧e ψ2

and σ[l..l] ⊧e ψ3
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and (∀m ∶ k ≤m ≤ l .
σ[m..m] ⊧e φ)

⇔ ψ1 . ψ2 ∧ ψ2 .< φ .> ψ3 (Def. 21 (4.6),

(4.12) & (4.15))

Theorem 23. ψ1 .< φ .> ψ2 . ψ3 ≡ ψ1 .< φ .> ψ2 ∧ ψ2 . ψ3

Proof. ψ1 .< φ.> ψ2 .ψ3 ≡ ψ1 .< φ.> ψ2 ∧ψ2 .ψ3 holds if for any transition system

T and all traces σ in T: σ ⊧e ψ1 .< φ .> ψ2 . ψ3 ⇔ σ ⊧e ψ1 .< φ .> ψ2 ∧ ψ2 . ψ3.

σ[i..r] ⊧e ψ1 .< φ .> ψ2 . ψ3 ⇔ ∃j, k ∶ i ≤ j < k ≤ r . (Def. 21 (4.12))

σ[i..j] ⊧e ψ1 .< φ .> ψ2 and

σ[k..r] ⊧e ψ3

⇔ (∃j, k, l ∶ i ≤ j < k < l ≤ r . (Def. 21 (4.15))

σ[j..j] ⊧e ψ1

and σ[k..k] ⊧e ψ2

and (∀m ∶ j ≤m ≤ k .
σ[m..m] ⊧e φ)
and σ[l..r] ⊧e ψ3

⇔ ψ1 .< φ .> ψ2 ∧ ψ2 . ψ3 (Def. 21 (4.6),

(4.12) & (4.15))

Theorem 24. (ψ1 ∨ ψ2) .< φ .> ψ3 ≡ ψ1 .< φ .> ψ3 ∨ ψ2 .< φ .> ψ3

Proof. (ψ1 ∨ψ2).< φ.> ψ3 ≡ ψ1 .< φ.> ψ3 ∨ψ2 .< φ.> ψ3 holds if for any transition

system T and all traces σ in T: σ ⊧e (ψ1 ∨ ψ2) .< φ .> ψ3 ⇔ σ ⊧e ψ1 .< φ .> ψ3 ∨
ψ2 .< φ .> ψ3.

σ[i..r] ⊧e (ψ1 ∨ ψ2) .< φ .> ψ3 ⇔ ψ1 .< φ .> ψ3 ∨ ψ2 .< φ .> ψ3 (Theo. 7 &

Def. 21 (4.15))

Theorem 25. (ψ1 ∧ ψ2) .< φ .> ψ3 ≡ ψ1 . ψ2 .< φ .> ψ3 ∨ ψ2 . ψ1 .< φ .> ψ3

Proof. (ψ1 ∧ ψ2) .< φ .> ψ3 ≡ ψ1 . ψ2 .< φ .> ψ3 ∨ ψ2 . ψ1 .< φ .> ψ3 holds if for

any transition system T and all traces σ in T: σ ⊧e (ψ1 ∧ ψ2) .< φ .> ψ3 ⇔ σ ⊧e
ψ1 . ψ2 .< φ .> ψ3 ∨ ψ2 . ψ1 .< φ .> ψ3.
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σ[i..r] ⊧e (ψ1 ∧ ψ2) .< φ .> ψ3 ⇔ (ψ1 . ψ2 ∨ ψ2 . ψ1) .< φ .> ψ3 (Theo. 4)

⇔ ψ1 . ψ2 .< φ .> ψ3∨ (Theo. 24)

ψ2 . ψ1 .< φ .> ψ3

Theorem 26. ψ1 .< φ .> (ψ2 ∨ ψ3) ≡ ψ1 .< φ .> ψ2 ∨ ψ1 .< φ .> ψ3

Proof. ψ1 .< φ.> (ψ2 ∨ψ3) ≡ ψ1 .< φ.> ψ2 ∨ψ1 .< φ.> ψ3 holds if for any transition

system T and all traces σ in T: σ ⊧e ψ1 .< φ .> (ψ2 ∨ ψ3)⇔ σ ⊧e ψ1 .< φ .> ψ2 ∨
ψ1 .< φ .> ψ3.

σ[i..r] ⊧e ψ1 .< φ .> (ψ2 ∨ ψ3)⇔ ψ1 .< φ .> ψ2 ∨ ψ1 .< φ .> ψ3 (Theo. 8 &

Def. 21 (4.15))

Theorem 27. ψ1 .< φ .> (ψ2 ∧ ψ3) ≡ ψ1 .< φ .> ψ2 . ψ3 ∨ ψ1 .< φ .> ψ3 . ψ2

Proof. ψ1 .< φ .> (ψ2 ∧ ψ3) ≡ ψ1 .< φ .> ψ2 . ψ3 ∨ ψ1 .< φ .> ψ3 . ψ2 holds if for

any transition system T and all traces σ in T: σ ⊧e ψ1 .< φ .> (ψ2 ∧ ψ3) ⇔ σ ⊧e
ψ1 .< φ .> ψ2 . ψ3 ∨ ψ1 .< φ .> ψ3 . ψ2.

σ[i..r] ⊧e ψ1 .< φ .> (ψ2 ∧ ψ3)⇔ ψ1 .< φ .> (ψ2 . ψ3 ∨ ψ3 . ψ2) (Theo. 4)

⇔ ψ1 .< φ .> ψ2 . ψ3∨ (Theo. 26)

ψ1 .< φ .> ψ3 . ψ2

In order to be able to define translation rules from EOL to LTL it is necessary

to define a normal form for EOL formulas, that we refer to as event order normal

form (EONF). The EONF prohibits the unordered and- (∧) and or-operator (∨) to

appear in the operands of any ordered operator but permits the and-operator (∧)

if it appears in an operand of the between operators .< and .>.

Definition 25. Event Order Normal Form (EONF). The set of EOL formulas over

a set A of event variables in event order normal form (EONF) is given by:

φ ∶∶= a ∣ ¬φ

φ∧ ∶∶= φ ∣ φ∧ ∣ ¬φ∧ ∣ φ∧1 ∧ φ∧2

ψ ∶∶= φ ∣ φ1 . φ2 ∣ φ .[ φ ∣ φ .] φ ∣ φ1 .< φ∧ .> φ2
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ψ∧ ∶∶= ψ ∣ ψ∧ ∣ ψ∧1 ∧ ψ∧2 ∣ ψ∧1 ∨ ψ∧2

where a ∈ A and φ, φ1, φ2 are simple EOL formulas in EONF and φ∧, φ∧1 and φ∧2

are simple EOL formulas containing the ∧-operator in EONF and ψ∧, ψ∧1 and ψ∧2

are complex EOL formulas containing the ∧-operator and / or ∨-operator in EONF.

An EOL formula can be transformed into an equivalent EOL formula in EONF

by rewriting using the equivalence rules from Figure 4.1. For instance, the EOL

formula ψ = Ta.Gc.Tc can be rewritten in EONF as ψ′ = (Ta.Gc)∧ (Gc.Tc)∧
(Ta .Tc).

Theorem 28. For each EOL formula there exists a semantically equivalent EOL

formula in EONF.

Proof. The following rewrite rules can be applied recursively to the syntactic struc-

ture of a EOL formula that is not in EONF and will create a semantically equivalent

EOL formula which is in EONF.

EONF(a) = a

EONF(¬a) = ¬EONF(a)
EONF(φ1 ∧ φ2) = EONF(φ1) ∧EONF(φ2)
EONF(φ1 ∨ φ2) = EONF(φ1) ∨EONF(φ2)

EONF(¬(φ1 ∧ φ2)) = EONF(¬φ1) ∧EONF(¬φ2)
EONF(¬(φ1 ∨ φ2)) = EONF(¬φ1) ∧EONF(¬φ2)

EONF(a1 . a2) = EONF(a1) .EONF(a2)
EONF(a1 .[ a2) = EONF(a1) .[ EONF(a2)
EONF(a1 .] a2) = EONF(a1) .] EONF(a2)

EONF(a1 .< a2 .> a3) = EONF(a1) .< EONF(a2) .> EONF(a3)
EONF(ψ1 ∧ ψ2) = EONF(ψ1) ∧EONF(ψ2)
EONF(ψ1 ∨ ψ2) = EONF(ψ1) ∨EONF(ψ2)

EONF((ψ1 ∧ ψ2) . ψ3) = EONF(ψ1 . ψ3) ∧EONF(ψ2 . ψ3)
EONF((ψ1 ∨ ψ2) . ψ3) = EONF(ψ1 . ψ3) ∨EONF(ψ2 . ψ3)
EONF(ψ1 . (ψ2 ∧ ψ3)) = EONF(ψ1 . ψ2) ∧EONF(ψ1 . ψ3)
EONF(ψ1 . (ψ2 ∨ ψ3)) = EONF(ψ1 . ψ2) ∨EONF(ψ1 . ψ3)

EONF(ψ1 . ψ2 . ψ3) = EONF(ψ1 . ψ2) ∧EONF(ψ1 . ψ3)∧
EONF(ψ2 . ψ3)

EONF(ψ1 . ψ2 .[ φ) = EONF(ψ1 . ψ2) ∧EONF(ψ2 .[ φ)
EONF((ψ1 ∨ ψ2) .[ φ) = EONF(ψ1 .[ φ) ∨EONF(ψ2 .[ φ)
EONF((ψ1 ∧ ψ2) .[ φ) = EONF(ψ1 . ψ2 .[ φ) ∨EONF(ψ2 . ψ1 .[ φ)
EONF(ψ .[ (φ1 ∧ φ2)) = EONF(ψ .[ φ1) ∧EONF(ψ .[ φ2)
EONF(ψ .[ (φ1 ∨ φ2)) = EONF(ψ .[ φ1) ∨EONF(ψ .[ φ2)
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EONF(ψ .[ ¬(φ1 ∧ φ2)) = EONF(ψ .[ (¬φ1 ∧ ¬φ2))
EONF(ψ .[ ¬(φ1 ∨ φ2)) = EONF(ψ .[ ¬(φ1 ∧ φ2))

EONF(φ .] ψ1 . ψ2) = EONF(φ .] ψ1) ∧EONF(ψ1 . ψ2)
EONF(φ .] (ψ1 ∨ ψ2)) = EONF(φ .] ψ1) ∨EONF(φ .] ψ2)
EONF(φ .] (ψ1 ∧ ψ2)) = EONF(φ .] ψ1 . ψ2) ∨EONF(φ .] ψ2 . ψ1)
EONF((φ1 ∧ φ2) .] ψ) = EONF(φ1 .] ψ) ∧EONF(φ2 .] ψ)
EONF((φ1 ∨ φ2) .] ψ) = EONF(φ1 .] ψ) ∨EONF(φ2 .] ψ3)

EONF(¬(φ1 ∧ φ2) .] ψ) = EONF((¬φ1 ∧ ¬φ2) .] ψ)
EONF(¬(φ1 ∨ φ2) .] ψ) = EONF(¬(φ1 ∧ φ2) .] ψ)

EONF(ψ1 .< (φ1 ∨ φ2) .> ψ2) = EONF(ψ1 .< φ1 .> ψ2) ∨EONF(ψ1 .< φ2 .> ψ2)
EONF(ψ1 .< ¬(φ1 ∨ φ2) .> ψ2) = EONF(ψ1 .< ¬(φ1 ∧ φ2) .> ψ2)

EONF(ψ1 . ψ2 .< φ .> ψ3) = EONF(ψ1 . ψ2) ∧EONF(ψ2 .< φ .> ψ3)
EONF(ψ1 .< φ .> ψ2 . ψ3) = EONF(ψ1 .< φ .> ψ2) ∧EONF(ψ2 . ψ3)

EONF((ψ1 ∧ ψ2) .< φ .> ψ3) = EONF(ψ1 . ψ2 .< φ .> ψ3)∨
EONF(ψ2 . ψ1 .< φ .> ψ3)

EONF((ψ1 ∨ ψ2) .< φ .> ψ3) = EONF(ψ1 .< φ .> ψ3) ∨EONF(ψ2 .< φ .> ψ3)
EONF(ψ1 .< φ .> (ψ2 ∧ ψ3)) = EONF(ψ1 .< φ .> ψ2 . ψ3)∨

EONF(ψ1 .< φ .> ψ3 . ψ2)
EONF(ψ1 .< φ .> (ψ2 ∨ ψ3)) = EONF(ψ1 .< φ .> ψ2) ∨EONF(ψ1 .< φ .> ψ3)

The correctness of the transformations and corresponding equivalences have been

shown in Theorems 1-27. For every syntactically valid EOL formula there exists

an semantically equivalent rewriting in EONF that can be achieved by the above

rewriting rules.

4.3 Relationship to Linear Temporal Logic

In this section we will show that it is possible to translate each EOL formula into

an equivalent LTL formula. An EOL formula and an LTL formula are equivalent if

they are satisfied by the same set of execution traces.

Definition 26. Equivalence of an EOL and an LTL formula. An EOL formula ψ

and an LTL formula ϕ are equivalent denoted by ψ ≡ ϕ if any for transition system

T and all traces σ in T: σ ⊧e ψ⇔ σ ⊧l ϕ.

We will now define translation rules that can be used to translate a EOL formula

in EONF into a equivalent LTL formula. The translation rules are based on the

LTL specification patterns proposed by Dwyer et al. in [38].

Definition 27. LTL formula for an EOL formula. Let ψ an EOL formula that

is built over the set of event variables a ∈ A and which is in EONF. The states in
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T are labeled with an atomic proposition indicating whether the event represented

by the event variable a leads to this state. More formally, if sj−1
αiÐ→ sj then

aαi ∈ L(sj). The equivalent EOL formula for an EOL formula ψ can be constructed

as follows:

If ψ does contain one of the ordered operators ., .[, .], or .<....> the translation

function LTL.(ψ) is used, otherwise, LTL(ψ) is used. The translation functions

LTL.(ψ) and LTL(ψ) are applied recursively to the syntactic structure of ψ.

LTL(aαi) =◇aαi
LTL(¬aαi) = ◻¬aαi

LTL(φ1 ∧ φ2) = LTL(φ1) ∧ LTL(φ2)
LTL(¬(φ1 ∧ φ2)) = LTL(¬φ1) ∧ LTL(¬φ2)

LTL.(aαi) = aαi
LTL.(¬aαi) = ¬aαi

LTL.(φ1 ∧ φ2) = LTL.(φ1) ∧ LTL.(φ2)
LTL.(¬(φ1 ∧ φ2)) = LTL.(¬φ1) ∧ LTL.(¬φ2)
LTL.(ψ∧1 ∧ ψ∧2) = LTL.(ψ∧1) ∧ LTL.(ψ∧2)
LTL.(ψ∧1 ∨ ψ∧2) = LTL.(ψ∧1) ∨ LTL.(ψ∧2)

LTL.(φ1 . φ2) =◇(LTL.(φ1) ∧◇LTL.(φ2))
LTL.(φ1 .[ φ2) =◇(LTL.(φ1) ∧ ◻LTL.(φ2))
LTL.(φ1 .] φ2) = LTL.(φ1) U LTL.(φ2)

LTL.(φ1 .< φ∧ .> φ2) =◇(LTL.(φ1) ∧ (LTL.(φ∧) U LTL.(φ2))

where aαi is an event variable and the corresponding atomic proposition with

which the state is labeled, φ, φ1, φ2 are simple EOL formulas in EONF, φ∧ is a

simple EOL formula in EONF containing the ∧-operator, and ψ∧, ψ∧1 and ψ∧2 are

complex EOL formulas containing the ∧-operator and / or ∨-operator in EONF.

The translation rules define a translation from EOL formulas to LTL formulas

on a syntactic level. It remains to be shown that the translation rules defined in

Definition 27 translate an EOL formula in an semantically equivalent LTL formula

with respect to Definition 26. Consequently, we show in Theorem 29 to Theorem 42

that all traces that are accepted by an EOL formula are also accepted by the

corresponding LTL formula obtained by applying the translation rules.

Theorem 29. sj ⊧e aαi ≡ sj ⊧l aαi
Proof. sj ⊧e aαi ≡ sj ⊧l aαi holds if for any transition system T and all states s in

T: s ⊧e aαi ⇔ s ⊧l aαi .

sj ⊧e aαi ⇔ sj ⊧l aαi
sj ⊧e aαi iff sj−1

αiÐ→ sj ⇔ sj ⊧l aαi iff aαi ∈ L(sj)



48 Chapter 4. Event Order Logic

Per definition aαi ∈ L(sj) holds if sj−1
αiÐ→ sj .

Theorem 30. sj ⊧e ¬aαi ≡ sj ⊧l ¬aαi

Proof. sj ⊧e ¬aαi ≡ sj ⊧l ¬aαi holds if for any transition system T and all states s

in T: s ⊧e ¬aαi ⇔ s ⊧l ¬aαi .

sj ⊧e ¬aαi ⇔ sj ⊧l ¬aαi

sj ⊧e ¬aαi iff not sj−1
αiÐ→ sj ⇔ sj ⊧l ¬aαi iff not aαi ∈ L(sj)

Theorem 31. σ ⊧e aαi ≡ σ ⊧l ◇aαi

Proof. σ ⊧e aαi ≡ σ ⊧l ◇aαi holds if for any transition system T and all traces σ in

T: σ ⊧e aαi ⇔ σ ⊧l ◇aαi .

σ ⊧e aαi ⇔ σ ⊧l ◇aαi

σ ⊧e aαi iff ∃j ∶ 0 ≤ j ≤ n . sj ⊧e aαi ⇔ σ ⊧l true U aαi iff ∃k ≥ 0 . σ[k...] ⊧l aαi
and ∀j ∶ 0 ≤ j < k . σ[j...] ⊧l true

⇔ σ ⊧l true U aαi iff ∃k ≥ 0 . σ[k...] ⊧l aαi

Theorem 32. σ ⊧e ¬aαi ≡ σ ⊧l ◻¬aαi

Proof. σ ⊧e ¬aαi ≡ σ ⊧l ◻¬aαi holds if for any transition system T and all traces σ

in T: σ ⊧e ¬aαi ⇔ σ ⊧l ◻¬aαi .

σ ⊧e ¬aαi ⇔ σ ⊧l ◻¬aαi

σ ⊧e ¬aαi iff

∀j ∶ 0 ≤ j ≤ n . sj ⊧e ¬aαi
⇔ σ ⊧l ¬( true U ¬¬aαi) iff not

∃k ≥ 0 . σ[k...] ⊧l ¬¬aαi

⇔ σ ⊧l ¬( true U aαi) iff not

∃k ≥ 0 . σ[k...] ⊧l aαi

⇔ σ ⊧l ¬( true U aαi) iff

∀k ≥ 0 . σ[k...] ⊧l ¬aαi

Theorem 33. σ ⊧e φ1 ∧ φ2 ≡ σ ⊧l LTL(φ1) ∧ LTL(φ2)
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Proof. σ ⊧e φ1 ∧ φ2 ≡ σ ⊧l LTL(φ1) ∧ LTL(φ2) holds if for any transition system T

and all traces σ in T: σ ⊧e φ1 ∧ φ2 ⇔ σ ⊧l LTL(φ1) ∧ LTL(φ2)

σ ⊧e φ1 ∧ φ2 ⇔ σ ⊧l LTL(φ1) ∧ LTL(φ2)

σ ⊧e φ1 ∧ φ2 iff

σ ⊧e φ1 and σ ⊧e φ2
⇔ σ ⊧l LTL(φ1) ∧ LTL(φ2) iff

σ ⊧l LTL(φ1) and σ ⊧l LTL(φ2)

Theorem 34. σ ⊧e ¬(φ1 ∧ φ2) ≡ σ ⊧l LTL(¬φ1) ∧ LTL(¬φ2)

Proof. σ ⊧e ¬(φ1 ∧ φ2) ≡ σ ⊧l LTL(¬φ1) ∧ LTL(¬φ2) holds if for any transition

system T and all traces σ in T: σ ⊧e ¬(φ1 ∧ φ2)⇔ σ ⊧l LTL(¬φ1) ∧ LTL(¬φ2)

σ ⊧e ¬(φ1 ∧ φ2) ⇔ σ ⊧l LTL(¬φ1) ∧ LTL(¬φ2)

σ ⊧e ¬(φ1 ∧ φ2) iff

σ ⊧e ¬φ1 and σ ⊧e ¬φ2
⇔ σ ⊧l LTL(¬φ1) ∧ LTL(¬φ2) iff

σ ⊧l LTL(¬φ1) and LTL(¬φ2)

Theorem 35. σ ⊧e φ1 ∧ φ2 ≡ σ ⊧l LTL.(φ1) ∧ LTL.(φ2)

Proof. σ ⊧e φ1∧φ2 ≡ σ ⊧l LTL.(φ1)∧LTL.(φ2) holds if for any transition system T

and all traces σ in T: σ ⊧e φ1∧φ2 ⇔ σ ⊧l LTL.(φ1)∧LTL.(φ2). The translation rule

LTL. is only applied to φ1∧φ2 if φ1∧φ2 occurs in the formula φ1′ .< (φ1∧φ2).>φ2′

and, consequently, according to the semantics of EOL φ1 ∧ φ2 has to hold on some

σ[l..l] ≡ sl.

sl ⊧e φ1 ∧ φ2 ⇔ sl ⊧l LTL.(φ1) ∧ LTL.(φ2)

sl ⊧e φ1 ∧ φ2 iff

sl ⊧e φ1 and sl ⊧e φ2
⇔ sl ⊧l LTL.(φ1) ∧ LTL.(φ2) iff

sl ⊧l LTL.(φ1) and sl ⊧l LTL.(φ2)

Theorem 36. σ ⊧e ¬(φ1 ∧ φ2) ≡ σ ⊧l LTL.(¬φ1) ∧ LTL.(¬φ2)

Proof. σ ⊧e ¬(φ1 ∧ φ2) ≡ σ ⊧l LTL.(¬φ1) ∧ LTL.(¬φ2) holds if for any transition

system T and all traces σ in T: σ ⊧e ¬(φ1 ∧ φ2)⇔ σ ⊧l LTL.(¬φ1) ∧ LTL.(¬φ2).
The translation rule LTL. is only applied to ¬(φ1 ∧ φ2) if ¬(φ1 ∧ φ2) occurs in the

formula φ1′ .<¬(φ1∧φ2).>φ2′ and, consequently,according to the semantics of EOL

¬(φ1 ∧ φ2) has to hold on some σ[l..l] ≡ sl.

sl ⊧e ¬(φ1 ∧ φ2) ⇔ sl ⊧l LTL.(¬φ1) ∧ LTL.(¬φ2)

sl ⊧e ¬(φ1 ∧ φ2) iff

sl ⊧e ¬φ1 and sl ⊧e ¬φ2
⇔ sl ⊧l LTL.(¬φ1) ∧ LTL.(¬φ2) iff

sl ⊧l LTL.(¬φ1) and LTL.(¬φ2)
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Theorem 37. σ ⊧e ψ∧1 ∧ ψ∧2 ≡ σ ⊧l LTL.(ψ∧1) ∧ LTL.(ψ∧2)

Proof. σ ⊧e ψ∧1 ∧ ψ∧2 ≡ LTL.(ψ∧1) ∧ LTL.(ψ∧2) holds if for any transition system

T and all traces σ in T: σ ⊧e ψ∧1 ∧ ψ∧2 ⇔ σ ⊧l LTL.(ψ∧1) ∧ LTL.(ψ∧2)

σ ⊧e ψ∧1 ∧ ψ∧2 ⇔ σ ⊧l LTL.(ψ∧1) ∧ LTL.(ψ∧2)

σ ⊧e ψ∧1 ∧ ψ∧2 iff

σ ⊧e ψ∧1 and σ ⊧e ψ∧2
⇔ σ ⊧l LTL.(ψ∧1) ∧ LTL.(ψ∧2) iff

σ ⊧l LTL.(ψ∧1) and σ ⊧l LTL.(ψ∧2)

Theorem 38. σ ⊧e ψ∧1 ∨ ψ∧2 ≡ σ ⊧l LTL.(ψ∧1) ∨ LTL.(ψ∧2)

Proof. σ ⊧e ψ∧1 ∨ ψ∧2 ≡ LTL.(ψ∧1) ∨ LTL.(ψ∧2) holds if for any transition system

T and all traces σ in T: σ ⊧e ψ∧1 ∨ ψ∧2 ⇔ σ ⊧l LTL.(ψ∧1) ∨ LTL.(ψ∧2)

σ ⊧e ψ∧1 ∨ ψ∧2 ⇔ σ ⊧l LTL.(ψ∧1) ∨ LTL.(ψ∧2)

σ ⊧e ψ∧1 ∨ ψ∧2 iff

σ ⊧e ψ∧1 or σ ⊧e ψ∧2
⇔ σ ⊧l LTL.(ψ∧1) ∨ LTL.(ψ∧2) iff

σ ⊧l LTL.(ψ∧1) or σ ⊧l LTL.(ψ∧2)

Theorem 39. σ ⊧e φ1 . φ2 ≡◇(LTL.(φ1) ∧◇LTL.(φ2))

Proof. σ ⊧e φ1 .φ2 ≡◇(LTL.(φ1)∧◇LTL.(φ2)) holds if for any transition system

T and all traces σ in T: σ ⊧e φ1 . φ2 ⇔◇(LTL.(φ1) ∧◇LTL.(φ2))

σ ⊧e φ1 . φ2 ⇔ ◇(LTL.(φ1) ∧◇LTL.(φ2))

σ ⊧e φ1 . φ2 iff

∃j, k ∶ 0 ≤ j < k ≤ n . σ[0..j] ⊧e φ1

and σ[k..n] ⊧e φ2

⇔

σ ⊧l true U (LTL.(φ1)∧
true U (LTL.(φ2))) iff

∃j ≥ 0 .

σ[j...] ⊧l (LTL.(φ1)∧
true U (LTL.(φ2)))

⇔

σ ⊧l true U (LTL.(φ1)∧
true U (LTL.(φ2))) iff

∃j ≥ 0 . σ[j...] ⊧l LTL.(φ1)
and

∃k ≥ j . σ[k...] ⊧l LTL.(φ2)

Theorem 40. σ ⊧e φ1 .[ φ2 ≡ σ ⊧l ◇(LTL.(φ1) ∧ ◻LTL.(φ2))

Proof. σ ⊧e φ1 .[ φ2 ≡ σ ⊧l ◇(LTL.(φ1) ∧ ◻LTL.(φ2)) holds if for any transition

system T and all traces σ in T: σ ⊧e φ1 .[ φ2 ⇔ σ ⊧l ◇(LTL.(φ1) ∧ ◻LTL.(φ2))
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σ ⊧e φ1 .[ φ2 ⇔ σ ⊧l ◇(LTL.(φ1) ∧ ◻LTL.(φ2))

σ ⊧e φ1 .[ φ2 iff

∃j ∶ 0 ≤ j ≤ n . σ[j..j] ⊧e φ1 and

∀k ∶ j ≤ k ≤ n . σ[k..k] ⊧e φ2

⇔ σ ⊧l ◇(LTL.(φ1) ∧ ◻LTL.(φ2)) iff

true U(LTL.(φ1) ∧ ¬( true U¬LTL.(φ2)))

⇔ ∃j ∶ j ≥ 0 . σ[j..] ⊧l LTL.(φ1) and

∀k ∶ k ≥ j . σ[k..] ⊧l LTL.(φ2)

Theorem 41. σ ⊧e φ1 .] φ2 ≡ LTL.(φ1) U LTL.(φ2)

Proof. σ ⊧e φ1 .] φ2 ≡ LTL.(φ1) U LTL.(φ2) holds if for any transition system T

and all traces σ in T: σ ⊧e φ1 .] φ2 ⇔ LTL.(φ1) U LTL.(φ2)

σ ⊧e φ1 .] φ2 ⇔ LTL.(φ1) U LTL.(φ2)

σ ⊧e φ1 .] φ2 iff

∃j ∶ i ≤ j ≤ r . σ[j..j] ⊧e ψ and

∀k ∶ 0 ≤ k ≤ j . σ[k..k] ⊧e φ1

⇔
LTL.(φ1) U LTL.(φ2) iff

∃j ∶ j ≥ 0 . σ[j..] ⊧l LTL.(φ2) and

∀k ∶ 0 ≤ k ≤ j . σ[k..] ⊧l LTL.(φ1)

Theorem 42. σ ⊧e φ1 .< φ∧ .> φ2 ≡ σ ⊧l ◇(LTL.(φ1) ∧ (LTL.(φ∧) U LTL.(φ2)))

Proof. σ ⊧e φ1 .< φ∧ .> φ2 ≡ σ ⊧l ◇(LTL.(φ1) ∧ (LTL.(φ∧) U LTL.(φ2))) holds

if for any transition system T and all traces σ in T: σ ⊧e φ1 .< φ∧ .> φ2 ⇔ σ ⊧l
◇(LTL.(φ1) ∧ (LTL.(φ∧) U LTL.(φ2)))

σ ⊧e φ1 .< φ∧ .> φ2 ⇔ σ ⊧l ◇(LTL.(φ1)∧
(LTL.(φ∧) U LTL.(φ2)))

σ ⊧e φ1 .< φ∧ .> φ2 iff

∃j, k ∶ i ≤ j < k ≤ r . σ[j..j] ⊧e φ1

and σ[k..r] ⊧e φ2

and ∀l ∶ j ≤ l ≤ k . σ[l..l] ⊧e φ

⇔

σ ⊧l ◇(LTL.(φ1)∧
(LTL.(φ∧) U LTL.(φ2))) iff

∃j ∶ j ≤ 0 . σ[j..] ⊧l LTL.(φ1) and

∃k ∶ k > j . σ[k..] ⊧l LTL.(φ2) and

∀l ∶ j ≤ l ≤ k . σ[l..] ⊧l LTL.(φ)

We have shown for all translation rules defined in Definition 27 that the LTL

formula generated by the translation rule is equivalent, with respect to Definition 26,

to the EOL formula from which it was generated.

Corollary 1. It follows from Definition 27 and Theorems 29-42 that each EOL

formula can be translated into an equivalent LTL formula.
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4.4 Relationship to ω-Automata

In Chapter 8 we leverage the fact that we can translate an EOL formula into an

alternating ω-automata in order to limit the runtime intensive probability computa-

tion to the causal event combinations returned by the qualitative causality checking

algorithm.

Automata are a common way to represent logic formulas. In this section we

show how EOL formulas can be represented by alternating ω-automata.

It was shown in [99, 84] that each LTL formula can be translated into an alter-

nating ω-automaton. From Corollary 1, which shows that each EOL formula can

be translated into an equivalent LTL formula, it follows that we can translate each

EOL formula into an alternating ω-automaton.

Given an EOL formula ψ in EONF we can construct an alternating automaton

A(ψ) such that L(A(ψ)) = L(ψ). The construction of the automaton follows the

structure of the formula.

Definition 28. Alternating Automaton for an EOL formula. Let ψ an EOL for-

mula that is built over the set of event variables a ∈ A. The automaton A(ψ) for

the EOL formula ψ can be constructed recursively following the structure of the for-

mula. Similarly to the LTL translation functions the translation function A.(ψ) is

used if ψ does contain one of the ordered operators ., .[, .], or .<....> and the

translation function A(ψ), else.

A.(a) = ⟨a, εA,+⟩
A.(¬a) = ⟨¬a, εA,+⟩
A(a) = ⟨true,A(a),−⟩ ∨A.(a)
A(¬a) = ⟨true,A(¬a),+⟩ ∧A.(¬a)
A(φ1 ∧ φ2) = A(φ1) ∧A(φ2)
A(¬(φ1 ∧ φ2)) = A(¬φ1) ∧A(¬φ2)
A.(φ1 ∧ φ2) = A.(φ1) ∧A.(φ2)
A.(¬(φ1 ∧ φ2)) = A.(¬φ1) ∧A.(¬φ2)
A.(ψ∧1 ∧ ψ∧2) = A.(ψ∧1) ∧A.(ψ∧2)
A.(ψ∧1 ∨ ψ∧2) = A.(ψ∧1) ∨A.(ψ∧2)
A.(φ1 . φ2) = ⟨true,A.(φ1 . φ2),−⟩ ∨A1 where A1 = A.(φ1) ∧A2

and A2 = ⟨true,A2,−⟩ ∨A.(φ2)
A(φ1 .[ φ2) = ⟨true,A.(φ1 .[ φ2),−⟩ ∨A1 where A1 = A.(φ1) ∧A2

and A2 = ⟨true,A2,+⟩ ∧A.(φ2)
A(φ1 .] φ2) = A(φ2) ∨ (⟨true,A(φ1 .] φ2),−⟩ ∧A(φ1))
A(φ1 .< φ∧ .> φ2) = ⟨true,A(φ1 .< φ∧ .> φ2),−⟩ ∨A1 where A1 = A.(φ1) ∧A2

and A2 = A(φ2) ∨ (⟨true,A2),−⟩ ∧A(φ∧))

Corollary 2. From Corollary 1 and Definition 17 (alternating automaton for an

LTL formula) it immediately follows that for each EOL formula ψ there exists an

alternating ω-automaton A for which L(A(ψ)) = L(ψ) holds.

Example 2. To illustrate the proposed translation consider that for the EOL for-
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mula

ψ = (Ta .Gc)

of the railroad crossing example the first application of the recursive definition cre-

ates the following rewriting A(ψ) = ⟨true,A.(Ta . Gc),−⟩ ∨ (A.(Ta) ∧ A3) and

A3 = ⟨true,A3,−⟩ ∨ A.(Gc), Figure 4.2 shows the graphical representation of the

automaton A(ψ).

(−) true

(+) Ta

(+) Gc (−) true

Figure 4.2: Graphical representation of the alternating automaton A(ψ).





Chapter 5

Causality in System Models

The content of this chapter is based on the publications [61, 62, 76, 77, 78].
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5.1 Introduction

In order to be able to reason about causal events, we need to first define the notion

of causality that we want to base our reasoning on.

In the literature [57] two forms of causality are distinguished, the first one being

general type-level causality, and the second one being token-level causality. General

type-level causality deals with questions like, for example, “can random hardware

failures cause a failure of the system?” while token-level causality provides answers

to questions like, for instance,“is the failure of the gate in the railroad crossing causal

for the crash between the car and the train?”. In other words, general type-level

causality uses statistical properties that may be learned from repeated observation

of a system to derive causes and may be used to make predictions on the future

occurrence of an effect after a cause has occurred. Token-level causality identifies

the events that are causal for some particular effect and thus can be used to explain

why some particular effect or hazard occurred. We want to provide information on

which events caused a property violation. Consequently, we focus on token-level

causality rather than focusing on general token-level causality.

A commonly used variant of token-level causality is the counterfactual reason-

ing argument and the related alternative world semantics of Lewis [32, 81]. The

counterfactual argument is widely used as the foundation for identifying faults in

program debugging [104] and also underlies the formal fault tree semantics pro-

posed in [92]. The “naive” counterfactual causality criterion according to Lewis is

as follows: event A is causal for the occurrence of event B if and only if, were A

not to happen, B would not occur. The testing of this condition hinges upon the

availability of alternative worlds. A causality can be inferred if there is a world in

which A and B occur, whereas in an alternative world neither A nor B occurs.
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The naive interpretation of the Lewis counterfactual test, however, leads to a

number of inadequate or even fallacious inferences of causes as is discussed in [32].

The counterfactual argument in particular may lead to fallacious inferences if causes

are given by logical conditions on the combinations of multiple events. We discuss

the problematic issues, by demonstrating them with the railroad crossing example

introduced in Section 3.2.

• Conjunction of Causal Events: In the railroad crossing both the car and the

train have to be on the crossing to cause a crash. But since there are executions

where only the train or the car are on the crossing and there is no crash the

counterfactual argument fails to identify the conjunction of the two events as

causes.

• Disjunction of Causal Events: Suppose that there are two scenarios for the

gate in the railroad crossing to fail. The gate fails to close upon request or

the gate closes with a delay when the car is already on the crossing. The

counterfactual argument will not identify the gate failure as a cause for a

crash because if the gate does not fail upon request there still can be a crash

due to the delayed closing of the gate and vice versa.

• Preemption: If the event A happens but the effect B is preempted by, for

instance, a repair mechanism the counterfactual test will not identify A as

being a cause for B since there exists an execution where A occurs but B does

not occur.

• Non-Occurrence of Events: The counterfactual test only reasons about the

causality of the occurnce of an event but not about the non-occurence.

• Ordering of Events: Since we are considering concurrent systems in which

particular event interleavings such as race conditions may be the cause of

errors, the order of occurrence of events is a potential causal factor that can-

not be disregarded. In the railroad crossing example we have the following

event sequence ”Cc,Gc, T c, T l,Go”, where the car is on the crossing, the gate

closes, the train is then on the crossing and leaving the crossing and the

gate is opening. This sequence clearly leads to a crash since the car and

the train are on the crossing at the same time. The second event sequence

”Gc,Tc, T l,Go,Cc”, consisting of the same events, in a different order does

not lead to a crash because the train leaves the crossing before the car enters

the crossing. For the counterfactual argument to be applicable the constraint

that whenever the causal events occur the hazard occurs as well has to hold.

But on the above traces the same events occur, but the hazard occurs only

on one trace, consequently, the counterfactual argument fails to identify the

first sequence as a causal sequence of events.

• Irrelevance of Events: In addition, the naive counterfactual test may deter-

mine irrelevant causal events. For instance, the fact that the union of train
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engineers has decided not to call for a strike is not to be considered a cause

for the occurrence of an accident at the railroad crossing, but since if the

union would have called for a strike the accident would not have happened

the counterfactual argument would identify this decision as causal.

Halpern and Pearl extend the Lewis counterfactual model to what they refer

to as structural equation model (SEM) [46]. It encompasses the notion of actual

causes being logical combinations of events as well as a distinction of relevant and

irrelevant causes. In the SEM events are represented by variable values and the

minimal number of causal variable valuation combinations is determined. In order

to do so the counterfactual test is extended by contingencies. Contingencies can

be viewed as possible alternative worlds, where a variable value is changed. A

variable X is causal if there exists a contingency, that is a variable valuation for

other variables, that makes X counterfactual. However, the structural equation

model does not account for event orderings, which is a major concern of this thesis.

We now sketch the structural equation and actual cause definition from [46].

Structural equations are used to described the causal influence of variables repre-

senting the occurrence of events on other variables representing the occurrence of

events. The set of all variables is partitioned into the set U of exogenous variables

and the set V of endogenous variables. Exogenous variables represent facts that

we do not consider to be causal factors for the effect that we analyze, even though

we need to have a formal representation for them so as to encode the “context”

([46]) in which we perform causal analysis. An example for an exogenous variable is

the decision of the union of train engineers in the above railroad crossing example.

Endogenous variables represent all events that are considered to have a meaningful,

potentially causal effect. The set X ⊆ V contains all events that are expected jointly

to be a candidate cause. More formally Halpern and Pearl define a signature S as

a tuple (U ,V,R), where U is a finite set of exogenous variables, V is a finite set of

endogenous variables, and R associates with every variable Y ∈ U ∪ V a nonempty

set R(Y ) of possible values for Y. A structural equation model over a signature S
is defined in [46] as tuple M = (S,F), where F associates with each variable X ∈ V
a function denoted FX that defines the values of all variables in X given the values

of all other variables in U ∪ V. Given a structural equation model M = (S,F), a

(possibly empty) vector X⃗ of variables in V, and vectors x⃗ and u⃗ of values for the

variables in X⃗ and U , a new structural model denoted by MX⃗←x⃗ over the signature

SX⃗ = (U ,V − X⃗,R∣
V−X⃗) is defined. MX⃗←x⃗ is the structural equation model that

results when the variables in X⃗ are set to x⃗. Halpern and Pearl further define

that, given a signature S = (U ,V,R), a formula of the form X = x, for X ∈ V and

x ∈ R(X), is called a primitive event. A basic causal formula over S is one of the

form [Y1 ← y1, ..., Yk ← yk, ]ϕ where ϕ is characterizing the hazard of effect and

Y1, ...Yk and X are variables in V. The formula [Y1 ← y1, ..., Yk ← yk, ]ϕ is abbrevi-

ated as [Y⃗ ← y⃗]ϕ. Intuitively, [Y⃗ ← y⃗]ϕ states that ϕ holds in an alternative world

that is defined by setting the values of the variables in Y⃗ to the values defined in

y⃗. A causal formula ψ is a Boolean combination of basic causal formulas and ψ is
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true or false in a structural equation model, given the context defined by values of

the variables in U . If ψ is true in a structural model given the context defined by u⃗

this is is written as (M, u⃗) ⊧SM ψ.

The types of events that Halpern and Pearl allow as actual causes are conjunc-

tions of primitive events of the form X1 = x1 ∧ ....∧Xk = xk that are abbreviated as

X⃗ = x⃗. Formally Halpern and Pearl define an actual cause as follows:

Definition 29. Actual cause defined by Halpern and Pearl in [46] X⃗ = x⃗ is an

actual cause of ϕ in (M, u⃗) if the following three actual cause conditions (AC) hold:

AC1: (M, u⃗) ⊧SM (X⃗ = x⃗) ∧ ϕ. In words, both X⃗ = x⃗ and ϕ are true in the actual

world, which means that the variables in X⃗ have the values specified by x⃗ and

the effect or hazard specified by ϕ occurs.

AC2: There exists a partition (Z⃗, W⃗ ) of V with X⃗ ⊆ Z⃗ and some setting (x⃗, w⃗) of

the variable in (X⃗, W⃗ ) such that:

1. (M, u⃗) ⊧SM [X⃗ ← x⃗′, W⃗ ← w⃗′]¬ϕ, which means that changing the values

of the variables in (X⃗, W⃗ ) from the values specified by (x⃗, w⃗) to some

other values specified by (x⃗′, w⃗′) changes ϕ form true to false.

2. (M, u⃗) ⊧SM [X⃗ ← x⃗, W⃗ ← w⃗′, Z⃗ ← z⃗∗]ϕ for all subsets Z⃗ ′ of Z⃗, which

means that changing the values of the variables W⃗ from the values speci-

fied by w⃗ to some other values specified by w⃗′ should have no effect on ϕ

as long as the values of the variables in X⃗ are kept at the values specified

by x⃗, even if all the variable values in an arbitrary subset of Z⃗ are set to

their initial values.

AC3: X⃗ is minimal, with respect to that no subset of X⃗ satisfies conditions AC1

and AC2. Minimality ensures that only those elements of the conjunction

X⃗ = x⃗ that are essential for changing ϕ in AC2(1) are considered as part of

the cause and that all inessential elements are pruned.

In summary an actual cause according to Halpern and Pearl is a causal formula

from which irrelevant events have been removed. A causal formula is a boolean

conjunction ψ of variables representing the occurrence of events.

The condition AC2(1) corresponds to the Lewis counterfactual test. However,

as [46] argues, AC2(1) is too permissive in the sense that it allows to change the

values of the variables in X and in W and, thus, it is not clear whether the change of

ϕ form true to false was caused by change a variable in X or by changing a variable

in W . AC2(2) constrains what is admitted as cause by AC2(1) by keeping the

values of the variables in X at their original values and only changing the variables

in W . Minimality in AC3 ensures that only those elements of the conjunction that

are essential for changing ϕ in AC2(1) are considered part of the cause and that all

inessential elements are pruned from the causal formula.
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5.2 Inferring Causality in System Models

The structural equation model approach and the actual cause definition by Halpern

and Pearl that we have introduced in the previous section, can not be directly

applied to system models. The main reason for this is that in the actual cause

definition arbitrary changes can be made to the variable values representing the

event occurrences whereas in system models the occurrence of events is limited by

the executions that are possible in the system model. Another reason why we can

not directly apply the Halpern and Pearl structural equation model and the actual

cause definition is that it does not consider the order of the occurrences of events

as possible causal factors. In order for the actual cause definition to be applicable

to system models a number of adaptations need to be made.

We do not account for exogenous variables, since we assume that everything that

is modeled in the system model is relevant and thus endogenous variables. However,

should one wish to consider exogenous variables, those can easily be retrofitted.

We only consider boolean variables, and the variable associated with an event

is true in case that event has occurred. Notice that the use of this operational form

of event semantics makes the use of structural equation model to define events as

in [46] dispensable. In other words, we inherit from Halpern and Pearl the general

ideas of the actual cause definitions, but not the structural equation model based

event semantics.

The boolean conjunction of the event variables forms a causal event order logic

formula ψ. In the actual cause definition by Halpern and Pearl it is possible to

change the values of the variables in X and Z independently from each other. The

variables in the set Z, of which X is a subset, describe what Halpern and Pearl call

a causal process. The causal process comprises all variables that mediate between

the events represented by the variables in X and the effect ϕ. Not all variables in Z

are root-causes, but they contribute to rippling the causal effect through the system

until reaching the final effect. Since when analyzing system models we are limited

to the behavior specified by the model it is not possible to change the values of

the variables in X and Z independently from each other, because there always has

to exist a corresponding execution trace. For this reason we limit our actual cause

definition to detect the events in the set Z, that includes the variables in X, and

comprises the complete causal process for some effect.

We adapt the actual cause definition by Halpern and Pearl, introduced in Sec-

tion 5.1, such that it can be used to decide whether a given EOL formula ψ describes

the causal process of the violation of some LTL formula ϕ in a transition system

T. Note that in this thesis we restrict the causality reasoning to the violation of

non-reachability properties. Hence we only need to consider finite execution traces

[8]. Furthermore, we extend the actual cause definition to consider the order of the

occurrences of events as possible causal factors. The causal process comprises the

causal events for the property violation and all events that mediate between the

causal events and the property violation. Those events which are not root-causes,

are needed to propagate the cause through the system until the property violation
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is being triggered. If ψ describes the causal process of a property violation we also

say ψ is causal for the property violation.

In a naive causality checking algorithm we perform the tests defined in Def-

inition 30 for the induced EOL formula ψσ of each σ ∈ ΣB. The disjunction of

all ψσ1 , ψσ2 , ..., ψσn that satisfy the conditions AC1-AC3 form the EOL formula Ψ

describing all possible causes of the hazard.

Definition 30. Cause for a Property Violation (adapted actual cause). Let T =
(S,Act, →, I,AP, L) a transition system, and σ, σ′ and σ′′ some execution traces of

T. An EOL formula ψ containing all the event variables in Z is considered a cause

for an effect represented by the violation of the LTL non-reachability property ϕ, if

the following conditions are satisfied: We partition the set of event variables A into

sets Z and W, such that Z contains all event variables that are part of the EOL

formula ψ and let W = A∖Z. We use the function valA(σ), defined in Section 4.2

in Definition 19, to represent the valuation of all variables in A for a given σ.

• AC1: There exists an execution σ, for which both σ ⊧e ψ and σ /⊧l ϕ hold.

• AC2 (1): ∃σ′ s.t. σ′ /⊧e ψ ∧ (valZ(σ) ≠ valZ(σ′) ∨ valW (σ) ≠ valW (σ′)) and

σ′ ⊧l ϕ. In words, there exists an execution σ′ where the order and occurrence

of events is different from execution σ and ϕ is not violated on σ′.

• AC2 (2): ∀σ′′ with σ′′ ⊧e ψ ∧ (valZ(σ) = valZ(σ′′) ∧ valW (σ) ≠ valW (σ′′)) it

holds that σ′′ /⊧l ϕ for all subsets of W . In words, for all executions where the

events in Z have the value defined by valZ(σ) and the order defined by ψ, the

value and order of an arbitrary subset of the events in W have no effect on

the violation of ϕ.

• AC3: The EOL formula ψ is minimal: no true subset of ψ satisfies conditions

AC1 and AC2.

Example 3. If we want, for instance, to show that ψ = Ta . Ca . Gf . Cc . Tc is

causal, we need to show that AC1, AC2(1), AC2(2) and AC3 are fulfilled for ψ.

• AC1 is fulfilled, since there exists an execution σ = “Ta, Ca, Gf, Cc, Tc” for

which σ ⊧e ψ holds, and both the train and the car are in the crossing at the

same time.

• AC2(1) is fulfilled since there exists an execution σ′ = “Ta, Ca, Gc, Tc”

for which σ′ /⊧e ψ ∧ (valZ(σ) ≠ valZ(σ′) ∧ valW (σ) ≠ valW (σ′)) holds

and σ′ does not violate the property. In this case the sets Z and W are

Z = {Ta,Ca,Gf,Tc} and W = {Gc,T l,Cl,Go}. The returned valuations by

the valuation function for Z, W and σ,σ′ are valZ(σ) = (true, true, true, true),

valZ(σ′) = (true, true, false, true), valW (σ) = (false, false, false, false), and

valW (σ′) = (true, false, false, false).

• Now we need to check the condition AC2(2). For the execution σ′′ =“Ta,

Ca, Gf, Cc, Cl, Tc” and the partition Z,W ⊆ A, σ′′ ⊧e ψ and valZ(σ) =
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valZ(σ′′) ∧ valW (σ) ≠ valW (σ′′) hold. In this case the sets Z and W are

Z = {Ta,Ca,Gf,Tc} and W = {Gc,T l,Cl,Go}. The returned valuations by

the valuation function for Z, W and σ,σ′ are valZ(σ) = (true, true, true, true),

valZ(σ′′) = (true, true, true, true), valW (σ) = (false, false, false, false), and

valW (σ′) = (false, false, true, false). The property is not violated since the

car leaves the crossing (Cl) before the train enters the crossing (Tc). As a

consequence, AC2(2) is not fulfilled by ψ because if Cl occurs between Cc and

Tc, the property violation is prevented.

Example 3 shows that the non-occurrence of events can be causal as well, and

that this is not yet captured by the adapted actual cause definition. The non-

occurrence of an event is causal whenever AC1 and AC2(1) are fulfilled but AC2(2)

fails for a EOL formula ψσ. If AC2(2) fails there is at least one event α on σ′′

which did not occur on σ and the occurrence of α prevents the property violation.

Consequently, the non-occurrence of α on σ is causal. We need to reflect the causal

effect of the non-occurrence of α in ψσ. For the models that we analyze there are

two possibilities for such a preventing event α to occur, namely,

1. at the beginning of the execution trace, or

2. between two other events α1 and α2.

Note that since we are only analyzing the causal events for the violation of non-

reachability properties an event preventing a property violation can never occur

at the end of the execution trace. Once the property is violated, it can not be

prevented by any occurrence of a future event.

Furthermore, it is possible that the property violation is prevented by more

than one event, hence we need to find the minimal set of events that are needed to

prevent the property violation. This is achieved by finding the minimal true subsets

Q ⊂W of event variables that need to be changed in order to prevent the property

violation.

Definition 31. Non-Occurrence of Events. Let T = (S,Act, →, I,AP, L) a tran-

sition system, and σ and σ′′ execution traces of T. We partition the set of event

variables A into sets Z and W, such that Z contains all event variables that are part

of the EOL formula ψ and let W = A ∖Z. The non-occurrence of the events which

are represented by the event variables aα ∈ Q with Q ⊆W on execution σ is causal

for the violation of the LTL formula ϕ if ψ satisfies AC1 and AC2(1) but violates

AC2(2), and if Q is minimal, which means that there is no true subset of Q for which

σ′′ ⊧e ψ∧valZ(σ) = valZ(σ′′)∧valQ(σ) ≠ valQ(σ′′)∧valW∖Q(σ) = valW∖Q(σ′′) and

σ′′ /⊧l ϕ holds. In addition we require that for no other set Q′ that satisfies conditions

described above Q′ ⊆ Q.

For each Q we determine the location of the event variables aα ∈ Q in ψ′′

and prohibit the occurrence of α in the same location in ψ. If there are more

than one event variables in Q, they are connected with an ∧-operator. If there
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are more than one set of events at one location in ψ they are connected by an ∨-

operator. Thus we obtain a simple EOL formula φ specifying the events of which

their non-occurrence is causal. We add ¬φ.] at the beginning of ψ if the events

occurred at the beginning of σ′′ and if the events occurred between the two events

α1 and α2 we insert .<¬φ.> between the two event variables aα1 and aα2 in ψ.

Additionally, each event variable in Q is added to Z. Definition 31 identifies the

set Q of event variables that conjunctively prevent the occurrence of the property

violation. It is possible that more than one minimal set of event variables that

prevents the property violation is found by Definition 31, if this is the case it is

checked whether both sets are minimal and if that is the case they can disjunctively

prevent the property violation. Consequently, Definition 31 will identify the minimal

conjunctions and disjunctions of events that prevent a property violation. In our

example, Cl is the only event that can prevent the property violation on σ and

occurs between the events Cc and Tc. Consequently, ¬Cl is added to Z and ψ and

we get ψ = Ta .Ca .Gf .Cc .< ¬Cl .> Tc.

If a formula ψ meets conditions AC1 through AC3, the occurrence of the events

included in ψ is causal for the violation of ϕ. However, conditions AC1 through

AC3 do not imply that the order of the occurring events is causal. For instance,

we do not know whether Ta occurring before Ca is causal in our example or not.

If the order of the events is not causal, then there has to exists an execution for

each ordering of the events that is possible in the system, and these executions

all violate the property. Whether the order of events is causal is checked by the

following Order Condition (OC). Note that the outcome of OC has no effect on ψ

being causal, but merely indicates whether in addition the order of events in ψ is

causal.

Definition 32. Order Condition (OC). Let T = (S,Act, →, I,AP, L) a transition

system, and σ, σ′ execution traces of T. Let ψ an EOL formula over Z that holds

for σ and let ψ∧ the EOL formula that is created by replacing all .-operators in ψ

by ∧-operators. The .[, .], and .< φ .> are not replaced in ψ∧.

OC: The order of a subset of events Y ⊆ Z represented by the EOL formula χ

is not causal if the following holds: σ ⊧e χ ∧ ∃σ′ ∈ ΣB ∶ σ′ = σ ∧ σ′ /⊧e χ ∧ σ′ ⊧e χ∧.

If the order of a subset of events in ψσ is not cause, the condition OC relaxes the

order constraint by replacing the .-operator with the ∧-operator in such a way that

all possible interleavings of σ that cause a violation of the property are represented

by ψσ.

In our example, the order of the events Gf, Cc, ¬Cl, Tc is causal since an accident

only happens if the gate fails before the car and the train are entering the crossing,

and the car does not leave the crossing before the train is entering the crossing.

Consequently, after OC we obtain the EOL formula ψ = Gf ∧ ((Ta ∧ (Ca .Cc)) .<
¬Cl .> Tc).

The disjunction of all ψσ1 , ψσ2 , ..., ψσn that satisfy the conditions AC1-AC3 and

OC is the EOL formula Ψ = ψσ1 ∨ψσ2 ∨ ...∨ψσn describing all possible causes of the

hazard. It is possible that there are duplicate ψσ generated by the OC test from
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different interleavings of σ. In this case only one ψσ is added as a disjunct to Ψ.

For the railroad crossing example this EOL formula is Ψ = (Gf∧((Ta∧(Ca.Cc)).<
¬Cl .> Tc)) ∨ ((Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc)). Intuitively, each disjunct of

this formula represents a class of execution traces on which the events specified by

the EOL formula cause the violation of the property. The two classes represented

by the disjuncts are:

1. If the gate fails (Gf) at some point of the execution and both a train (Ta)

and a car (Ca) are approaching this results in a hazardous situation if the car

is on the crossing (Cc) and does not leave the crossing (Cl) before the train

(Tc) enters the crossing (Gf ∧ ((Ta ∧ (Ca .Cc)) .< ¬Cl .> Tc)).

2. If both a train (Ta) and a car (Ca) are approaching but the gate closes (Gc)

when the car (Cc) is already on the railroad crossing and is not able to leave

(Cl) before the gate is closing and the train is crossing (Tc), this also corre-

sponds to a hazardous situation ((Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc)).

For instance, the execution traces σ = Ca,Ta,Gf,Cc,Tc and σ′ = Ca,Ta,Gc,Tc,

Tl,Go,Ta,Gf, Cc,Tc are traces that belong to the first class of traces. The trace

σ′′ = Ca,Ta,Cc,Gc,Tc is an example for a trace in the second class.

We now formalize the observation that each disjunct of an EOL formula repre-

sents a class of traces by introducing the notion of causality classes.

Definition 33. Causality Class. Let T = (S,Act, →, I,AP, L) a transition system

and σ = s0, α1, s1, α2, . . . αn, sn a finite execution trace of T. The set ΣB is the set

of traces for which some LTL non-reachability property ϕ is violated.

The causality classes CC1, ...,CCn defined by the disjuncts of the EOL formula

Ψ = ψ1∨...∨ψn, satisfying Definition 30, Definition 31, and Definition 32, decompose

the set ΣB into sets ΣBψ1
,..., ΣBψn

with ΣBψ1
∪ ... ∪ΣBψn

= ΣB.

Note that it can be the case that σ ∈ ΣBψ1
∧ σ ∈ ΣBψ2

if σ ⊧e ψ1 ∧ σ ⊧e ψ2,

which has to be taken into account if the probabilities of the causality classes are

computed.

5.3 Completeness and Soundness

In this section we discuss the completeness and soundness of the proposed causality

checking approach.

5.3.1 Completeness

Before we are able to discuss whether causality checking is complete or not, we

need to define what the term completeness means with respect to a causality check-

ing result. We base this discussion on the notion of causality classes defined in

Definition 33.

There are two interpretations of completeness in this setting:
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1. For each possible combination of events, that is possible orderings and oc-

currences of events, that can cause a property violation in the system there

exists a causality class or a combination of causality classes capturing this

combination of events.

2. For each possible bad trace in the system model there also exists a causality

class representing this trace.

The first notion of completeness requires that all possible event combinations

that are possible in the real system, are also possible in the system model. This

requires that all possible event combinations that can cause a property violation

are modeled in the system model. We assume that the system models we analyze

are complete.

If the system model is complete, there exists an execution trace for each possible

combination of events that can cause a property violation. Consequently, the com-

pleteness of causality checking depends on a complete enumeration of all bad and

good traces in the system model by the model checking algorithms used for causality

checking. We discuss here the completeness of the naive causality checking approach

where we assume that all bad and good traces are identified, for the approaches in

Chapters 6-8 we will later show that this assumption can be guaranteed.

Since we assume that all bad and good traces in the system model are enumer-

ated, we can assume that for each possible combination of events that can cause a

property violation there exists a bad trace consisting of those events. Consequently,

it suffices to show that causality checking is complete so that for each possible bad

trace in the system there also exists a causality class representing this trace. There-

fore, we have to show that each possible bad trace in the system is represented by

one of the disjuncts of the event order logic formula Ψ returned by the causality

checker.

Theorem 43. If all bad traces have been identified, the event order logic formula

returned by the causality checker is complete, so that there does not exist a trace

leading to a property violation that is not captured by the event order logic formula

Ψ which is returned by the causality checker. Formally we define ∀σ ∈ T . σ /⊧l ϕ⇒
σ ⊧e Ψ.

Proof. We assume that there exists a bad trace σ for which σ /⊧e Ψ holds. For each

bad trace σ it is checked whether the EOL formula ψσ representing this bad trace

shall be added as a disjunct to the formula Ψ. A EOL formula ψσ is added to Ψ

if it satisfies the tests AC1 through AC3. Therefore, for a bad trace σ not to be

captured by one of the disjuncts of Ψ, ψσ needs to be excluded from Ψ by one of

the AC1-AC3 tests or the OC test.

• The test AC1 excludes an EOL formula ψσ representing a trace σ if no prop-

erty violation occurs on σ, which contradicts our assumption that σ is a bad

trace.
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• For ψσ to be excluded by the test AC2(1) it is necessary that no execution

trace σ′ ∈ ΣG where the order and occurrence of the events is different from

σ exists. For each bad trace σ there exists a finite prefix σ′ ∈ ΣG of σ and

the order and occurrence of the events on σ′ is different from σ, therefore,

AC2(1) is satisfied for all bad traces and, consequently, no ψσ representing a

bad trace σ is excluded from from Ψ by the AC2(1) test.

• If the test AC2(2) fails for a ψσ representing a bad trace σ, σ is not excluded

but ψσ is altered according to Definition 31. The constraints introduced to

ψσ by Definition 31 only constrain events not occurring on σ. Consequently,

σ ⊧e ψσ still holds for the altered ψσ and thus no bad trace is excluded from

Ψ by AC2(2).

• For the test AC3 to exclude ψσ representing a bad trace σ from Ψ, there has

to exist a trace σ′′ ∈ ΣB that implies a violation of the minimality condition

for ψσ. Since the EOL formula ψσ′′ representing σ′′ is then part of Ψ and it

holds that σ ⊧e ψσ′′ , σ is still represented by a disjunct of Ψ.

• The OC test does not exclude any ψσ from Ψ, but merely relaxes the order

constraints of a ψσ, by replacing the .-operator with the ∧-operator, in order

to represent all interleavings of σ that are also bad traces. If ψσ is part of Ψ

the trace σ can not be excluded by OC because even if all .-operators where

replaced by ∧-operators ψσ ⊧e σ holds.

As we have shown above it is not possible that there exists a bad trace which is not

represented by a disjunct of Ψ. Consequently, the EOL formula Ψ returned by the

causality checker is complete.

5.3.2 Soundness

We define a causality checking result to be sound if whenever the events described

by a causality classes occur, the property violation occurs.

We assume that the bad traces we take as an input for the naive causality

checking approach are sound. We will later show how this assumption can be

guaranteed for the approaches in Chapters 6-8.

We need to show that on all traces satisfying the EOL formula Ψ, which is

returned by the causality checker, the property is violated.

Theorem 44. If all good traces have been found, the event order logic formula Ψ

returned by the causality checker is sound, so that on each trace σ for which σ ⊧e Ψ

holds indeed the property is violated.

Proof. We assume that there exists a trace σ satisfying a causality class ψ of Ψ and

on σ the property ϕ is not violated.

There are two cases that we need to consider:
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1. ψ is added to Ψ because AC1-AC3 are satisfied for ψ. If σ ⊧ ψ is true, the

event combination specified by ψ occurs on σ. For σ being a good trace, this

would require that the property violation is prevented by some event on σ

which is not constraint by ψ. If such an event exists, the AC2(2) test fails

and ψ would not have been added to Ψ and instead an altered version of ψ

ensuring the non-occurrence of the event preventing the property violation.

2. If ψ was added to Ψ because of the bad trace σ′ and σ′ is an interleaving of

σ, the order constraints of ψ are changed by the OC test to also represent σ.

But the OC test will not change the EOL formula ψ representing σ′ in such

a way that the order of events on a good trace σ are accepted, because only

the event orderings of bad traces are considered for the OC test.

Therefore, we have shown that it can not be the case that there exists a trace

σ ⊧e Ψ on which the property is not violated and have thus proven the soundness

of the causality checking result.
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Qualitative Causality Checking

The content of this chapter is based on the publications [13, 14, 74, 75, 76, 80].
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6.1 Introduction

We have established the formal basis to reason about event occurrences and their or-

der and have defined a notion of causality in system models. This chapter discusses

the integration of causality reasoning into the state-space exploration algorithms

used for model checking. The causality checking approach proposed in Section 6.2

can be integrated with both depth-first search (DFS) and breadth-first search (BFS)

as shown in Section 6.3. In Section 6.4 we discuss the completeness and soundness of

the proposed causality checking approach. Complexity considerations of the causal-

ity checking approach are discussed in Section 6.5. We evaluate our approach with

respect to runtime and memory consumption as well as usefulness of the results on

several case-studies in Section 6.6.

6.2 Causality Checking

In order to compute causality relationships, it is necessary to compute good and bad

execution traces. If DFS or BFS is used for model checking, good and bad execution

traces can easily be retrieved by the counterexample reporting capabilities of the

model checker in use.

The key idea of the proposed algorithm is that the conditions AC1, AC2(1),

AC2(2) and AC3 defined in Chapter 5 can be mapped to computing sub- and

superset relationships between good and bad execution traces. We define a number

of execution trace comparison operators as follows.
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Definition 34. Execution Trace Comparison Operators. Let T = (S,Act,→,
I,AP, L) a transition system, and σ1 and σ2 execution traces of T.

=: σ1 = σ2 iff ∀a ∈ A . σ1 ⊧e a ≡ σ2 ⊧e a.

≐: σ1 ≐ σ2 iff σ1 = σ2 and ∀a1, a2 ∈ A . σ1 ⊧e a1 . a2 ≡ σ2 ⊧e a1 . a2.

⊆: σ1 ⊆ σ2 iff ∀a ∈ A . σ1 ⊧e a⇒ σ2 ⊧e a.

⊂: σ1 ⊂ σ2 iff σ1 ⊆ σ2 and not σ1 = σ2.

⊆̇: σ1⊆̇σ2 iff σ1 ⊆ σ2 and ∀a1, a2 ∈ A . σ1 ⊧e a1 . a2 ⇒ σ2 ⊧e a1 . a2.

⊂̇: σ1⊂̇σ2 iff σ1⊆̇σ2 and not σ1 ≐ σ2.

For the empty trace σ0 = {}: σ0 = σ1 iff σ1 = {}, σ0 ≐ σ1 iff σ1 = {}, σ0 ⊆ σ1 is true

for all σ1, σ0 ⊂ σ1 is true for all σ1 /= {}, σ0⊆̇σ1 is true for all σ1, σ0⊂̇σ1 is true for

all σ1 /= {}.

For the traces σ = “Ta, Ca” and σ′ = “Ca, Ta”, for instance, σ = σ′, σ ⊆ σ′

and σ /≐ σ′ hold. In the following we also use the terms sub-execution and super-

execution to refer to sub- or superset relationships between execution traces.

In the following let ϕ a non-reachability property given in LTL, σ,σ′, σ′′, σ′′′

execution traces and ψσ, ψσ′ , ψσ′′ , ψσ′′′ the event order logic formulas representing

these execution traces, respectively.

Theorem 45. AC1 is fulfilled for all ψσ where σ ∈ ΣB.

Proof. For each σ ∈ ΣB we can partition the set A of event variables into the sets

Z and W such that Z consists of the variables of the events that occur on σ and

ψσ consists of the variables in Z. Consequently, σ ⊧e ψσ and σ /⊧l ϕ because σ is a

bad execution. Therefore, AC1 is fulfilled for all ψσ where σ ∈ ΣB.

Theorem 46. AC2(1) holds for ψσ if there is an execution σ′ ∈ ΣG with σ′ ⊂ σ.

Proof. To show AC2(1) for a execution σ we need to show that there exists an

execution σ′ for which σ′ /⊧e ψσ ∧ (valZ(σ) ≠ valZ(σ′) ∨ valW (σ) ≠ valW (σ′)) and

σ′ ⊧l ϕ holds. For each σ′ ∈ ΣG with σ′ ⊂ σ there is at least one event on σ that

does not occur on σ′. Because that missing event is part of ψσ and Z it follows

that σ′ /⊧e ψσ and it follows that (valZ(σ) ≠ valZ(σ′) ∨ valW (σ) ≠ valW (σ′)), since

the value of the event variable representing the missing event assigned by valZ(σ)
is true and the value assigned by valZ(σ′) is false. Therefore, we can show AC2(1)

for ψσ by finding an execution σ′ ∈ ΣG for which σ′ ⊂ σ holds. This also holds if

σ′ = {}.

Theorem 47. AC2(2) holds for ψσ if there is no execution σ′′ ∈ ΣG with σ⊂̇σ′′.
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Proof. AC2(2) requires that ∀σ′′ with σ′′ ⊧e ψσ ∧ (valZ(σ) = valZ(σ′′) ∧ valW (σ)
≠ valW (σ′′)) it holds that σ′′ /⊧l ϕ for all subsets of W . Suppose there exists a σ′′ for

which σ⊂̇σ′′ holds. For a σ′′ to satisfy the condition σ′′ ⊧e ψ ∧ valZ(σ) = valZ(σ′′)
all events that occur on σ have to occur in the same order on σ′′, which is the case

if σ⊆̇σ′′ holds. The set W contains the event variables of the events that did not

occur on σ and valW (σ) assigns false to all event variables in W . For valW (σ′′) to

be different from valW (σ) there has to be at least one event variable that is set to

true by valW (σ′′). This is only the case if an event that does not occur on σ occurs

on σ′′. Consequently, σ′′ consists of all events that did occur on σ and at least one

event that did not occur on σ, which is true if σ⊂̇σ′′ holds. σ′′ /⊧l ϕ holds if σ′′ ∈ ΣB

and is false if σ′′ ∈ ΣG. Hence, AC2(2) holds for σ if there is no σ′′ ∈ ΣG for which

σ⊂̇σ′′ holds.

Theorem 48. If AC1 and AC2(1) hold for ψσ and ψσ is modified according to

Definition 31 in order to fulfill AC2(2), then AC1 and AC2(1) hold for the modified

ψσ.

Proof. The modification defined in Definition 31 prohibits the occurrence of events

that did not occur on σ but occur on σ′′ by adding their corresponding negated

event variables to ψσ. Since the prohibited events did not occur on σ, the modified

ψσ holds for σ and AC1 holds. AC2(1) holds for the modified ψσ because for AC2(1)

to hold in the first place there has to be an execution σ′ ∈ ΣG with σ′ ⊂ σ. For the

modification of ψσ to be necessary an execution σ′′ ∈ ΣG with σ⊂̇σ′′ has to exist. If

σ⊂̇σ′′ holds, σ ⊂ σ′′ holds and σ′ ⊂ σ′′ holds as well. Consequently, AC2(1) holds

for the modified ψσ.

Theorem 49. AC(3) holds for ψσ if there does not exists an execution σ′′′ ∈ ΣB

for which σ′′′ ⊂ σ holds.

Proof. In AC(3) we have to show that no true subset of the event order logic formula

ψ satisfies AC1, AC2(1) and AC2(2). Suppose there exists a σ′′′ ∈ ΣB with σ′′′ ⊂ σ.

We can partition A in Zσ′′′ and Wσ′′′ such that Zσ′′′ consists of the variables of

the events that occur on σ′′′ and ψσ′′′ consists of the variables in Zσ′′′ . For σ we

partition A in Zσ and Wσ such that Zσ consists of the variables of the events that

occur on σ and ψσ consists of the variables in Zσ. Consequently, Zσ′′′ ⊂ Zσ and ψσ′′′

is a true subset of ψσ. If ψσ′′′ satisfies AC1, AC2(1), AC2(2), then AC3 would be

violated. If we can not find a σ′′′ with σ′′′ ⊂ σ, then no true subset of ψσ satisfies

AC1, AC2(1) and AC2(2), and consequently, AC3 holds.

We use these theorems in order to devise an algorithm and a corresponding data

structure called subset graph for on-the-fly causality checking.

6.3 Integration into State-Space Exploration

The causality checking that we propose is embedded into both of the standard

state-space exploration algorithms used in explicit state model checking, namely
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depth-first search (DFS) and breadth-first search (BFS). Whenever a bad or a good

execution is found by the search algorithm it is stored in the prefix-tree data struc-

ture described in Section 6.3.1 and the corresponding sub- and superset relation-

ships with other traces are stored in the subset graph data structure described in

Section 6.3.2.

6.3.1 Prefix Tree

In order to efficiently store the execution traces, we use two prefix tree [43] data

structures. The first prefix tree data structure stores the actions representing the

events of the execution traces and the second prefix tree data structure stores the

states of the execution traces. The prefix tree is an efficient method for the storage

of the execution traces, since for each trace with a length greater than one we

already have stored its prefix. For the traces “Ta”, “Ta, Ca”, and “Ta, Ca, Gc”, for

instance, we only need to store “Ta”, “Ca”, and “Gc” and the corresponding prefix

relationship instead of storing all three execution traces, individually.

6.3.2 Subset Graph Data Structure

In order to store the sub- and superset relationships of the execution traces we

have devised a data structure called subset graph. This data structure enables us

to make causality decisions on-the-fly which means that we can decide whether an

execution trace is causal as soon as we add it to the subset graph.

The subset graph is structured into levels where each level corresponds to the

length of the execution traces stored on that level. Each node represents exactly

one execution trace. Figure 6.1 shows a part of the subset graph for the railroad

crossing example. The execution traces on adjoining levels are connected by edges

indicating subset relationships between the respective execution traces. To improve

readability the edges between executions on the same level are not displayed in the

figure.

The nodes representing the execution traces are colored in green, red, black

or orange in order to indicate their potential causality relation according to the

following rules:

• Green: a node is colored green if it represents a good execution trace and all

nodes on the level below that are connected with it are also colored green. An

example of such a trace is “Ca,Ta,Gc,Tc,Tl” in the railroad crossing example.

Green traces can not be causal because they are good traces. The green traces

can be prefixes of either bad or good execution traces.

• Red: a node is colored red if it represents a bad execution trace and all nodes

on the level below that are connected with it are colored green. Red nodes

correspond to the shortest bad traces found at any point of the state-space

exploration. They are considered to be causal. As an example consider the

trace “Ta,Ca,Gf,Cc,Tc” in the railroad crossing example.
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Figure 6.1: Subset-graph of the railroad crossing example.

• Black: a node is colored black if it represents a good execution trace, but at

least one subset of the execution-trace on a level below is colored red. Black

traces cannot be causal themselves, since they are good traces, but since a

sub-trace of them with at least one element less is a minimal bad trace, the

transition in the subset graph from red to black identifies an event that turns a

bad execution into a good one. We hence take advantage of black traces when

checking condition AC2(2). As an example for a black node consider the trace

“Ta,Ca,Gf,Cc,Cl,Tc”of the railroad crossing example, which is connected with

the red execution “Ta,Ca,Gf,Cc,Tc” on the level below, the introduced “Cl”

event prevents the property violation.

• Orange: A node is colored orange if it represents a bad execution trace and at

least one node on a level below that is connected to the orange node is colored

red. If a trace is colored orange, there exists a shorter red trace on a level

below and hence an orange trace does not fulfill the minimality constraint

AC3 for being causal. An example for an orange colored trace is the trace

“Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc”. The trace “Ca,Ta,Gf,Cc,Tc” is a shorter

red trace and a subset of the trace “Ca,Ta,Gc,Tc,Tl,Go,Ta,Gf,Cc,Tc”, hence

the trace does not fulfill the minimality constraint.

The pseudocode of the subset graph data structure is presented in Listing 6.1.
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1 class SubSetGraph {

2

3 PrefixTree prefix_actions;

4 PrefixTree prefix_states;

5 List of Integers redTraces;

6

7 HashMap <Integer level , List of Traces > tracesToLevel;

8

9 //for duplicate state matching

10 HashMap <state , List of Traces > matchList;

11

12 function addTrace(Trace t) {

13 // ... see Listing 6.2

14 }

15

16 function checkAC22 () {

17 // ... see Listing 6.3

18 }

19

20 function checkOC () {

21 // ... see Listing 6.4

22 }

23

24 function matchDuplicateState(State s, Trace t)

25 {

26 // ... see Listing 6.5

27 }

28

29 function searchFinished () {

30 checkAC22 ();

31 checkOC ();

32 }

33 }

Listing 6.1: Algorithm sketch of the subset graph data structure.

The pseudocode for adding a trace is given in Listing 6.2. The algorithm first

adds the actions and states of the trace to the corresponding prefix trees (Listing

6.2, lines 4-5), stores the trace ID in the list containing all traces (Listing 6.2, line

7), inserts all states of the trace into the match list (Listing 6.2, line 9) used for the

duplicate state prefix matching described in Section 6.3.3, and adds the trace ID to

the corresponding level of the subset graph (Listing 6.2, line 9). If the trace that is

added is a bad trace, it is marked as red. If it is a good trace it is marked as green

(Listing 6.2, lines 11-15). The algorithm then checks the subset relationships with

the execution traces on the level below (level-1) (Listing 6.2, lines 17-30) and, if

DFS is used, on the level above (level+1) as well (Listing 6.2, lines 32-48). It is not

necessary to check the subset relationships on the level above (level+1) if BFS is

used, because BFS adds the traces by increasing length and thus there are no traces
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yet on the level above if BFS is used. If DFS is used it is possible that there already

are traces on the level above and thus we have to check the subset relationships on

the level above. Once all subset relationships are established, the nodes representing

the executions are colored according to the above described coloring rules. If a trace

is colored red, we additionally need to check whether there exists a shorter red trace

more than one level below which is a subset of the new red trace (Listing 6.2, lines

50-63). It is possible that the shorter red trace ended in the property violating

state and no orange or black trace exists as a super-trace of the shorter red trace.

Consequently, no connection between the new red trace and the shorter red trace

can be established through the subset graph. If such a shorter red trace is found,

the current trace is colored orange. If DFS is used we also need to check whether

a longer red trace exists that needs to be colored orange and removed from the

redTraces list (Listing 6.2, lines 59-62).

The traces that are marked as red at the end of the addTrace method are added

to the list of redTraces (Listing 6.2, lines 64-67). In our example the execution

traces Ta,Ca,Gf,Cc,Tc and Ta,Gf,Ca,Cc,Tc and Ca,Ta,Gf,Cc,Tc are colored red

and hence considered to be causal.

1 function addTrace(Trace t)

2 {

3 //add trace to the prefix trees

4 addTo(prefix_actions , t);

5 addTo(prefix_states , t);

6 // insert all states into the match list

7 addAllStatesToMatchList(t);

8 //add trace to level

9 addTraceToLevel(t.length , t);

10

11 IF(t.isBad ()) {

12 t.color = red;

13 }ELSE{

14 t.color = green;

15 }

16

17 FOR EACH Trace t’ in getTracesOnLevel(t.length -1) {

18 IF(t’ is sub set of t) {

19 IF(t’. color = red)

20 {

21 IF(t.isBad ()){

22 t.color = orange;

23 }ELSE{

24 t.color = black;

25 addBlackSuperSet(t’,t);

26 addBlackSubSet(t,t’);

27 }

28 }

29 }

30 }
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31

32 IF(Algo = DFS)

33 {

34 FOR EACH Trace t’ in getTracesOnLevel(t.length +1){

35 IF(t is sub set of t’) {

36 IF(t.color = red)

37 {

38 IF(t’.isBad ()){

39 t’.color = orange;

40 }ELSE{

41 t’.color = black;

42 addBlackSuperSet(t,t’);

43 addBlackSubSet(t’,t);

44 }

45 }

46 }

47 }

48 }

49

50 FOR EACH Trace t’ in redTraces {

51 IF(t’ is sub set of t) {

52 IF(t.isBad ()){

53 t.color = orange;

54 }ELSE{

55 t.color = black;

56 addBlackSuperSet(t’,t);

57 addBlackSubSet(t,t’);

58 }

59 }ELSE IF(ALGO = DFS & t is sub set of t’){

60 t’.color = orange;

61 removeFrom(redTraces , t’);

62 }

63 }

64 IF(t.color = red)

65 {

66 addTo(redTraces , t);

67 }

68 }

Listing 6.2: Algorithm sketch of the addTrace method of the subset graph

The following theorems show that for an execution σ that is colored red, ψσ is

a candidate for being causal and fulfills AC1, AC2(1) and AC3.

Theorem 50. AC1 is fulfilled for ψσ of each execution trace σ that is colored red.

Proof. By definition an execution trace is only colored red if it is a bad trace and

according to Theorem 45 AC1 is fulfilled for all σ ∈ ΣB.

Theorem 51. AC2(1) is fulfilled for ψσ of each execution trace σ that is colored

red.
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Proof. According to Theorem 46 we can show AC2(1) by finding an execution σ′ ∈
ΣG for which σ′ ⊂ σ holds. For an execution σ to be colored red, all sub execution

traces on the level below have to be colored green. Consequently, for each execution

σ′ for which σ′ ⊂ σ holds also σ′ ∈ ΣG holds because it is colored green and hence

needs to be a good trace. Therefore, AC2(1) is fulfilled according to Theorem 46.

If σ has length one there exists an empty trace σ′ = {} which is a good trace and

for which σ′ ⊧ σ holds. Consequently, AC2(1) is fulfilled for ψσ of each execution

trace σ that is colored red.

Theorem 52. If BFS is used, AC3 is fulfilled for ψσ of each execution trace σ that

is colored red. If DFS is used, AC3 is fulfilled for ψσ of each execution trace σ that

is colored red as soon as the state-space exploration has terminated.

Proof. According to Theorem 49, ψ fulfills AC3 if there does not exist a trace

σ′′′ ∈ ΣB for which σ′′′ ⊂ σ holds. This is due to the fact that by definition an

execution trace is only colored red if all its subsets are colored green, which means

there is no bad sub-execution σ′′′ of σ. If BFS is used the shortest paths are added

first, hence all sub-executions are known at the time where σ is inserted and colored.

Consequently, if BFS is used, AC3 is fulfilled for ψσ of each execution trace σ that is

colored red. If DFS is used it is possible that new sub-executions are found as long

as the state-space exploration is not complete. As a result, AC3 is fulfilled for ψσ
of each execution trace σ that is colored red as soon as the state-space exploration

with DFS has terminated.

Once the state space search is completed we have to perform the tests for AC2(2)

and OC for all red execution traces.

According to Theorem 47, AC2(2) holds for ψσ if there is no σ′′ ∈ ΣG for which

σ⊂̇σ′′ holds. If such a σ′′ exists, it is a black superset of σ because σ ⊂ σ′′ holds

for each black superset of σ, and σ′′ is only colored black if it is a good trace.

Consequently, we need to check for each black superset σ′′ of σ whether σ⊂̇σ′′
holds. If there is no σ′′ for which σ⊂̇σ′′ holds, then ψσ fulfills AC2(2). If σ⊂̇σ′′
holds for a black superset, then we need to modify ψσ as specified by Definition 31.

Hence, we have shown that AC1, AC2(1), AC2(2) and AC3 are fulfilled for ψσ of

each red execution σ and, consequently, that ψσ is causal for the property violation.

The pseudocode for the AC2(2) test is shown in Listing 6.3. Notice that the

AC2(2) test is needed in order to detect whether the non-occurrence of an event

is causal. For each of the traces that are marked red, the minimal sets of events

that can prevent the property violation on the red trace are computed (Listing 6.3,

lines 1-40). This is achieved by comparing the red trace with all black superset

traces (Listing 6.3, lines 6-23). For each black superset trace we check whether the

set Q of event variables that conjunctively prevent the occurrence of the property

violation is minimal and if that is the case add it to the list of Qs (Listing 6.3, lines

24-38). For the AC2(2) test it is necessary to store all traces that are colored black.

We have added a runtime switch in the implementation of the causality checking

method that allows the user to turn the AC2(2) test off in order to save memory at
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the expense of not being able to take the possible causality of the non-occurrence

of an event into account.

1 function checkAC22 ()

2 {

3 FOR EACH Trace t in redTraces

4 {

5 List Qs = {};

6 FOR EACH Traces t’ in

7 getBlackSuperSetsFor(t)

8 {

9 IF(t is ordered subset of t’))

10 {

11 u = 0;

12 Q = {};

13 FOR x = 0 to sizeof(t’. actions)

14 {

15 IF(t.actions.get(u) = t’. actions.get(x)))

16 {// events are same move to next event

17 u++;

18 }

19 ELSE IF(t’. actions.get(x) NOT IN Q)

20 {

21 Q.add(t’. actions.get(x));

22 }

23 }

24 IF(Q != {})

25 {

26 add = true;

27 FOR EACH q in Qs

28 {

29 IF(Q is subset or equal q)

30 {

31 add = false;

32 }

33 }

34 if(add)

35 {

36 Qs.add(Q);

37 }

38 }

39 }

40 }

41 t.addQs(Qs);

42 }

43 }

Listing 6.3: Algorithm sketch of the checkAC22 method.

If the AC2(2) test is fulfilled by ψσ, then the OC test is performed. The pseu-
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docode for the method that performs the OC test is given in Listing 6.4. Due to

the structure of the subset graph, it is sufficient for the OC test to check for each

red execution trace whether there exists a red execution trace with the same length

for which the unordered ⊆ relationship holds (Listing 6.4, lines 1-29). For all those

execution traces, we check for each pair of events whether they appear on all exe-

cution traces in the same order or not (Listing 6.4, lines 10-24). If a pair of events

does not occur in the same order, then the order of this pair is marked as having

no influence on causality, by adding an entry in the order constraint matrix. After

the OC test is completed, the order constraint matrix contains all ordering informa-

tion. The EOL formula ψσ representing all traces in this causality class is derived

from the order constraint matrix. Finally all ψσ representing the different causality

classes are added as disjuncts to the EOL formula Ψ. If there are duplicate ψσ from

different interleavings of σ only one ψσ is added as a disjunct of Ψ (Listing 6.4, line

25).

1 function checkOC ()

2 {

3

4 //order constraints are initialized

5 //with true before OC is executed

6 FOR EACH Trace t in redTraces

7 {

8 FOR EACH Trace t’ in redTraces

9 {

10 IF(t.id != t’.id && t is equal t’){

11 FOR i = 0 to size(t.actions)

12 {

13 FOR i = j to size(t.actions)

14 {

15 IF(!(

16 t’. actions.indexOf(t.actions.get(i))

17 <=

18 t’. actions.indexOf(t.actions.get(j))

19 ))

20 {//pair i,j is not ordered

21 t.OrderConstraints(i,j,false);

22 }

23 }

24 }

25 remove(redTraces ,t’);

26 }

27 }

28 }

29 }

Listing 6.4: Algorithm sketch of the checkOC method.
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Figure 6.2: Partial state-space of the railroad crossing example.

6.3.3 Duplicate State Prefix Matching

The state-space exploration algorithms DFS (Listing 6.6) and BFS (Listing 6.7)

store all already explored states in V. DFS stores the states that still have to be

explored in the stack data structure S (Listing 6.6, line 3), while BFS stores the

states that have to be explored in the queue data structure D (Listing 6.7, line 1).

DFS and BFS terminate because during the exploration it is checked whether a

state already is in V before it is explored (Listing 6.6, line 43 and Listing 6.7, line

33). If DFS or BFS encounter a state that is already in V its successors are not

explored for a second time. If a state that already is stored in V is encountered by

DFS or BFS a second time, we call this state a duplicate state.

Consider the partial state-space of the railroad crossing example shown in Fig-

ure 6.2, if DFS already has found the trace s0 Ta s1 Ca s2 ... sn and finds the new

trace s0 Ca s3 Ta s2 leading to the duplicate state s2 already in V, the state s2 is

not further explored a second time, and the execution trace s0 Ca s3 Ta s2 ... sn is

never found.

In Section 5.3 we required that all good and bad traces have been found in

order for the causality checking to be complete and sound. If we would not take

the traces that contain a duplicate state into account the causality checking result

is potentially not complete and sound.

When DFS encounters a duplicate state, it is possible that the new trace to

the duplicate state is shorter or has a different event order than the already known
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execution traces leading to the duplicate state. Hence, the new execution trace is

needed to ensure the AC3 condition and for the OC test to be able to detect all

orderings. Note that it is also possible that the new trace is longer, for instance,

the trace s0 Ta s1 Ca s2 s0 Ta s1 Ca s2 ... sn that can be found in our example.

Since for such a trace the minimality condition is violate it is not needed for the

causality checking and hence is not added by the matchDuplicateState method.

BFS explores the state-space following an exploration order that leads to a

monotonically increasing length of the execution traces. Consequently, the new

execution trace found by BFS leading to the duplicate state either has the same

length as the already known execution trace leading to the duplicate state, or the

new execution trace is longer than the already known execution trace. If the new

execution trace has the same length, the events on the trace have an order different

from the one in the already known execution trace. Hence, the new execution trace

is needed for the OC test to be able to detect all orderings. In order to ensure that all

traces are generated when BFS is used, it is important that the matchDuplicateState

method is called when the state-space exploration with BFS is finished. The reason

for this is that when the trace s0 Ca s3 Ta s2 leading to the duplicate state s2 is

found, only the trace s0 Ta s1 Ca s2 is known but the trace s0 Ta s1 Ca s2 ... sn was

not yet found and, consequently, the trace s0 Ca s3 Ta s2 ... sn can not be generated.

If the trace to the duplicate state is stored in a list and the matchDuplicateState

method is called once all other traces have been found, it can be ensured that all

traces will be generated.

We have implemented a method called matchDuplicateState ensuring that all

execution traces are found by replacing an old prefix leading to a duplicate state

with the new prefix and adding the resulting trace to the sub-set graph. The prefix

matching algorithm is shown in Listing 6.5.

1 function matchDuplicateState(State s, Trace t)

2 {

3 FOR EACH Trace t’ in matchList.getTracesFor(s){

4 // replacing the state and events in t’

5 // leading to state s

6 //with the new state and events in t

7 //the states and events from s to the end of

8 //t’ stay the same

9 Trace t’’ = replacePrefix(s, t, t’);

10 addTrace(t’’);

11 }

12 }

Listing 6.5: Duplicate state prefix matching algorithm.

It is important to note that that the traces generated by the by the matchDupli-

cateState method are sound by definition, which means that no trace which is not

possible in the system model can be generated by the matchDuplicateState method.

Theorem 53. The execution traces generated by the matchDuplicateState method



80 Chapter 6. Qualitative Causality Checking

are sound by definition.

Proof. We already have found the trace s0 aα1 s1 aα2 s2 ... sn and find the new

trace s0 aα2 s3 aα1 s2 leading to the duplicate state s2. Since we can reach sn from

s2 and we have found a new execution trace leading to s2 we can replace the old

prefix s0 aα1 s1 aα2 s2 with the new prefix s0 aα2 s3 aα1 s2 and obtain the trace

s0 aα2 s3 aα1 s2 ... sn, which obviously is sound. Consequently, the traces generated

by the matchDuplicateState method are sound.

6.3.4 Integration into Depth-First Search

Listing 6.6 shows the pseudocode of the DFS algorithm in which we have integrated

the causality checking approach. We adapted the DFS algorithm to add an execu-

tion trace to the subset graph data structure whenever either a bad state is reached

(Listing 6.6, lines 13-20) or a good execution trace has been found (Listing 6.6, lines

21-28 and lines 32-39). If DFS is used it is sufficient to print the search stack in

order to retrieve the execution trace. If a state is encountered that already is in the

state-space the duplicate state prefix matching method described in Section 6.3.3

is called (Listing 6.6, lines 47-54).

1 SubSetGraph G = {};

2 State -space V = {};

3 Stack S = {};

4

5 function main(s)

6 {

7 dfs(init_state );

8 G.searchFinished ();

9 }

10

11 function dfs(s)

12 {

13 IF(error(s))

14 {

15 trace = buildTrace(s);

16 trace.isBad = true;

17 G.addTrace(trace) ;

18 /*bad execution trace found ,

19 add to causality computation */

20 }

21 ELSE

22 {

23 trace = buildTraceFromStack(Stack);

24 trace.isBad = false;

25 G.addTrace(trace);

26 /*"so far good" execution trace found ,

27 add to causality computation */

28 }

29 add(V,s);
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30 add(S,s);

31

32 if(hasNoSuccessors(s) & NOT error(s))

33 {

34 trace = buildTraceFromStack(Stack);

35 trace.isBad = false;

36 G.addTrace(trace);

37 /*good execution trace found ,

38 add to causality computation */

39 }

40

41 FOR EACH successor t of s

42 {

43 IF in(V, t) == false

44 {

45 dfs(t)

46 }

47 ELSE

48 {

49 trace = buildTraceFromStack(Stack)

50 trace.isBad = false;

51 G.matchDuplicateState(t,trace);

52 /*Found new path to already known state ,

53 add trace to match list*/

54 }

55 }

56 delete s from Stack

57 }

Listing 6.6: Algorithm sketch of the extended DFS algorithm.

6.3.5 Integration into Breadth-First Search

The pseudocode of the adapted BFS algorithm is given in Listing 6.7. When using

breadth-first search, the execution trace leading from the initial state to a prop-

erty violating state can be generated by an iterating backwards search through the

predecessor links until an initial state is reached. Whenever a bad (Listing 6.7,

lines 22-26) or a good execution (Listing 6.7, lines 26-30) is found, it is added to

the subset graph. If a state is encountered that already is in the state-space the

corresponding trace is added to the TracesToMatch list (Listing 6.7, lines 45-51)

and once the state-space exploration is finished the duplicate state prefix matching

method described in Section 6.3.3 is called for these traces (Listing 6.7, lines 11-13).

1 Queue D = {};

2 State -space V = {};

3 SubSetGraph G = {};

4 TracesToMatch = {};

5

6 function main (){
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7 add(V, init_state );

8 add(D, init_state );

9 bfs();

10

11 FOR EACH Pair State s, Trace t in TracesToMatch{

12 G.matchDuplicateState(s,trace);

13 }

14

15 G.searchFinished ();

16 }

17

18 function bfs(){

19 // Returns top element of the queue and deletes it.

20 s = getHead(D);

21

22 IF(error(s)){ //bad trace found

23 trace = buildTrace(s);

24 trace.isBad = true;

25 G.addTrace(trace);

26 } ELSE { //"so far good" trace found

27 trace = buildTrace(s);

28 trace.isBad = false;

29 G.addTrace(trace);

30 }

31

32 IF(hasNoSuccessors(s) & NOT error(s)){//good trace

33 trace = buildTrace(s);

34 trace.isBad = false;

35 G.addTrace(trace);

36 }

37

38 WHILE( s has successor t & G.searchNotCompleted ) {

39 IF in(V, t) == false { // generate traces

40 // (backwards linking)

41 setPrevious(t,s);

42 add(V,t);

43 add(D,t);

44 bfs();

45 } ELSE {

46 trace = buildTraceFromStack(Stack );

47 trace.isBad = false;

48 TracesToMatch.add(t,trace);

49 /*Found new trace to already known state t,

50 do prefix matching */

51 }

52 }

Listing 6.7: Algorithm sketch of the adapted BFS algorithm.



6.3. Integration into State-Space Exploration 83

6.3.6 Iterative Approach

In the standard version of the causality checking approach the bad and good traces

found during state-space exploration are added to the sub-set graph and stored if

necessary. Especially due to the storage of the potentially large number of good

traces, the standard approach is not memory efficient. We will now propose an opti-

mized version of the algorithm that consumes less memory. The iterative approach

leverages the fact that the length of the bad traces found by BFS is monotonically

increasing. The iterative approach is not implemented for DFS, because this would

be memory inefficient.

The pseudocode of the adapted SubsetGraph data structure is shown in List-

ing 6.8 and the pseudocode of the adapted addTrace method for the iterative ap-

proach is shown in Listing 6.9. The SubsetGraph data structure is extended by two

Boolean variables that indicate whether the algorithm is executing the first or the

second iteration (Listing 6.8, lines 6-7). The functions implementing the AC2(2)

and OC tests and the matchDuplicateState method do not have to be changed.

The iterative algorithm constitutes of two consecutively executed state-space

explorations with BFS.

1. In the first state-space exploration, we limit the causality checking to find

those causality classes that satisfy conditions AC1, AC2(1) and AC3. We

define the root-node of the subset graph to be green and only add bad traces

to the subset graph, these traces are only stored if they are colored red (List-

ing 6.9, lines 4-24).

2. In the second state-space exploration, we focus on finding the causal event

orderings of the previously identified causality classes and check the AC2(2)

test for the previously identified causality classes (Listing 6.9, lines 26-64).

The pseudocode for the adapted BFS algorithm is shown in Listing 6.10, where

BFS is executed in two consecutive iterations (Listing 6.10, lines 7-18). In the first

iteration only bad traces are added to the SubsetGraph data structure (Listing 6.10,

lines 31-35), while in the second iteration also the good traces (Listing 6.10, lines

35-49) and the traces generated by the matchDuplicateState method (Listing 6.10,

lines 20-22 and lines 58-66) are added to the SubsetGraph data structure.

As we will show in the experimental evaluation in Section 6.6 the iterative

approach leads to a reduction of the memory consumption in comparisons to the

memory consumed by the standard causality checking approach.
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1 class SubSetGraph {

2

3 PrefixTree prefix_actions;

4 PrefixTree prefix_states;

5 List of Integers redTraces;

6 Boolean isFirstRun = false;

7 Boolean isSecondRun = false;

8

9 HashMap <Integer level , List of Traces > tracesToLevel;

10

11 //for duplicate state matching

12 HashMap <state , List of Traces > matchList;

13

14 function addTrace(Trace t) {

15 // ... (*see Listing 6.9*)

16 }

17

18 function checkAC22 () {

19 // ... (*see Listing 6.3*)

20 }

21

22 function checkOC () {

23 // ... (*see Listing 6.4*)

24 }

25

26 function matchDuplicateState(State s, Trace t)

27 {

28 // ... (*see Listing 6.5*)

29 }

30

31 function searchFinished () {

32 checkAC22 ();

33 checkOC ();

34 }

35 }

Listing 6.8: Algorithm sketch of the subset graph data structure for the iter-

ative causality checking approach.
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1 function addTrace(Trace t)

2 {

3

4 IF(isFirstRun && t.isBad ())

5 {

6 FOR EACH Trace t’ in redTraces {

7 IF(t’ is sub set of t) {

8 t.color = orange;

9 }

10 }ELSE IF(t is sub set of t’){

11 t’.color = orange;

12 }

13 IF(t.color = red)

14 {

15 addTo(redTraces , t);

16 //add trace to the prefix trees

17 addTo(prefix_actions , t);

18 addTo(prefix_states , t);

19 // insert all states into the match list

20 addAllStatesToMatchList(t);

21 //add trace to level

22 addTraceToLevel(t.length , t);

23 }

24 }

25

26 IF(isSecondRun)

27 {

28 IF(t.isBad ()) {

29 t.color = red;

30 }ELSE{

31 t.color = green;

32 }

33

34 FOR EACH Trace t’ in redTraces {

35 IF(t’ is sub set of t) {

36 IF(t.isBad ()){

37 t.color = orange;

38 }ELSE{

39 t.color = black;

40 addBlackSuperSet(t’,t);

41 addBlackSubSet(t,t’);

42 }

43 }ELSE IF(t is sub set of t’){

44 t’.color = orange;

45 }

46 }

47 IF(t.color = red)

48 {

49 addTo(redTraces , t);
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50 }

51

52 IF(t.color = red | t.color = black)

53 {

54 //add trace to the prefix trees

55 addTo(prefix_actions , t);

56 addTo(prefix_states , t);

57 //add to list with all traces

58 addTo(allTraces , t);

59 // insert all states into the match list

60 addAllStatesToMatchList(t);

61 //add trace to level

62 addTraceToLevel(t.length , t);

63 }

64 }

65

66 }

Listing 6.9: Algorithm sketch of the addTrace method for the iterative causal-

ity checking approach.

1 Queue D = {};

2 State -space V = {};

3 SubSetGraph G = {};

4 TracesToMatch = {};

5

6 function main (){

7 //first run

8 G.isFirstRun = true;

9 add(V, init_state );

10 add(D, init_state );

11 bfs();

12

13 //reset and do second run

14 G.isFirstRun = false;

15 G.isSecondRun = true;

16 add(V, init_state );

17 add(D, init_state );

18 bfs();

19

20 FOR EACH Pair State s, Trace t in TracesToMatch{

21 G.matchDuplicateState(s,trace);

22 }

23

24 G.searchFinished ();

25 }

26

27 function bfs(){

28 // Returns top element of the queue and deletes it.

29 s = getHead(D);
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30

31 IF(error(s)){ //bad trace found

32 trace = buildTrace(s);

33 trace.isBad = true;

34 G.addTrace(trace);

35 } ELSE { //"so far good" trace found

36 IF(G.isSecondRun ){

37 trace = buildTrace(s);

38 trace.isBad = false;

39 G.addTrace(trace);

40 }

41 }

42

43 IF(hasNoSuccessors(s) & NOT error(s)){//good trace

44 IF(G.isSecondRun ){

45 trace = buildTrace(s);

46 trace.isBad = false;

47 G.addTrace(trace);

48 }

49 }

50

51 WHILE( s has successor t & G.searchNotCompleted ) {

52 IF in(V, t) == false { // generate traces

53 // (backwards linking)

54 setPrevious(t,s);

55 add(V,t);

56 add(D,t);

57 bfs();

58 } ELSE {

59 IF(G.isSecondRun ){

60 trace = buildTraceFromStack(Stack );

61 trace.isBad = false;

62 TracesToMatch.add(t,trace);

63 /*Found new trace to already known state t,

64 do prefix matching */

65 }

66 }

67 }

Listing 6.10: Algorithm sketch of the adapted BFS algorithm for the iterative

causality checking approach.
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6.3.7 Iterative Approach with Parallel Breadth-First Search

As we will see in Section 6.6, BFS outperforms DFS in terms of runtime and memory

consumption. In order to further optimize the runtime we have extended the par-

allel BFS variant already implemented in the SpinJa [33] model-checker to support

causality checking.

There are three parallelization strategies for DFS and BFS that are discussed

in the literature [10, 11]:

1. Static partitioning of the state space, where each thread maintains its own

queue and store for the already visited states. This parallelization variant is

limited to BFS.

2. Stack slicing, where a shared store for the already visited states is used and

each thread maintains its own search stack and the algorithm tries to balance

the load by shifting states from the stack of one search thread to stack of

another search stack. This parallelization variant is limited to DFS.

3. Shared storage, where the store for the already visited states and the queue

is shared by all threads.

The adapted parallel BFS algorithm is shown in Listing 6.11. The parallelization

of the BFS algorithm is achieved by executing a predefined number (maxThreads) of

BFS threads (Listing 6.11, lines 12-14) with a shared queue, state-space, and subset

graph. This form of parallelization was shown to be efficient for multi-core systems

by Laarman et al. [67]. We choose a shared storage parallelization instead of static

partitioning of the state-space because of the high communication costs that are

caused by a static partitioning and because the causality checking requires a shared

subset graph data-structure. Stack slicing could not be used because it is limited

to DFS. Each parallel BFS thread retrieves a state from the shared queue and adds

the successor states to the shared queue and checks whether the property is violated

in one of the successor states (Listing 6.11, lines 33-73). For the iterative approach

with parallel BFS we do not need to change the subset graph implementation and

can use the subset graph implementation of the iterative approach proposed in

Section 6.3.6.

1 Queue D = {};

2 State -space V = {};

3 SubSetGraph G = {};

4 TracesToMatch = {};

5

6 function main (){

7 //first run

8 G.isFirstRun = true;

9 add(V, init_state );

10 add(D, init_state );

11
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12 FOR i=0 TO maxThreads {

13 NewThread(bfs ());

14 }

15

16 //reset and do second run

17 G.isFirstRun = false;

18 G.isSecondRun = true;

19 add(V, init_state );

20 add(D, init_state );

21

22 FOR i=0 TO maxThreads {

23 NewThread(bfs ());

24 }

25

26 FOR EACH Pair State s, Trace t in TracesToMatch{

27 G.matchDuplicateState(s,trace);

28 }

29

30 G.searchFinished ();

31 }

32

33 function bfs(){

34 // Returns top element of the queue and deletes it.

35 s = getHead(D);

36

37 IF(error(s)){ //bad trace found

38 trace = buildTrace(s);

39 trace.isBad = true;

40 G.addTrace(trace);

41 } ELSE { //"so far good" trace found

42 IF(G.isSecondRun ){

43 trace = buildTrace(s);

44 trace.isBad = false;

45 G.addTrace(trace);

46 }

47 }

48

49 IF(hasNoSuccessors(s) & NOT error(s)){//good trace

50 IF(G.isSecondRun ){

51 trace = buildTrace(s);

52 trace.isBad = false;

53 G.addTrace(trace);

54 }

55 }

56

57 WHILE( s has successor t & G.searchNotCompleted ) {

58 IF in(V, t) == false { // generate traces

59 // (backwards linking)

60 setPrevious(t,s);
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61 add(V,t);

62 add(D,t);

63 bfs();

64 } ELSE {

65 IF(G.isSecondRun ){

66 trace = buildTraceFromStack(Stack );

67 trace.isBad = false;

68 TracesToMatch.add(t,trace);

69 /*Found new trace to already known state t,

70 do prefix matching */

71 }

72 }

73 }

Listing 6.11: Algorithm sketch of the adapted parallel BFS algorithm for the

iterative causality checking approach.

6.4 Completeness and Soundness

In this section we discuss how the general results for completeness and soundness of

causality checking presented in Section 5.3 can be used to show completeness and

soundness of the qualitative causality checking approach. In the remainder of this

section we will assume that the state-space of the model we analyze is finite and a

complete exploration of the state-space is possible. In Section 9.2 we will discuss

the implications if this assumption does not hold any longer.

6.4.1 Completeness

According to Theorem 43, the event order logic formula returned by the causality

checker is complete if all bad traces have been identified.

Therefore, we have to show that the DFS and BFS algorithms on which the

causality checking algorithm is based completely identify all bad traces.

Theorem 54. If the state-space of the model we analyze is finite and a complete

exploration of the state-space is possible, the adapted DFS and BFS algorithms

identify all bad traces and thus the causality checking algorithm is complete.

Proof. If the state-space of the model is finite, then the DFS and BFS algorithms

used for model checking are able to perform a full state-space exploration and

identify all possible bad states [8]. If the DFS algorithm or the BFS algorithm

encounter a state that was previously explored and hence all successors of this state

have already been explored as well, the successors are not explored for a second

time. In order to get the complete set of traces we use the duplicate state matching

method discussed in Section 6.3.3. Since all bad states have been identified, there

exists at least one trace that leads to each bad state. For each duplicate state

on this trace the duplicate state matching method will generate all possible traces
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that lead from the initial state to the duplicate state and finally to the bad state.

Consequently, we can guarantee that all bad traces have been identified and thus

the result of the causality checking algorithm is complete.

6.4.2 Soundness

Theorem 44 makes two assumptions in order to show the soundness of the causality

checking result.

1. It is assumed that the bad traces used for the causality checking are sound.

The bad traces returned by the DFS and BFS algorithms on which we base

our causality checking algorithm are sound by definition and according to

Theorem 53 the traces generated by the duplicate state matching method are

sound.

2. It is assumed that all good traces have been found. If the state-space of

the model is finite all states in the state-space are explored at least once.

Consequently, for each good state there exists at least one trace leading to

this state. For each duplicate state on this trace the duplicate state matching

method will generate the all possible traces that lead from the initial state

to the duplicate state and finally to the good state. Consequently, all good

traces are identified.

Corollary 3. It follows that if the state-space of the model we analyze is finite

and a complete exploration of the state-space is possible the results generated by the

qualitative causality checking approach are sound.

6.5 Complexity Considerations

Eiter and Lukasiewicz present in [39] a careful analysis of the complexity of com-

puting causality with the actual cause definition of Halpern and Pearl in structural

equation models. Most notable is the result that even for a structural equation

model with only binary variables, in the general case computing causal relation-

ships between variables is NP-complete. The reason for this is the fact that the

event variables in X, Z and W are seen as independent and thus arbitrary combi-

nations of their values have to be considered.

Results in [40] show that causality can be computed in polynomial time if the

causal model M is domain-bounded and the causal graph over the events forms a

directed causal tree. A directed causal tree consists of directed paths, where the

nodes represent events, and the edges represent the causality relationships and the

root node represents the hazard or effect. Intuitively this restriction means that

there are know cyclic dependencies between the variables and that there exists a

dependency between the variables in X, Z and W. In the system model we analyze

there exists a dependency between all event variables, since each execution trace

of the system model is a directed path containing the variables representing the
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events. Consequently, computing the causal events for a property violation in a

system model can be done in polynomial time.

For the qualitative causality checking approach proposed in Section 6.3, adding

a trace (addTrace) to the subset graph has a worst-case runtime complexity of

RT(addTrace)∈ O(∣t∣) where ∣t∣ is the number of traces. The test for AC2(2)

(checkAC22) and OC (checkOC) have a worst-case runtime complexity of O(∣t∣2),
respectively. The function addTrace is called for each trace, and the function

checkAC22 and checkOC are called once the search is finished. Thus we get a worst-

case runtime complexity of RT(CausalityChecking) = ∣t∣ ∗ ∣t∣ + ∣t∣2 + ∣t∣2 ∈ O(∣t∣2) for

the qualitative causality checking approach, where ∣t∣ is the number of traces. Note

that this is the runtime complexity added by the causality checking on top of the

runtime of the state-space exploration. In the worst-case ∣t∣ = 2∣E∣ where ∣E∣ is the

number of transitions in the model.

The worst-case runtime complexity of the iterative approach described in Sec-

tion 6.3.6 as well as the runtime complexity of the iterative approach with parallel

BFS described in Section 6.3.7 is in the worst-case the same as for the standard

qualitative causality checking approach, since in the worst-case all traces could be

bad traces. But in practice only a small number of traces is marked as red, hence the

runtime in practical application scenarios is reduced with the iterative approaches.

In terms of memory consumption the worst-case for all approaches is that all

traces have to be stored, consequently, the worst-case memory consumption is in

O(∣t∣) where ∣t∣ is the number of traces.

6.6 Experimental Evaluation

In order to evaluate the proposed approach, we have implemented our causality

checking algorithms within the SpinJa toolset [33], a Java re-implementation of the

explicit state model checker Spin [50]. Our SpinCause tool computes the causality

relationships for a Promela model and a given LTL property. In order to compute

all interleavings and all executions, partial order reduction was disabled during the

state-space exploration. The Promela models used for the case studies have been

created manually. In practical usage scenarios the Promela models can also be

automatically synthesized from higher-level design models, as for instance by the

QuantUM tool [72]. The following experiments were performed on a PC with two

Intel Xeon Processors (4 cores with 3.60 Ghz) and 144 GBs of RAM.

We evaluate the causality checking approach using five case studies, which we

discuss in Sections 6.6.1-6.6.5. In Section 6.6.6 a summary of the number of states,

transitions, bad states and bad traces of the different case studies is given. Further-

more, we compare in Section 6.6.6 the runtime and memory consumption needed

for a full state-space exploration of the case studies with DFS and BFS, with the

runtime and memory consumption of the standard qualitative causality checking

approach, the iterative approach and the iterative approach with parallel BFS, and

summarize our results.
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6.6.1 Railroad Crossing

The Promela model of the railroad crossing that we introduced in Section 3.2 com-

prises 133 states and 237 transitions. A total of 15 bad states and 41 bad execu-

tion traces are found. We want to compute the causal events for the hazardous

case where both the car and the train are on the railroad crossing at the same

time. The non-reachability of this hazard can be characterized by the LTL formula

ϕ = ◻¬(car crossing∧train crossing). The causality checking algorithm generates

the event order logic formula Ψ = (Gf ∧ ((Ta ∧ (Ca . Cc)) .< ¬Cl .> Tc)) ∨ ((Ta ∧
(Ca.Cc)).<¬Cl.> (Gc∧Tc)), consisting of two causality classes, for the violation

of ϕ.

• First, if the gate fails at some point of the execution and a train (Ta) and a

car (Ca) are approaching this results in a hazardous situation if the car is on

the crossing (Cc) and does not leave the crossing (Cl) before the train (Tc)

enters the crossing, which is described by the EOL formula Gf ∧ ((Ta ∧ (Ca .
Cc)) .< ¬Cl .> Tc)).

• Second, if a train (Ta) and a car (Ca) are approaching but the gate closes

(Gc) when the car (Cc) is already on the railway crossing and is not able to

leave (Cl) before the gate is closing and the train is crossing (Tc), this also

corresponds to a hazardous situation, and is described by the EOL formula

(Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc).

6.6.2 Airbag System

The industrial size model of an airbag system that we use in this case study is taken

from [2]. The architecture of this system, schematically shown in Figure 6.3, was

provided by TRW Automotive GmbH.

The airbag system can be divided into three major parts: sensors, crash evalua-

tion and actuators. The system we consider here consists of two acceleration sensors

whose task it is to detect front or rear crashes, one microcontroller to perform the

crash evaluation, and an actuator that controls the deployment of the airbag. No-

tice that the redundant acceleration sensors are mounted into different directions so

that one is measuring the acceleration in the front direction of the vehicle and the

other one is measuring the acceleration in the rear direction. The deployment of the

airbag is also secured by two redundant protection mechanisms. The Field Effect

Transistor (FET) controls the power supply for the airbag squibs that ignite the

airbag. If the Field Effect Transistor is not armed, which means that the FET-pin

is not high, the airbag squib does not have enough electrical power to ignite the

airbag. The second protection mechanism is the Firing Application Specific Inte-

grated Circuit (FASIC) which controls the airbag squib. Only if it receives first an

arm command and then a fire command from the microcontroller it will ignite the

airbag squib which leads to the pyrotechnical detonation inflating the airbag.

Although airbags save lives in crash situations, they may cause fatal accidents

if they are inadvertently deployed. This is because the driver may lose control of
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Figure 6.3: Block diagram showing the architecture of the airbag system.

the car when an inadvertently deployment of the airbag occurs. It is a pivotal

safety requirement that an airbag is never deployed if there is no crash situation.

We are interested in computing the causal events for the hazard corresponding

to an inadvertent ignition of the airbag. The non-reachability of this hazard can

be characterized by the LTL formula ϕ = ◻¬(no crash ∧ airbag deployed). The

Promela model of the airbag system consists of 2,952 states and 25,340 transitions.

While there are a total of 912 bad states and 1399 bad execution traces, the

causality checker result comprises only 5 causality classes. Obviously, a manual

analysis of this large number of traces in order to determine causal factors would

be very laborious.

The event order logic formula returned by the causality checker is Ψ =
(FASICShortage)∨(FETStuckHigh.FASICStuckHigh)∨(MicroControllerFailure.
enableFET . armFASIC . fireFASIC) ∨ (FETStuckHigh .MicroControllerFailure .
armFASIC.fireFASIC)∨(MicroControllerFailure.enableFET.FASICStuckHigh).

• The FASICShortage event is the only event that can directly cause an in-

advertent deployment and is represented by the event order logic formula

(FASICShortage). The FASICShortage event models the case where there is

an electrical short circuit in the FASIC component that directly leads to the

deployment of the airbag.

• The combination of the events FETStuckHigh and FASICStuckHigh leads to

an inadvertent deployment of the airbag if the event FETStuckHigh occurs

prior to the event FASICStuckHigh, which is represented by the event order

logic formula (FETStuckHigh.FASICStuckHigh). The event FETStuckHigh

models a component level failure of the FET where the output pin of the FET

is stuck at the value high, similarly FASICStuckHigh models a component

level failure of the FASIC where the output port of the FASIC is stuck at
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the value high. Since the electrical power that is needed to ignite the airbag

is controlled by the FET, the FETStuckHigh event has to happen before the

FASICStuckHigh event occurs, because otherwise there is not enough power

available to ignite the airbag when the FASICStuckHigh event occurs.

• The event MicroControllerFailure can lead to an inadvertent deployment if

it is followed by the following sequence of events: enableFET, armFASIC,

and fireFASIC. This sequence is represented by the event order logic formula

(MicroControllerFailure.enableFET.armFASIC.fireFASIC). This causality

class represents the scenario where through a failure of the program counter of

the microcontroller the firing sequence enableFET, armFASIC, and fireFASIC

is inadvertently executed.

• If the event FETStuckHigh occurs prior to the MicroControllerFailure event

the sequence in which armFASIC and fireFASIC occur after the Micro-

ControllerFailure event suffices to lead to an inadvertent deployment of

the airbag. This sequence is represented by the event order logic formula

(FETStuckHigh .MicroControllerFailure . armFASIC . fireFASIC).

• If the event FASICStuckHigh occurs after the MicroControllerFailure event

and the enableFET event, this also leads to an inadvertent deployment. It

is represented by the event order logic formula (MicroControllerFailure .
enableFET . FASICStuckHigh).

From the EOL formula returned by the causality checker it is easy to see that

the ordering of the events, like for instance the order of the events (FETStuckHigh

and FASICStuckHigh), is causal for the property violation. If traditional model

checking and manual counterexample analysis is used, the same insight requires

the comparison of the order of all events in all 1399 bad traces which is a time

consuming and error prone task.

6.6.3 Embedded Control System

The embedded control system taken from [63] is part of the PRISM benchmark

suite [66]. The system consists of a main processor, an input processor, an out-

put processor, three sensors, two actuators and a communication bus connecting

the processors. The architecture of the embedded control system is schematically

displayed in Figure 6.4.

The input processor reads and processes the data provided by the three sensors,

the main processor polls the input processor and forwards the data from the input

processor to the output processor. The output processor controls the two actuators.

Any of the three sensors can fail, but since they are used in triple modular redun-

dancy the input processor can determine sufficient information if two of the three

are functional. If more than one sensor fails the input processor reports the failure

to the main processor and the main processor shuts the system down. Similarly,

it is sufficient if at least one of the actuators is operational. If both actuators fail,
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Figure 6.4: Block diagram showing the architecture of the embedded control system.

the output processor will report this two the main processor and the main proces-

sor shuts the system down. The input, output and main processor can also fail

and this will also result in a shutdown of the system. We set the model constant

MAX COUNT, which represents the maximum number of processing failures that

are tolerated by the main processor, to a value of 5. We are interested in computing

the causal events for the event “system shut down”. The non-reachability of this

hazard can be characterized by the LTL formula ϕ = ◻¬(down).
We manually translate the PRISM model to a Promela model which comprises

6,013 states and 25,340 transitions and contains a total of 83 bad states and 90 bad

execution traces.

The event order logic formula returned by the causality checker is

Ψ = MainProcFail ∨ InputProcFail ∨ OutputProcFail ∨ InputProcTransFail ∨
(SensorFailure ∧ SensorFailure) ∨ (ActuatorFailure ∧ ActuatorFailure) and illus-

trates that a system shut down can be caused by

• a failure in the main processor (MainProcFail),

• a failure in the input/output processor (Input/OutputProcFail),

• a transient failure in the input processor (InputProcTransFail), or

• the failing of at least two sensors / actuators (SensorFailure and SensorFail-

ure/ ActuatorFailure and ActuatorFailure).

6.6.4 Train Odometer Controller

The train odometer system taken from [22] consists of two independent sensors, a

wheel sensor and a radar sensor, used to measure the speed and the position of a

train. A monitor component continuously checks the status of both sensors.
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Figure 6.5: Block diagram showing the architecture of the train odometer controller.

The monitor reports failures of the sensors to other train components that have

to disregard temporarily erroneous sensor data. If both sensors fail, the moni-

tor initiates an emergency brake maneuver and the system is brought into a safe

state. Only if the monitor fails, any subsequent faults in the sensors will no

longer be detected. We are interested in computing the causal events for reach-

ing an unsafe state of the system, where the failure of the sensors is not de-

tected. The non-reachability of this hazard can be characterized by the LTL formula

ϕ = ◻¬(failure not detected). The Promela model of the train odometer comprises

11,722 states, 14,049 transition, 1368 bad states, and 1579 bad execution traces.

The event order logic formula returned by the causality checker is

Ψ = (Start W Fail S . Wait W Fail S) ∧ (¬failureDeteted .] Wait Mon Fail) ∨
(Start W Fail F . Wait W Fail F) ∧ (¬failureDeteted .] Wait Mon Fail) ∨
Wait R Fail ∧ (¬failureDeteted .] Wait Mon Fail) and illustrates that an unsafe

state of the system is caused if

• the wheel sensor fails at low speed (Start W Fail S.Wait W Fail S), or high

speed (Start W Fail F . Wait W Fail F), and the monitor fails prior to de-

tecting a failure (¬failureDeteted .] Wait Mon Fail), of

• the radar sensor fails (Wait R Fail) and the monitor fails prior to detecting

a failure (¬failureDeteted .] Wait Mon Fail).

From the EOL formula returned by the causality checker it is easy to see that the

non-occurrence of the event failure detected ((¬failureDeteted) is causal. It is diffi-

cult to conclude this from the counterexamples generated by a model checker, since

it also requires to compare the counterexamples with good execution traces. Conse-

quently, causality checking provides an insight into the events causing the property

violation which would not have been obvious using traditional model checking and

manual counterexample analysis.
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Figure 6.6: Block diagram showing one of the processing channels of the airport

surveillance radar system.

6.6.5 Airport Surveillance Radar

The Airport Surveillance Radar (ASR) is developed at Airbus Defence & Space1.

The high-level architecture of the physical components of the ASR system together

with high-level behavior of the embedded software were specified in joint work with

Beer et al. as a model in the SysML and first presented in [13].

The ASR monitors the airspace in the vicinity of an airport. It is used by air

traffic controllers guiding aircraft according to their flight plan.

The architecture of the ASR system, which is schematically depicted in Fig-

ure 6.6, consists of three main components:

1. The Primary Surveillance Radar (PSR) which uses radar signals that are re-

flected from the body of an object moving in the airspace in order to determine

its location. In the normal case this object is an aircraft.

2. The Secondary Surveillance Radar (SSR) which communicates with the

transponder of the aircraft in order to obtain, amongst others, location and

identity information.

3. The internal structure of the radar consists of two channels. Each channel

processes the data provided by the PSR and the SSR and creates tracks rep-

resenting the flight paths of the aircrafts. A channel consists of 4 components:

(a) A signal processor which converts the analog PSR signal into digital

signals.

(b) A parameter extractor that is extracting plots from the digital signal.

It is also managing a clutter-map which indicates the position of object

irrelevant for the air traffic.

(c) A sensor tracker which takes the SSR signal and the plots generated by

the parameter extractor and combines them into a track representing

1http://www.airbusdefenceandspace.com/

http://www.airbusdefenceandspace.com/
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the flightpath of an aircraft. In case of an error with the SSR or PSR

signal the sensor tracker tries to extrapolate the track based on the given

information. If the track cannot be recovered into its original state it is

removed from the list.

(d) A validation unit that checks whether the tracks generated by the sensor

tracker are plausible or not.

The tracks generated by the processing channel for each aircraft are displayed

to the air traffic controller. Even though a complete failure of the system is highly

critical for the safety of the system, the displaying of wrong data to the air traffic

controller is considered to be the most critical hazard that can occur. Therefore,

we compute the causal events for the case where the positional information of an

aircraft is lost. The state that aircraft data for one aircraft is no longer displayed

correctly is called coasted track, consequently, this hazard can be characterized by

the LTL formula ϕ = ◻¬(coastedTrack).
We analyze two variants of the ASR system, the first variant where we have

modeled only one channel, and the second variant where we have modeled both re-

dundant channels. The one channel variant comprises 1,230,516 states and 7,492,866

transitions and the redundant two channel variant comprises 46,389,412 states and

326,412,170 transitions. The one channel variant contains 608,256 bad states and

611,376 bad traces and the two channel variant contains 15,206,400 bad states and

15,285,473 bad traces.

The event order logic formula returned by the causality checker is Ψ =
(dot sighted . plot detected . initTrack . PSR only . coastTrack) ∨ (dot sighted .
plot detected. initTrack.SSR only.coastTrack) and illustrates that whenever the

following events occur in this order

1. the radar signal of an aircraft is processed by the signal processor

(dot sighted),

2. the parameter extractor detects a radar plot (plot detected) representing the

aircraft,

3. a track representing the flight path of the aircraft is initialized by the sensor

tracker,

4. the primary radar (PSR only) or the secondary radar (SSR only) fails, and

5. the decision to no longer display the aircraft (coastTrack) is made

the flight track information of the aircraft is no longer visible for the air traffic

controller.

Obviously, in an industrial setting, with time and cost constraints, it is not fea-

sible to manually analyze all 15,285,473 bad traces of the ASR 2 channel variant in

order to derive the causal events manually. Consequently, causality checking pro-

vides valuable information as to why the hazard occurred, which is very tedious or
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even impossible to determine if standard model checking and manual counterexam-

ple analysis is used.

6.6.6 Discussion

Table 6.1 compares the number of states, transitions, bad states, and bad transitions

for the different cases studies and whether the case study is an academic or an

industrial case study.

Number of Industrial

State Transitions
Bad

States

Bad

Traces

Causality

Classes

Case

Study

Railroad 133 237 15 41 2 no

Airbag 2,952 25,340 912 1399 5 yes

Embedded 6,013 25,340 83 90 4 no

Train Odometer 11,722 14,049 1368 1579 2 no

ASR 1 Channel 1,230,516 7,492,866 608,256 611,376 2 yes

ASR 2 Channel 46,389,412 326,412,170 15,206,400 15,285,473 2 yes

Table 6.1: Number of states, transitions and bad states of the different case studies.

From Table 6.1 and the results obtained by the causality checking we can make

the following observations:

• The number of causality classes computed by the causality checker is signif-

icantly less than the number of bad traces returned by the causality checker

and, consequently, the results obtained by the causality checker are much

easier to interpret as the counterexamples generated by the model checker.

• From the EOL formula returned by the causality checker it is easy to see

that the ordering of the events, like for instance the order of the events

(FETStuckHigh and FASICStuckHigh) in the airbag case study, is causal for

the property violation. If traditional model checking and manual counterex-

ample analysis is used, the same insight requires the comparison of the order

of all events in all bad traces which is, due to the potentially large number of

bad traces, a time consuming and error prone task.

• From the EOL formula returned by the causality checker it is easy to see

that the non-occurrence of an event, as for instance the event failure detected

(¬failureDeteted) in the train odometer case study, is causal. It is difficult to

conclude this from the counterexamples generated by a model checker, since

it also requires to compare the counterexamples with good execution traces.

Consequently, causality checking provides an insight which would not have

been obvious using traditional model checking and manual counterexample

analysis.

We will now compare and discuss the runtime and memory consumption needed

for a full state-space exploration of the causality checking with DFS and BFS, with
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the runtime and memory consumption of the standard qualitative causality checking

approach, the iterative approach and the iterative approach with parallel BFS. The

Model Checking

DFS BFS

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

Railroad 0.02 8.87 0.02 8.69

Airbag 0.17 9.23 0.18 9.06

Embedded 0.05 8.94 0.06 8.76

Train Odometer 0.26 9.79 0.27 9.62

ASR 1 Channel 44.95 8,467.14 51,66 8,466.88

ASR 2 Channel 503.92 14,669.11 659.26 14,668.85

Causality Checking

DFS BFS

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

Railroad 0.06 18.25 0.10 8.97

Airbag 0.86 165.52 1.24 21.19

Embedded 0.13 19.95 0.16 9.43

Train Odometer 15.06 2280.86 2.59 63.36

ASR 1 Channel out of mem. out of mem. 750,31 24,663.61

ASR 2 Channel out of mem. out of mem. out of mem. out of mem.

Table 6.2: Runtime and memory needed for model checking of the case studies with

DFS and BFS and for causality checking with DFS and BFS.

runtime and memory needed for model checking of the different case studies with

DFS and BFS and the runtime and memory needed for causality checking including

model checking with DFS and BFS is given in Table 6.2. The different runtime

values are visualized in Figure 6.7 and the memory consumption is visualized in

Figure 6.8. The runtime and memory consumption for causality checking of the

ASR case study with one and two channels using DFS and for the ASR case study

with two channels using BFS can not be given because the algorithm consumed the

complete 144 GBs of available memory and produced an out of memory error (out

of mem.) prior to the completion of the causality checking.

The following trends can be identified:

• If no causality checking is done, DFS and BFS have approximately the same

runtime and memory consumption. The reason for this is that in both cases

we perform a full exploration of the state-space. In terms of memory con-

sumption BFS outperforms DFS for the airbag model, the reason for this is

the comparably large number of bad states in the airbag model. While BFS

finds the shortest counterexamples first, DFS might find longer traces leading

to the bad states and, consequently, consumes more memory due to the larger

search depth.

• The causality checking adds a runtime and memory penalty, but the exper-

iments show that causality checking is applicable to industrial size Promela
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Figure 6.7: Runtime needed for model checking of the case studies with DFS and

BFS and for causality checking with DFS and BFS (logarithmic scale).

Figure 6.8: Memory needed for model checking of the case studies with DFS and

BFS and for causality checking with DFS and BFS (logarithmic scale).
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models.

• When performing causality checking, BFS outperforms DFS for large models

in terms of both runtime and memory consumption. BFS outperforms DFS

because if BFS is used, we can safely rely on the assumption that when a bad

trace is found, all shorter bad traces already have been found. This assumption

assures that the minimality condition holds for each bad trace which was found

using BFS and which was colored red by the causality checking algorithm. If

DFS is used, no assumptions on the length of the bad trace can be made.

The main reason why the assumption on the bad trace length is important

and has such a high impact on the memory consumption when using DFS

compared to BFS is that all good traces which are supersets of a red trace

have to be taken into account for the AC2(2) test. When BFS is used only

the traces which are supersets of red traces need to be stored, whereas when

DFS is used all good traces need to be stored. Because the good traces are

needed in case a shorter red trace is found later in the search for which we

need the good super-traces for the AC2(2) test.

• It is not possible to perform causality checking with DFS for both variants

of the ASR case study since the algorithm runs out of memory. Causality

checking using BFS also runs out of memory for the 2 channel variant but is

able to complete for the 1 channel variant of the ASR case study.

Iterative Approach

with Parallel BFS

Iterative Approach

with Standard BFS

Standard Approach

with BFS

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

Railroad 0.74 17.92 0.83 17.93 0.10 8.97

Airbag 1.59 18.51 1.55 18.53 1.24 21.19

Embedded 0.75 17.99 0.75 17.99 0.16 9.43

Train Odometer 1.44 19.11 1.59 19.21 2.59 63.36

ASR 1 Channel 50.37 195.51 219.88 195.89 750,31 24,663.61

ASR 2 Channel 1,101.99 6,967.00 1,342.69 27,759.32 out of mem. out of mem.

Table 6.3: Runtime and memory needed for the iterative causality checking ap-

proaches and the standard causality checking approach.

In Table 6.3 the runtime and memory needed for the iterative causality checking

approach with parallel BFS (using 10 threads), the iterative causality checking

approach with standard BFS, and the standard causality checking approach are

presented.

The different runtime values are visualized in Figure 6.9 and the memory con-

sumption is visualized in Figure 6.10.

The following trends can be identified:

• For very small models, like the railroad crossing and the embedded control

model, both the runtime and the memory consumption for the iterative ap-
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Figure 6.9: Runtime needed for the iterative causality checking approaches and the

standard causality checking approach (logarithmic scale).

Figure 6.10: Memory needed for the iterative causality checking approaches and

the standard causality checking approach (logarithmic scale).
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proaches are higher than for the standard approach. This is due to the fact

that the state-space is explored twice. With increasing size of the model,

the iterative approaches outperform the standard approach with respect to

runtime and memory consumption.

• With increasing size of the model the iterative approach with parallel BFS

outperforms the iterative approach with the standard BFS in terms of runtime.

Note that even though for the parallel BFS approach the different BFS threads

need to be managed there is no overhead introduced by the parallelization of

BFS.

• While it is not possible to perform a causality checking of the 2 channel variant

of the ASR case study with the standard approach, both of the iterative

approaches are able to perform causality checking on the 2 channel variant of

the ASR case study.

6.6.7 Summary

We have evaluated the usefulness and performance of the proposed causality check-

ing approaches on 5 case studies. Two of the case studies are taken from industrial

projects. With the optimized iterative approaches it is possible to perform causality

checking for all of the five case studies.

The results generated by the causality checker provide valuable insight as to

why the hazard occurred, which is very tedious or even impossible to determine if

standard model checking and manual counterexample analysis is used, due to the

amount of counterexamples generated.

The experimental evaluation indicates that causality checking using BFS out-

performs causality checking using DFS in terms of memory and runtime. For large

models, the iterative causality checking approach using parallel BFS outperforms all

other causality checking approaches in terms of runtime and memory. Consequently,

we recommend to use the iterative causality checking approach using parallel BFS

as default algorithm for causality checking of industrial sized models.
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7.1 Introduction

In the previous chapter we have shown how causality reasoning can be integrated

into qualitative model checking. While qualitative causality checking is very helpful

for the analysis of systems, it can not give any insights in how much probability mass

a certain causality class contributes to the probability of a property violation. As

we have argued in Chapter 1, the hardware in which the software is embedded might

deteriorate and exhibit certain failure behavior that impacts the software, such as

for example bit flips in the memory that is used by the software. In industry negative

exponentially distributed rates [96, 95], also called failure rates, are used to estimate

the occurrence probability of such hardware failures in a given time frame. In this

chapter we extend our causality checking to be applicable to probabilistic models

and, consequently, to compute the causal events based on a set of probabilistic

counterexamples [5, 47].

7.2 Causality Checking on Probabilistic Counterexam-

ples

We propose a probabilistic causality checking approach that is applied as a post-

processing step on a probabilistic counterexample.
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The approach presented here is not limited to any probabilistic counterexample

generation tool in particular, as long as it is possible to enumerate all traces. The

COMICS [56] tool and the DiPro [3] tool are the only publicly available probabilistic

counterexample generation tools at the time of this writing. The COMICS toolÃ¶
computes a minimal critical subsystem of the system as counterexample, the critical

subsystems are subgraphs of the analyzed Markov chain. The DiPro tool can either

enumerate the traces in the counterexample or produce diagnostic subgraphs which

are very similar to the notion of the critical subsystems computed by COMICS. Since

the approach we present here requires an enumeration of all bad and good traces,

we use the DiPro tool in the experimental evaluation section of this chapter. Note

that the DiPro tool could be replaced by any other probabilistic counterexample

generation tool that allows for the enumeration of all bad and good traces.

It is not possible to implement probabilistic causality checking on-the-fly be-

cause all bad traces have to be known in order to compute the probability of the

property violation. We use the DiPro tool to compute a complete probabilistic

counterexample which contains all paths leading to a state satisfying some prop-

erty ϕ. This is achieved by computing the counterexample for the CSL formula

P=?(true U ϕ). Note that in the case of probabilistic causality checking we expect ϕ

to express the undesired system state. The complete probabilistic counterexample

together with all good paths which can be obtained at no additional computational

effort are taken as an input for the proposed approach.

We interpret counterexamples as a set of execution traces Σ. We assume that

Σ contains all execution traces of the model we wish to analyze and that Σ is

partitioned in disjoint sets ΣG and ΣB. The set ΣB contains all traces belonging to

the counterexample, and the set ΣG contains all system traces that do not belong

to the counterexample. Notice, that in order to compute the full probability of

reaching the state where ϕ holds, it is necessary to perform a complete state-space

exploration of the model we analyze. Hence we obtain ΣG at no additional cost.

Definition 35. Good and Bad Traces. Let Σ the set of all good and bad traces of

the model and ϕ the hazard.

• ΣG = {σ ∈ Σ ∣ σ /⊧CSL ϕ},

• ΣB = {σ ∈ Σ ∣ σ ⊧CSL ϕ}, and

• ΣG ∪ΣB = Σ and ΣG ∩ΣB = ∅.

Next we define the candidate set of traces that we consider to be causal for

ϕ. The candidate set is defined in such a way that it includes all minimal traces.

Traces are minimal if they do not contain a sub-trace according to the ⊆ operator

that is also a member of the candidate set.

Definition 36. Candidate Set. Let ΣB the set of all bad execution traces with

respect to the undesired property ϕ. We define the candidate set of causal traces ϕ

as CS(ϕ): CS(ϕ) = {σ ∈ ΣB ∣∀σ′ ∈ ΣB . σ
′ ⊆ σ⇒ σ′ = σ}.
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Notice, that the traces in the candidate set are minimal in the sense that remov-

ing an event from some trace in the candidate set means that the resulting trace is

no longer in the counterexample ΣB. Each σ ∈ ΣB can be represented by an event

order logic formula ψσ (c.f. Def. 22).

The pseudocode of the probabilistic causality checking algorithm is shown in

Listing 7.1. The computation of the candidate set is performed in lines 11-21 of

Listing 7.1 and the isMinimalTrace method shown in lines 42-52 of Listing 7.1.

1 INPUT:

2 List of Traces CX; /*bad traces */

3 List of Traces G; /*good traces */

4

5 function ProbabilisticCausalityChecking(CX, G)

6 {

7 List of Traces candidateSet = {};

8 List of Traces notInCandidateSet = {};

9

10 FOR EACH Trace t in CX

11 {

12 IF(isMinimalTrace(t))

13 {

14 addTo(candidateSet , t);

15 }

16 ELSE

17 {

18 addTo(notInCandidateSet , t);

19 }

20 }

21

22 checkAC22 ();

23

24 FOR EACH Trace t in candidateSet

25 {

26 checkOC(t);

27 }

28

29 FOR EACH Trace t in notInCandidateSet

30 {

31 if(checkCC(t))

32 {

33 checkOC(t);

34 t.setIsCC(true);

35 addTo(candidateSet , t);

36 }

37 }

38

39 assignProbabilities ();

40 }

41
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42 function boolean isMinimalTrace(Trace t)

43 {

44 FOR EACH Trace t’ in CX

45 {

46 if(t’ is real subset of t)

47 {

48 return false;

49 }

50 }

51 return true;

52 }

Listing 7.1: Algorithm sketch of the probabilistic causality checking approach.

We now show that the EOL formula ψσ representing a trace σ ∈ CS(ϕ) satisfies

the conditions AC1, AC2(1) and AC3.

Theorem 55. AC1 holds for all ψσ with σ ∈ CS(ϕ).

Proof. According to Definition 36 all traces σ ∈ CS(ϕ) are traces in ΣB, conse-

quently, σ ⊧CSL ϕ holds for all σ ∈ CS(ϕ). And σ ⊧ ψσ holds by definition of ψσ.

Therefore, AC1 holds for all ψσ with σ ∈ CS(ϕ).

In order to show that AC2(1) holds for all ψσ with σ ∈ CS(ϕ) we first demon-

strate that AC2(1) is fulfilled for a σ if we can find a σ′ ∈ ΣG with σ′ ⊂ σ.

Lemma 1. AC2(1) holds for ψσ if there is a trace σ′ ∈ ΣG with σ′ ⊂ σ.

Proof. To show AC2(1) for a trace σ we need to show that there exists a trace

σ′ for which σ′ /⊧ ψ ∧ (valZ(σ) ≠ valZ(σ′) ∨ valW (σ) ≠ valW (σ′)) and σ′ /⊧CSL ϕ
holds. For each σ′ ∈ ΣG with σ′ ⊂ σ there is at least one event on σ that does not

occur on σ′. Because that missing event is part of ψσ and Z it follows σ′ /⊧ ψσ and

(valZ(σ) ≠ valZ(σ′) ∨ valW (σ) ≠ valW (σ′)) follows, since the value of the event

variable representing the missing event assigned by valZ(σ) is true and the value

assigned by valZ(σ′) is false. Therefore, we can show AC2(1) for ψσ by finding a

trace σ′ ∈ ΣG for which σ′ ⊂ σ holds.

We are now ready to show that AC2(1) holds for all ψσ with σ ∈ CS(ϕ).

Theorem 56. AC2(1) holds for all ψσ with σ ∈ CS(ϕ).

Proof. According to Lemma 1 AC2(1) holds for ψσ if there is a trace σ′ ∈ ΣG with

σ′ ⊂ σ. Recall that all traces in CS(ϕ) are minimal bad traces, that is all sub-traces

of the traces in CS(ϕ) are good traces. Consequently, AC2(1) is fulfilled by all ψσ
with σ ∈ CS(ϕ).

We now need to test AC2(2) for σ. AC2(2) requires that ∀σ′′ with σ′′ ⊧ ψσ ∧
(valZ(σ) = valZ(σ′′)∧valW (σ) ≠ valW (σ′′)) it holds that σ′′ /⊧CSL ϕ for all subsets

of W . Suppose there exists a σ′′ for which σ⊂̇σ′′ holds. For a σ′′ to satisfy the
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condition σ′′ ⊧ ψ ∧ valZ(σ) = valZ(σ′′) all events that occur on σ have to occur

in the same order on σ′′, which is the case if σ⊆̇σ′′ holds. The set W contains the

event variables of the events that did not occur on σ and valW (σ) assigns false to

all event variables in W . For valW (σ′′) to be different from valW (σ) there has to

be at least one event variable that is set to true by valW (σ′′). This is only the case

if an event that does not occur on σ occurs on σ′′. Consequently, σ′′ consists of all

events that did occur on σ and at least one event that did not occur on σ which

is true if σ⊂̇σ′′ holds. σ′′ /⊧CSL ϕ holds if σ′′ ∈ ΣB and is false if σ′′ ∈ ΣG. Hence,

AC2(2) holds for σ if there is no σ′′ ∈ ΣG for which σ⊂̇σ′′ holds. If σ⊂̇σ′′ holds for

some σ′′ we need to modify ψσ as specified by Definition 31. The AC2(2) test is

performed by the lines 1-50 of Listing 7.2 and called in line 22 of Listing 7.1. For

each of the traces in the candidate set, the minimal sets of events that can prevent

the property violation on the red trace are computed (Listing 7.2, lines 1-50). This

is achieved by comparing the traces in the candidate set with all good traces that

are supersets of the trace from the candidate set (Listing 7.2, lines 3-16). For each

good superset trace we check whether the set Q of event variables that conjunctively

prevent the occurrence of the property violation is minimal and if that is the case

add it to the list of Qs (Listing 7.2, lines 31-47).

1 function checkAC22 ()

2 {

3 FOR i = 0 to i < size(candidateSet)

4 {

5 j = 0;

6

7 t’ = candidateSet.get(i);

8 Qs = {};

9 t = G.get(j);

10

11 WHILE(j < size(G))

12 {

13 j++;

14 t = G.get(j);

15

16 if((t’. length () < t.length ()) && t’ is subset of t)

17 {

18 u = 0;

19 Q = {}

20 FOR x = 0 to t.length ()

21 {

22 if(t’. actions.get(u) = t.action.get(x)))

23 {// events are same move to next event

24 u++;

25 }

26 else if(Q NOT IN t.action.get(x))

27 {

28 Q.add(t.action.get(x));

29 }
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30 }

31 IF(Q != {})

32 {

33 add = true;

34 FOR EACH q in Qs

35 {

36 IF(Q is subset or equal q)

37 {

38 add = false;

39 }

40 }

41 if(add)

42 {

43 Qs.add(Q);

44 }

45 }

46 }

47 t’.addQs(Qs);

48 }

49 }

50 }

Listing 7.2: Algorithm sketch of the AC2(2) test of the probabilistic causality

checking approach.

We will now show that AC3 is fulfilled by all traces in the candidate set CS(ϕ).

Theorem 57. AC3 holds for all ψσ with σ ∈ CS(ϕ).

Proof. AC(3) requires that no true subset of the event order logic formula ψ satisfies

AC1, AC2(1) and AC2(2). Suppose there exists a σ′′′ ∈ ΣB with σ′′′ ⊂ σ. We can

partition A in Zσ′′′ and Wσ′′′ such that Zσ′′′ consists of the variables of the events

that occur on σ′′′ and ψσ′′′ consists of the variables in Zσ′′′ . For σ we partition A
in Zσ and Wσ such that Zσ consists of the variables of the events that occur on σ

and ψσ consists of the variables in Zσ. Consequently, Zσ′′′ ⊂ Zσ and ψσ′′′ is a true

subset of ψσ. If ψσ′′′ satisfies AC1, AC2(1), AC2(2), then AC3 would be violated.

But if such a σ′′′ would exists, σ would not be in the candidate set, since it would

violate the condition that no trace σ′′′ ∈ ΣB with σ′′′ ⊂ σ exists. Consequently, AC3

is fulfilled for all ψσ with σ ∈ CS(ϕ).

It remains to decide with OC whether the order of the events of the traces σ ∈
CS(ϕ) is relevant to cause ϕ. For each trace σ ∈ CS(ϕ), we check whether the order

of the events to occur is important or not. The implementation of the OC test is

shown by the lines 1-24 of Listing 7.3 and is executed for each trace in the candidate

set by lines 24-27 of Listing 7.1. For all traces in the candidate set, it is checked

whether the candidate set contains another trace containing the same events but

representing a different interleaving of the event variables (Listing 7.3, lines 6-8).

If such a trace is found, we check for each pair of events whether they appear on
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both execution traces in the same order or not (Listing 7.3, lines 10-20). If a pair

of events does not occur in the same order, then the order of this pair is marked as

having no influence on causality, by adding an entry in the order constraint matrix.

After the OC test is completed, the order constraint matrix contains all ordering

information and the interleaving can be removed from the candidate set. The EOL

formula ψσ representing all traces in this causality class is derived from the order

constraint matrix.

1 function checkOC(Trace t)

2 {

3 //order constraints are iniialized

4 //with true before OC is executed

5

6 FOR EACH Trace t’ in candidateSet

7 {

8 if(t.id != t’.id && t is equal t’)

9 {

10 FOR i = 0 to size(t.actions)

11 {

12 FOR i = j to size(t.actions)

13 {

14 if(!(t’. actions.indexOf(t.actions.get(i))

15 <= t’. actions.indexOf(t.actions.get(j))))

16 {//pair i,j is not ordered

17 t.OrderConstraints(i,j,false);

18 }

19 }

20 }

21 remove(candidateSet ,t’);

22 }

23 }

24 }

Listing 7.3: Algorithm sketch of the OC test of the probabilistic causality

checking approach.

7.3 Probabilities and Causality Checking

As we have discussed in Section 3.4.3 the probability of the counterexample for a

property ϕ, is the sum of the probabilities of all traces in the counterexample.

Each causality class in the EOL formula Ψ represents a set of traces. Since it is

possible that some trace belongs to more than one causality class, it is not possible

to compute the probability sum of a causality class by summing up the probabilities

of all traces for which the EOL formula representing this causality class is fulfilled.

Assume there are two traces σ1, σ2 ∈ ΣB which, when combined, deliver a trace

σ1,2 ∈ ΣB, and σ1 ⊧e ψ1, σ2 ⊧e ψ2, σ1,2 ⊧e ψ1, and σ1,2 ⊧e ψ2. In this case the
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probability of σ1,2 would be added to the probability of ψ1 and ψ2.

To illustrate this point, consider an extension of the railroad example introduced

in Section 3.2. We add a traffic light signaling to the car driver that a train is

approaching. Event Lr indicates that the traffic light on the crossing is red, while

the red light being off is denoted by the event Lo. The traffic light is red whenever a

train is approaching and off when the train has left the crossing and no other train is

approaching the crossing. It is possible that the traffic light fails (Lf) and in this case

remains off although a train is approaching. A car will stop in front of the crossing

if the gate is closed and the traffic light is red. Assume that the above described

probabilistic causality checking algorithm would identify the following event order

logic formulas to be causal: Gf .Tc .Cc and Lf .Tc .Cc. The probability of the

trace represented by the event order logic formula Gf.Lf.Tc.Cc would be added

to both causality classes, which would lead to a higher over all probability that even

could be greater 1.

To account for this situation we introduce the following condition that introduces

an exception to the minimality rule of the candidate set defined in Definition 36.

The combination condition (CC) will add a causality class to the candidate set even

if it is not minimal but it is the combination of two causality classes, the combination

condition will not exclude a causality class that already is in the candidate set. The

condition is defined as follows.

Definition 37. Combination Condition (CC). Let σ1 and σ2 traces in ΣB.

CC: Let σ1, σ2, ...σk ∈ CS(ϕ) traces and ψσ1 , ψσ2 , ..., ψσk the event order logic formu-

las representing them. A trace σ is added to CS(ϕ) if for k ≥ 2 traces in CS(ϕ)

it holds that (σ ⊧ ψσ1)∧(σ ⊧ ψσ2)∧ ...∧(σ ⊧ ψσk) and Zσ = Zσ1∩Zσ2∩ ...∩Zσk .

We can now assign each trace in the candidate set the sum of the probability

masses of the traces that it represents, since now each bad trace is represented by

exactly one causality class in the EOL formula Ψ derived from the candidate set.

This is done as follows: The probability of the causality class ψi in Ψ, derived from

the trace σi in CS(ϕ), is the probability sum of all traces σ′ ∈ ΣB that satisfy ψi
but do not satisfy any other ψj in Ψ.

Definition 38. Probability of a Causality Class Let ψi a causality class in Ψ, de-

rived from the trace σi in CS(ϕ), the probability Pr(ψi) of ψi is defined by

Pr(ψi) = ∑
σ∈ΣB and σ⊧eψi and for 1≤j≤n and j/=i ∶ σ /⊧eψj

Pr(σ)

where n is the number of causality classes in Ψ.

The last condition is necessary in order to correctly assign the probabilities to

traces which were added to the candidate set by the CC test. The implementation

of the CC test is shown by the lines 1-24 of Listing 7.4 and the assignment of the

probabilities is done by the lines 26-56 of Listing 7.4. Both are executed by lines

29-40 of Listing 7.1.



7.3. Probabilities and Causality Checking 115

1 function boolean checkCC(Trace t)

2 {

3 i = 0;

4 FOR EACH Trace t’ in candidateSet

5 {

6 if(t’ is real subset of t)

7 {

8 i++;

9 }

10 }

11

12 if(i >= 2)

13 {

14 FOR EACH Trace t’’ in notInCandidateSet

15 {

16 if(t.id != t’’.id & t’’ is subset of t )

17 {

18 return false;

19 }

20 }

21 return true;

22 }

23 return false;

24 }

25

26 function assignProbabilities ()

27 {

28 FOR EACH Trace t in candidateSet

29 {

30 if(t.isCC ())

31 {

32 FOR EACH Trace t’ in CX

33 {

34 if(t is subset of t’)

35 {

36 t.Prob = t.Prob + t’.Prob;

37 t’.Prob = 0;

38 }

39 }

40 }

41 }

42 FOR EACH Trace t in candidateSet

43 {

44 if(!t.isCC ())

45 {

46 FOR EACH Trace t’ in CX

47 {

48 if(t is subset of t’)

49 {
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50 t.Prob = t.Prob + t’.Prob;

51 t’.Prob = 0;

52 }

53 }

54 }

55 }

56 }

Listing 7.4: Algorithm sketch of the CC test and the probability assignment

method of the probabilistic causality checking approach.

A rationalization for Definition 37 and Definition 38 based on the definition of

the reachability probability from [8] is presented here.

Let M = (S, s0,P,L), a Markov chain where S is a finite set of states, s0 ∈ S is

the initial state, P ∶ S × S → P≥0 is a transition probability matrix and L ∶ S → 2AP

is a labeling function, which assigns to each state a subset of the set of atomic

propositions AP. The set B ⊆ S is the set of states satisfying the property ϕ. We

use the probability measure PrM and the cylinder set notion as defined in [8], which

we have already introduced in Section 3.4.3,

PrM(Cyl(s0...sn)) = P (s0...sn)

where

P (s0 s1...sn) = ∏
0≤i<n

P (si, si+1)

and for path fragments of length zero let P (s0) = 1.

Reaching a state in B can be characterized by the union of all basic cylinders

Cyl(s0...sn) where s0...sn is an initial path fragment in M such that s0, ..., sn−1 /∈ B
and sn ∈ B. The set of all such paths is given by Pathsfin(M) ∩ (S ∖B) ×B. Since

these cylinder sets are pairwise disjoint, the probability of eventually reaching a

state in B is given by

PrM(ϕ) = ∑
s0...sn∈Pathsfin(M)∩(S∖B)×B

PrM(Cyl(s0...sn))

= ∑
s0...sn∈Pathsfin(M)∩(S∖B)×B

P(s0...sn)

For each of the causality class ψi in Ψ derived from the candidate set, we can

define a set Bψi of states such that for all states in Bψi it holds that the traces

leading to those states satisfy ψi and ϕ.

Reaching a state in Bψi can be characterized by the union of all basic cylinders

Cyl(s0...sn) where s0...sn is an initial path fragment in M such that s0, ..., sn−1 /∈ Bψi
and sn ∈ Bψi . The set of all such paths is given by Pathsfin(M) ∩ (S ∖Bψi) ×Bψi .
Since these cylinder sets are pairwise disjoint, the probability of eventually reaching

a state in Bψi is given by
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PrM(ψi) = ∑
s0...sn∈Pathsfin(M)∩(S∖Bψi)×Bψi

PrM(Cyl(s0...sn))

= ∑
s0...sn∈Pathsfin(M)∩(S∖Bψi)×Bψi

P(s0...sn)

Consequently, the probability Pr(ψi), defined by Definition 38, is equal to

PrM(ψi).

7.4 Completeness and Soundness

In this section we discuss how the general results for completeness and soundness of

causality checking presented in Section 5.3 can be used to show completeness and

soundness of the probabilistic causality checking approach.

7.4.1 Completeness

According to Theorem 43 in Section 5.3.1, the event order logic formula returned

by the causality checker is complete if all good and bad traces have been identified.

The probabilistic causality checking approach is a post-processing step that takes

a complete probabilistic counterexample, consisting of all bad traces, and all good

traces identified by the probabilistic counterexample generation tool as an input.

Consequently, the results generated by the probabilistic causality checking approach

are complete.

7.4.2 Soundness

Theorem 44 in Section 5.3.1 makes two assumptions in order to show the soundness

of the causality checking result.

1. It is assumed that the bad traces used for the causality checking are sound.

The bad traces returned by the probabilistic counterexample generation tool

on which we base our causality checking algorithm are sound by definition.

2. It is assumed that all good traces have been found, which is the case for the

probabilistic causality checking approach since we require that the probabilis-

tic counterexample generation tool generates all possible good traces as an

input for the probabilistic causality checking approach.

It follows that the results generated by the probabilistic causality checking ap-

proach are sound.
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7.5 Complexity Considerations

The worst-case runtime complexity of the method isMinimalTrace is

RT(isMinimalTrace) ∈ O(∣t∣), since it iterates through all traces at most once, and

the method is called at most ∣t∣ times, where ∣t∣ is the total number of traces.

The worst-case runtime complexity of the checkAC22 method is RT(checkAC22)

∈ O(∣t2∣), since the outer and the inner loop iterates through all traces at most once.

The checkOC method has a runtime complexity of RT(checkOC) ∈ O(∣t∣), since it

iterates through all traces at most once, and the method is called at most ∣t∣ times.

The checkCC method also has a runtime complexity of RT(checkCC) ∈ O(∣t∣),
since it iterates through all traces at most once, and is called at most ∣t∣ times. The

runtime complexity of the assignProbabilities method is RT(assignProbabilities)

∈ O(∣t2∣), since the outer and the inner loop iterates through all traces at most once.

Consequently, the worst-case runtime complexity of the probabilistic causality

checking approach is RT(ProbabilisticCausalityChecking) ∈ O(∣t2∣).
Similarly to the qualitative causality checking approach, the worst-case in terms

of memory consumption is that all traces have to be stored. Consequently, the

worst-case memory consumption is in O(∣t∣) where ∣t∣ is the number of traces.

7.6 Experimental Evaluation

In order to evaluate the proposed probabilistic causality checking approach, we

have implemented the approach as a post-processing step of the DiPro [3] tool for

probabilistic counterexample generation. The post-processing step computes the

causality relationships for a PRISM model and a given CSL property.

We evaluate the probabilistic causality checking approach using the case studies

presented in Section 6.6. The qualitative models of the case studies have been

extended by negative exponentially distributed rates that model the occurrence

probability of the different events in a given time frame. In industry such negative

exponentially distributed rates [96, 95], also called failure rates, are used to estimate

the occurrence probability of hardware failures in a given time frame. The resulting

PRISM models are continuous-time Markov chains. The PRISM models used for

the case studies have been created manually, whereas in practical usage scenarios

the PRISM models can also be automatically synthesized from higher-level design

models, for instance by the QuantUM tool [72]. The following experiments were

performed on a PC with two Intel Xeon Processors (4 cores with 3.60 Ghz) and

144 GBs of RAM. For the experiments we set the mission time T of the analyzed

properties to 1 hour.

7.6.1 Railroad Crossing

For the railroad crossing the probabilistic causality checking approach generates the

same event order logic formula characterizing the causal events for the hazard as

the qualitative causality checking approach, namely Ψ = (Gf∧ ((Ta∧ (Ca.Cc)).<
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¬Cl .> Tc)) ∨ ((Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc)). The total probability of the

car and the train being on the crossing at the same times is 2.312 ⋅ 10−4, for the

causality class (Gf ∧ ((Ta ∧ (Ca .Cc)) .< ¬Cl .> Tc)) the probability is 3.464 ⋅ 10−5

and for the causality class (Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc)) the probability is

1.960 ⋅ 10−4.

7.6.2 Airbag System

The event order logic formula returned by the probabilistic causality checking ap-

proach for the inadvertent deployment of the airbag is Ψ = (FASICShortage) ∨
(FETStuckHigh . FASICStuckHigh) ∨ (MicroControllerFailure . enableFET .
armFASIC . fireFASIC) ∨ (FETStuckHigh . MicroControllerFailure . armFASIC .
fireFASIC)∨(MicroControllerFailure.enableFET.FASICStuckHigh) which is equal

to the event order logic formula returned by the qualitative causality checking. Note

that the used probability values are mock numbers, since the real values are intel-

lectual property of our industrial partner. The total probability of an inadvertent

deployment is 1.8009 ⋅ 10−3 and is caused by the following causality classes

• (FASICShortage) with a probability of 2.5614 ⋅ 10−5,

• (FETStuckHigh . FASICStuckHigh) with a probability of 1.6924 ⋅ 10−6,

• (MicroControllerFailure . enableFET . armFASIC . fireFASIC) with a prob-

ability of 1.7705 ⋅ 10−3,

• (FETStuckHigh . MicroControllerFailure . armFASIC . fireFASIC) with a

probability of 1.3272 ⋅ 10−6, and

• (MicroControllerFailure . enableFET . FASICStuckHigh) with a probability

of 1.7427 ⋅ 10−6.

7.6.3 Embedded Control System

The event order logic formula returned by the probabilistic causality checker for a

shutdown of the embedded control system is Ψ = MainProcFail ∨ InputProcFail ∨
OutputProcFail ∨ InputProcTransFail ∨ (SensorFailure ∧ SensorFailure) ∨
(ActuatorFailure ∧ ActuatorFailure) which is equal to the event order logic

formula returned by the qualitative causality checking.

The total probability is 3.0682 ⋅ 10−4 and can be broken down into

• (MainProcFail) with a probability of 1.1415 ⋅ 10−4,

• (InputProcFail) with a probability of 9.3209 ⋅ 10−5,

• (OutputProcFail) with a probability of 9.3205 ⋅ 10−5,

• (InputProcTransFail) with a probability of 1.0083 ⋅ 10−11,
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• (SensorFailure ∧ SensorFailure) with a probability of 5.7759 ⋅ 10−6, and

• (ActuatorFailure ∧ ActuatorFailure) with a probability of 4.8185 ⋅ 10−7.

7.6.4 Train Odometer Controller

The event order logic formula returned by the probabilistic causality checker is

Ψ =(Start W Fail S .Wait W Fail S) ∧ (¬failureDeteted .] Wait Mon Fail)
∨
(Start W Fail F .Wait W Fail F) ∧ (¬failureDeteted .] Wait Mon Fail)
∨
Wait R Fail ∧ (¬failureDeteted .] Wait Mon Fail

∨
(Wait R Fail ∧ (Start W Fail S .Wait W Fail S)
∧ (¬failureDeteted .] Wait Mon Fail))
∨
(Wait R Fail ∧ (Start W Fail F .Wait W Fail F)
∧ (¬failureDeteted .] Wait Mon Fail))

The two causality classes (Wait R Fail ∧ (Start W Fail S . Wait W Fail S) ∧
(¬failureDeteted .] Wait Mon Fail)) and (Wait R Fail ∧ (Start W Fail F .
Wait W Fail F)∧ (¬failureDeteted.] Wait Mon Fail)) are added by the CC condi-

tion in order to correctly assign all probabilities. The total probability is 2.8232⋅10−2

which can be broken down into

• ((Start W Fail S.Wait W Fail S)∧(¬failureDeteted.]Wait Mon Fail)) with

a probability of 8.0313 ⋅ 10−3,

• ((Start W Fail F . Wait W Fail F) ∧ (¬failureDeteted .] Wait Mon Fail))
with a probability of 5.5040 ⋅ 10−4,

• (Wait R Fail∧(¬failureDeteted.]Wait Mon Fail) with a probability of 9.5438⋅
10−3,

• (Wait R Fail ∧ (Start W Fail S . Wait W Fail S) ∧ (¬failureDeteted .]

Wait Mon Fail)) with a probability of 7.5087 ⋅ 10−3, and

• (Wait R Fail ∧ (Start W Fail F . Wait W Fail F) ∧ (¬failureDeteted .]

Wait Mon Fail)) with a probability of 2.5978 ⋅ 10−3.

7.6.5 Airport Surveillance Radar

The probabilistic causality checking approach is not able to compute any results

for the airport surveillance radar, since the probabilistic counterexample generation

with DiPro runs out of memory.
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7.6.6 Discussion

The probabilities computed for the different causality classes of the case studies

allow to identify the event combinations that contribute the highest probability to

the violation of the system and thus provide valuable insight.

Counterexample

Computation

Causality

Computation

Runtime Sums

Memory Maximums

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

Railroad 1.00 10.00 1.00 10.00 2.00 10.00

Airbag 606.00 389.00 3.00 233.00 609.00 389.00

Embedded 1,933.00 383.00 3.00 235 1,936.00 383.00

Train Odometer 17,512.00 1,739.00 2.00 239 17,154.00 1,739.00

ASR 1 Channel out of mem. out of mem. N/A N/A N/A N/A

ASR 2 Channel out of mem. out of mem. N/A N/A N/A N/A

Table 7.1: Runtime and memory consumption of the probabilistic counterexample

generation and causality checking.

Table 7.1 shows the runtime and memory required for the probabilistic coun-

terexample generation with DiPro and the runtime and memory consumption for

the subsequent probabilistic causality checking approach. The runtime and mem-

ory consumption for the ASR case study with 1 and 2 channels can not be given,

since DiPro ran out of memory (out of mem.) while computing the probabilistic

counterexample and, consequently, the subsequent causality checking could not be

executed. The relatively short runtime for the causality computation for the train

odometer model is caused by the relatively small number of causality classes.

The different runtime values are visualized in Figure 7.1 and the memory con-

sumption is visualized in Figure 7.2.

The experiments show that the computational effort is dominated by the coun-

terexample computation. The main reason for the comparably high amount of

runtime and memory needed for the probabilistic counterexample generation lies in

the fact that DiPro needs to compute the probability of each bad trace. This means

that for each bad trace that is identified a probabilistic model checking run has to

be executed in order to compute the probability of the trace. This shortcoming is

independent from the DiPro tool, since all probabilistic counterexample generation

tools that enumerate all traces have to perform a probabilistic model checking run

for each bad trace and the runtime and memory consumed by the underlying prob-

abilistic model checker is the same regardless of which probabilistic counterexample

generation tool is used.

7.6.7 Summary

We have evaluated the usefulness and performance of the proposed probabilistic

causality checking approaches on 5 case studies. Two of the case studies are taken

from industrial projects. While the evaluation shows that the probabilities for the
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Figure 7.1: Runtime needed for the probabilistic counterexample generation and

causality checking (logarithmic scale).

Figure 7.2: Memory consumption of the probabilistic counterexample generation

and causality checking.
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different causality classes provide an important additional insight as compared to

qualitative causality checking, the evaluation also shows that the necessary proba-

bility computation for each bad traces introduces a very high runtime and memory

penalty. Due to this runtime and memory penalty the probabilistic causality check-

ing approach was not able to compute results for the airport surveillance radar case

study.
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8.1 Introduction

In the previous two chapters we have developed two approaches for causality check-

ing:

1. The qualitative causality checking approach described in Chapter 6, where the

causality computation algorithm is integrated into the state-space exploration

algorithms used for qualitative model checking. This algorithm is capable of

computing the causality relationships on-the-fly.

2. The probabilistic causality checking approach described in Chapter 7, where

causal relationships of events are algorithmically inferred from probabilistic

counterexamples.

The main advantage of the probabilistic causality checking approach over the

qualitative causality checking approach is that it computes a quantitative measure,

namely a probability, for a combination of causal events and hazards to occur. The

probability of an event combination causing a property violation to occur is an

information that is needed for the reliability and safety analysis of safety-critical

systems. A shortcoming of the probabilistic causality checking approach compared
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to the qualitative causality checking approach however is, that the causality compu-

tation requires a complete probabilistic counterexample consisting of all bad traces

and all good traces. The high amount of runtime and memory needed to com-

pute the probabilities of all traces in the probabilistic counterexample limits the

scalability of the probabilistic causality checking approach.

The goal of this chapter is to leverage the qualitative causality checking approach

in order to improve the scalability of the probabilistic causality checking approach.

The key idea is to first compute the causal events using the qualitative causality

checking approach and to then limit the probability computation to the causal event

combinations that have first been computed. Our proposed combined approach can

be summarized by identifying the following steps:

1. The probabilistic PRISM model is mapped to a qualitative Promela model.

2. The qualitative causality checking approach is applied to the qualitative model

in order to compute the event combinations that are causal for the property

violation.

3. The information obtained through qualitative causality checking is mapped

back via alternating automata to the probabilistic model. The probabilities

for the different event combinations that are causal for the property violation

to occur are computed using a probabilistic model checker.

We discuss the translation of probabilistic PRISM models to qualitative Promela

models in Section 8.2. Section 8.3 discusses the translation of the information re-

turned by the causality checker to the PRISM model and the probability com-

putation of the causal events. The soundness and completeness of the combined

approach is discussed in Section 8.4 and complexity considerations are presented in

Section 8.5. In Section 8.6 we evaluate the usefulness of the proposed approach on

several case studies.

8.2 Translating PRISM Models to Promela Models

Our goal is to compute the causal events using the qualitative causality checking

approach and limit the probability computation to the causal events. To achieve

this goal we need to translate the model given by a continuous-time Markov chain

(CTMC) specified in the PRISM language to a labeled transition system in the

Promela language. The translation is necessary since the causality checking ap-

proach is based on the SpinJa toolset.

Furthermore, the reachability property specified in continuous stochastic logic

(CSL) needs to be translated into a formula in linear temporal logic (LTL). The

translation of the CSL formula to an LTL formula is straight forward: If the CSL

formula is a state formula, then it is also an LTL formula. If the CSL formula is
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a path formula, then the path formula is an LTL formula if we replace a bounded-

until operator included in the formula with an LTL until operator. CSL formulas

containing nested path-operators are outside the scope of this work.

We base our translation of PRISM models to Promela models on the work

in [90], but since no implementation of the described approach is available and

the approach translates Markov Decision Processes specified in a PRISM model

to a Promela model, we can not apply this approach directly. Furthermore, the

translation of synchronizing action labels to rendezvous channel chaining in Promela

proposed in [90] is not consistent with the PRISM semantics specified in [49]. Our

translation algorithm maps the CTMC to a transition system. This mapping is

achieved through the transition system that is induced by the CTMC.

Definition 39. Transition System Induced by a CTMC. Let C = (S, s0,R,L) a

CTMC. Then T = (S,Act, →, I,AP, L) is the transition system induced by C if:

• The set S of states in T is S = S.

• The set I of initial states in T is I = {s0}.

• For all pairs s, s′ ∈ S we add a transition to → and a corresponding action to

Act if R(s, s′) > 0.

We translate the transition system induced by the CTMC specified in the

PRISM language into the Promela language. The implementation of the PRISM

to Promela translation works on the syntactic level of the PRISM code. PRISM

modules are translated to active proctypes in Promela consisting of a do-block which

contains the transitions. Transitions that are synchronized are translated according

to the parallel composition semantics of PRISM [49]. All variables in the PRISM

model are translated to global variables of the corresponding type in the Promela

model. This is necessary, since otherwise it would not be possible to read variables

from other proctypes as it is permitted in PRISM. Listing 8.1 shows the output of

the PRISM to Promela translation of the PRISM code in Listing 3.2 from Section

3.4.4. The comments at the end of each transition are merely added to make the

Promela model more readable but are not necessary for the translation.

Our approach requires that each command in the PRISM module is labeled

with an action label representing the occurrence of an event. If a command of the

PRISM model is not already labeled with an action label a unique action label is

added to this command during the translation. This does not change the behavior

of the PRISM model since the action label is unique and, consequently, is not

synchronized with any other command.

Listing 8.2 shows the PRISM code of the car module of the railroad crossing

example. The Promela model generated by the PRISM to Promela translation is

shown in Listing 8.3. The variables of the PRISM module (Listing 8.2, lines 2-3)

are translated to global variables in the Promela model (Listing 8.3, lines 1-2). The

transition statements of the PRISM model (Listing 8.2, lines 4-9) are translated

into a do-loop in the Promela model (Listing 8.3, lines 5-15).
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Now that we can translate the PRISM model to a Promela model we can ap-

ply the qualitative causality checking approach. How the results of the qualitative

causality checking can be mapped back to the PRISM model and used for proba-

bility computation is discussed in Section 8.3.

1 bool var1 = false; byte var2 = 0; byte var3 = 0;

2 active proctype moduleA (){

3 do

4 :: atomic {((var3 <2) && (var2 <4))

5 -> var2=var2 +1; var3=var3 +1;}/*Count*/

6 :: atomic {(( var3 ==2) && (var2 <4))

7 -> var2=var2 +1; var3 =0;}/*Count*/

8 :: atomic {(var2 ==4)

9 -> var1=true;}/*End*/

10 od;}

11 active proctype moduleB (){

12 do

13 :: atomic {((var2 <4) && (var3 <2))

14 -> var3=var3 +1; var2=var2 +1;}/*Count*/

15 :: atomic {((var2 <4) && (var3 ==2))

16 -> var3 =0; var2=var2 +1;}/*Count*/

17 od;

18 }

Listing 8.1: Example Promela translation of the PRISM model from Section

3.4.4.

1 module car

2 s_car : [0..2] init 0;

3 car_crossing : bool init false;

4 [Ca] s_car = 0

5 -> 0.01 : (s_car ’ = 1);

6 [Cc] s_car = 1 & gate_open

7 -> 0.1 : (s_car ’ = 2)&( car_crossing ’ = true);

8 [Cl] s_car = 2

9 -> 0.1 : (s_car ’ = 0) & (car_crossing ’ = false);

10 endmodule

Listing 8.2: PRISM model of the railroad example.
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1 byte s_car = 0;

2 bool car_crossing = false;

3

4 active proctype car(){

5 do

6 :: atomic {( s_car ==0)

7 -> s_car =1; /* car_aproaching */

8 }

9 :: atomic {( s_car ==1&& gate_open)

10 -> s_car =2; car_crossing=true; /* car_crossing */

11 }

12 :: atomic {( s_car ==2)

13 -> s_car =0; car_crossing=false; /* car_troughgate */

14 }

15 od;

16 }

Listing 8.3: Promela model of the railroad example.

8.3 Probability Computation for Causality Classes

Each causality class returned by the causality checker represents an equivalence

class of bad traces. We can leverage this fact and compute the probability sum

of all traces represented by a causality class instead of computing the probability

of all traces belonging to this class individually. This means that the number of

probabilistic model checking runs is reduced to the number of causality classes

instead of the number of traces in the counterexample.

We will now show how the probability sum of all traces represented by a causality

class can be computed using the PRISM model checker. In order to compute the

probability of all traces represented by a causality class we leverage the fact that

each EOL formula can be translated into an alternating automaton as we have

shown in Section 4.4. Thus it is possible to construct an alternating automaton for

the EOL formula representing a causality class such that the alternating automaton

accepts exactly those execution traces that are represented by the corresponding

causality class.

For the computation of the probability of a causality class we need to translate

the corresponding alternating automaton into the PRISM language and synchronize

it with the PRISM model.

Note that we only consider non-reachability properties in this thesis. A non-

reachability property is violated as soon as a bad state is reached, and no future

event can prevent the violation. Consequently, it can not be the case that an

event voiding causality, by violating the AC2(2) condition, appears at the end of an

execution trace. The EOL operator .[ can hence not be added to an EOL formula

as a consequence of AC2(2). Therefore, all alternating automata generated from an

EOL formula are alternating automata on finite words since they represent finite
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execution fragments. Notice that the only way for a ¬ operator to be added to an

EOL formula by the causality checking algorithm is when the non-occurrence of the

an event in the specified interval is causal.

Each action label in the PRISM model corresponds to an event variable in the

set A over which the EOL formulas were built. As a consequence each alternating

automaton accepts a finite sequence of PRISM action labels.

We now define translation rules from alternating automata to PRISM mod-

ules. We call a PRISM module that was generated from an alternating automaton

a causality class module. The transitions of the causality class modules are syn-

chronized with the corresponding transitions of the PRISM model. The transition

rates of the causality class modules are set to 1.0, as a consequence, the transitions

synchronizing with the causality class modules define the rate for the synchronized

transition. In Listing 8.4 we present the pseudocode of the algorithm that gener-

ates a causality class module from an alternating automaton representing a causality

class. The order constraints specified by the EOL formula are encoded by guards.

Since we use guards to enforce the order constraint no distinction between alter-

nating automata generated from an EOL formula containing an ordered operator

(A.(ψ)) and alternating automaton generated from an EOL formula not containing

an ordered operator (A(ψ)) has to be made.

In the line 1 of Listing 8.4 the variables that store the output are initialized,

in line 4 the PRISM CODE method is called in order to translated the alternating

automaton, and in lines 5-6 the PRISM module representing the alternating au-

tomaton is written. The PRISM CODE method selects the translation rules for a

specific alternating automaton and recursively calls itself until the full alternating

automaton is translated (Listing 8.4, lines 8-69).

Synchronized transitions can only be executed, if for each other module con-

taining transitions with the same action label the guard of at least one transition

per module evaluates to true. It might hence be the case that the causality class

module prevents the execution of transitions in the PRISM model with which the

causality class module is synchronized. Since this would change the behavior of the

PRISM model and affect the probability mass distribution we add a transition with

the negated guard and without updates for each transition of the causality class

module for which the guard is not always true.

1 global var var_def = "", trans = "", formulas = "";

2 function EOL_TO_PRISM(A(ψ))

3 {

4 PRISM_CODE(A(ψ),true)

5 print "module ψ /n" + var_def +"/n"+ trans

6 + " /n endmodule /n" + formulas;

7 }

8 function PRISM_CODE(A(ψ), cond)

9 {

10 IF A(ψ) = ’A(a)’ THEN

11 var_def += ’s_ψ: bool init false;’

12 IF cond = ’true ’ THEN
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13 trans += ’[a] (cond) -> 1.0 : (s_ψ’=true);’

14 ELSE

15 trans += ’[a] (cond) -> 1.0 : (s_ψ’=true);’

16 trans += ’[a] !(cond) -> 1.0 : true;’

17 ENDIF

18 formulas += ’formula acc_ψ = s_ψ;’

19 ELSE IF A(ψ) = ’A(¬a)’ THEN

20 var_def += ’s_ψ: bool init true;’

21 IF cond = ’true ’ THEN

22 trans += ’[a] (cond) -> 1.0 : (s_ψ’=false);’

23 ELSE

24 trans += ’[a] (cond) -> 1.0 : (s_ψ’=false);’

25 trans += ’[a] !(cond) -> 1.0 : true;’

26 ENDIF

27 formulas += ’formula acc_ψ = s_ψ;’

28 ELSE IF A(ψ) = ’A(φ1 ∧ φ2)’ THEN

29 PRISM_CODE(A(φ1), cond);

30 PRISM_CODE(A(φ2), cond);

31 formulas += ’formula acc_ψ = acc_φ1 & acc_φ2;’

32 ELSE IF A(ψ) = ’A(¬(φ1 ∧ φ2))’ THEN

33 PRISM_CODE(A(¬φ1), cond);

34 PRISM_CODE(A(¬φ2), cond);

35 formulas += ’formula acc_ψ = acc_¬φ1 & acc_¬φ2;’
36 ELSE IF A(ψ) = ’A(φ1) ∧A(φ2)’ THEN

37 PRISM_CODE(A(φ1), cond);

38 PRISM_CODE(A(φ2), cond);

39 formulas += ’formula acc_ψ = acc_φ1 & acc_φ2;’

40 ELSE IF A(ψ) = ’A(ψ∧1 ∧ ψ∧2)’ THEN

41 PRISM_CODE(A(ψ∧1), cond);

42 PRISM_CODE(A(ψ∧2), cond);

43 formulas += ’formula acc_ψ = acc_ψ∧1 & acc_ψ∧2;’

44 ELSE IF A(ψ) = ’A(ψ∧1) ∧A(ψ∧2)’ THEN

45 PRISM_CODE(A(ψ∧1), cond);

46 PRISM_CODE(A(ψ∧2), cond);

47 formulas += ’formula acc_ψ = acc_ψ∧1 & acc_ψ∧2;’

48 ELSE IF A(ψ) = ’A(ψ∧1 ∨ ψ∧2)’ THEN

49 PRISM_CODE(A(ψ∧1), cond);

50 PRISM_CODE(A(ψ2), cond)

51 formulas += ’formula acc_ψ = acc_ψ∧1 | acc_ψ2;’

52 ELSE IF A(ψ) = ’A(ψ∧1) ∨A(ψ2)’ THEN

53 PRISM_CODE(A(ψ∧1), cond);

54 PRISM_CODE(A(ψ∧2), cond);

55 formulas += ’formula acc_ψ = acc_ψ1 | acc_ψ∧2;’

56 ELSE IF A(ψ) = ’A(φ1 . φ2)’ THEN

57 PRISM_CODE(A(φ1), cond);

58 PRISM_CODE(A(φ2), acc_φ1);

59 formulas += formula acc_ψ = acc_φ2;

60 ELSE IF A(ψ) = ’A(φ1 .] φ2)’ THEN

61 PRISM_CODE(A(¬φ1), cond);
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62 PRISM_CODE(A(φ2), cond & !(acc_¬φ1));
63 formulas += ’formula acc_ψ = acc_φ2;’

64 ELSE IF A(ψ) = ’A(φ1 .< φ∧ .> φ2)’ THEN

65 PRISM_CODE(A(φ1), cond);

66 PRISM_CODE(A(¬φ∧), acc_φ1)

67 PRISM_CODE(A(φ2), (acc_φ1 & !(acc_¬φ∧))
68 formulas += ’formula acc_ψ = acc_φ2;’

69 ENDIF

70 }

Listing 8.4: Pseudocode of the EOL to PRISM algorithm.

We also add a PRISM formula acc ψ for each sub-automaton which is true

whenever the corresponding sub-automaton is accepting the input word. Those

formulas are used to construct a CSL formula of the form P=?[(true)U(acc ψ)] for

each causality class. The CSL formulas can then be used to compute the probability

of all possible traces that are accepted by the causality class module, which is exactly

the probability sum of all traces that are represented by the causality class.

Theorem 58. The probability computed by P=?[(true)U(acc ψ)] is equal to the

probability sum of all traces σ for which σ ⊧e ψ holds.

Proof. Let M = (S, s0,P,L), a Markov chain where S is a finite set of states,

s0 ∈ S is the initial state, P ∶ S × S → P≥0 is a transition probability matrix and

L ∶ S → 2AP is a labeling function, which assigns to each state a subset of the set of

atomic propositions AP. The set B ⊆ S is the set of states satisfying the property

acc ψ. We use the probability measure PrM and the cylinder set notion as defined

in [8], which we have already introduced in Section 3.4.3,

PrM(Cyl(s0...sn)) = P (s0...sn)
where

P (s0 s1...sn) = ∏
0≤i<n

P (si, si+1)

and for path fragments of length zero let P (s0) = 1.

Reaching a state in B can be characterized by the union of all basic cylinders

Cyl(s0...sn) where s0...sn is an initial path fragment in M such that s0, ..., sn−1 /∈ B
and sn ∈ B. The set of all such paths is given by Pathsfin(M) ∩ (S ∖B) ×B. Since

these cylinder sets are pairwise disjoint, the probability of eventually reaching a

state in B is given by

PrM((true)U(acc ψ)) = ∑
s0...sn∈Pathsfin(M)∩(S∖B)×B

PrM(Cyl(s0...sn))

= ∑
s0...sn∈Pathsfin(M)∩(S∖B)×B

P(s0...sn)

Consequently, the PrM((true)U(acc ψ)) is the probability sum of all paths

leading to a state in B that accepts acc ψ and this is only the case if the path is an
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accepting run of the PRISM causality class module, since otherwise acc ψ would

not be true in this state.

Since it is possible that a trace belongs to more than one causality class, we

add an additional CSL formula that computes the probability of all traces that

are only in the causality class defined by ψ. This CSL formula has the form of

P=?[(true)U(acc ψ)&!(acc ψi∣...∣acc ψj))], where acc ψi∣...∣acc ψj are the formulas

of all causality classes except ψ.

Listing 8.5 shows the PRISM code of the EOL formula (Ta ∧ (Ca . Cc)) .<
¬Cl .> (Gc ∧ Tc) of the railroad crossing example. In lines 2-7 of Listing 8.5 the

variables that are needed to store the different events are declared and initialized.

The transitions in lines 8-17 of Listing 8.5 are synchronized with the rest of the

model and detect the occurrence of events. The guards used in these transitions are

the formulas defined in lines 19-26 of Listing 8.5 that indicate in which state the

PRISM causality class module is. The formula acc train cc 2 in line 27 of Listing

8.5 is true whenever the PRISM causality class module is in an accepting state.

1 module train_cc_2

2 s_Ta : bool init false;

3 s_Ca : bool init false;

4 s_Cc : bool init false;

5 s_Cl : bool init true;

6 s_Tc : bool init false;

7 s_Gc : bool init false;

8 [Ta] (true) -> 1.0 : (s_Ta ’=true);

9 [Ca] (true) -> 1.0 : (s_Ca ’=true);

10 [Cc] (acc_Ca) -> 1.0 : (s_Cc ’=true);

11 [Cc] !( acc_Ca) -> 1.0 : true;

12 [Cl] (acc_Ta_Ca_Cc) -> 1.0 : (s_Cl ’=false );

13 [Cl] !( acc_Ta_Ca_Cc) -> 1.0 : true;

14 [Gc] (acc_Ta_Ca_Cc & !acc_Cl) -> 1.0 : (s_Gc ’=true);

15 [Gc] !( acc_Ta_Ca_Cc & !acc_Cl) -> 1.0 : true;

16 [Tc] (acc_Ta_Ca_Cc & !acc_Cl) -> 1.0 : (s_Tc ’=true);

17 [Tc] !( acc_Ta_Ca_Cc & !acc_Cl) -> 1.0 : true;

18 endmodule

19 formula acc_Ta = s_Ta;

20 formula acc_Ca = s_Ca;

21 formula acc_Ca_Cc = s_Ca & s_Cc;

22 formula acc_Ta_Ca_Cc = acc_Ta & acc_Ca_Cc;

23 formula acc_Cl = s_Cl;

24 formula acc_Gc = s_Gc;

25 formula acc_Tc = s_Tc;

26 formula acc_Gc_Tc = acc_Gc & acc_Tc;

27 formula acc_train_cc_2 = acc_Gc_Tc;

Listing 8.5: PRISM code of the EOL formula (Ta∧(Ca.Cc)).<¬Cl.>(Gc∧Tc).

In the railroad example, the total probability of a state where both the train
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and the car are on the crossing is p total = 2.312 ⋅ 10−4. The proposed combined

approach returns for the causality class characterized by ψ1 = Gf ∧ ((Ta ∧ (Ca .
Cc)) .< ¬Cl .> Tc) the total probability of pψ1 = 3.464 ⋅ 10−5 and the exclusive

probability of pψ1 excl = 3.464 ⋅ 10−5, and for the causality class characterized by

ψ2 = (Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc) the total probability of pψ2 = 1.960 ⋅ 10−4

and the exclusive probability of pψ2 excl = 1.960 ⋅ 10−4.

8.4 Completeness and Soundness

The proposed combined approach uses the qualitative causality checking approach

described in Chapter 6 in order to identify the causal event combinations. We have

shown in Section 5.3.1 that the qualitative causality checking approach is sound and

complete if a full exploration of the model is possible and all bad and good traces

can be identified. Consequently, the combined approach is sound and complete if

during the causality checking step a full exploration of the model is possible and all

bad and good traces can be identified.

8.5 Complexity Considerations

The worst-case runtime of the combined approach is the combined worst-case run-

time of the qualitative causality checking approach and the worst-case runtime for

the probabilistic model checking of the computed causality classes. The worst-

case runtime complexity of the qualitative causality checking approach, which was

shown in Section 6.5, is RT(CausalityChecking) ∈ O(∣t∣2) where ∣t∣ is the num-

ber of traces. The worst-case runtime of one probabilistic model checking run is

in O(∣S∣3 + q ∗ Tmax) where ∣S∣ is the number of states in the Markov-chain, q is

the uniformization rate and Tmax is the maximal time bound of the probabilis-

tic property, as was shown in [7]. Since in the worst-case there can be as many

causality classes as traces in the model the worst-case runtime for the probabilistic

model checking of the computed causality classes is in O(∣t∣ ∗ (∣S∣3 + q ∗ Tmax)).
Consequently, the overall worst-case complexity of the combined approach is in

O(∣t∣2 + ∣t∣ ∗ (∣S∣3 + q ∗ Tmax)).
The worst-case memory consumption of the combined approach is dominated

by the qualitative causality checking which has a worst-case memory consumption

that is in O(∣t∣) where ∣t∣ is the number of traces.

8.6 Experimental Evaluation

In order to evaluate the performance of the proposed combined approach, we have

extended the SpinCause tool that we used in Chapter 6. The following experiments

were performed on a PC with two Intel Xeon Processors (4 cores with 3.60 Ghz) and

144 GBs of RAM. We evaluate the performance of the combined approach using the

case studies presented Section 6.6. The PRISM models of the case studies are the
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ones we manually created for Chapter 7, in practical usage scenarios the PRISM

models can also be automatically synthesized from higher-level design models, as for

instance by the QuantUM tool [72]. For the computation of the causality classes we

used the iterative causality checking approach with parallel BFS (using 10 threads).

For the experiments we set the mission time T of the analyzed properties to 1 hour.

8.6.1 Railroad Crossing

For the railroad crossing example the combined approach generates the same event

order logic formula, characterizing the causal events for the hazard, as the quali-

tative and probabilistic causality checking approach. Furthermore, the probability

values computed for the causality classes and the hazard are equal to the values

computed with the probabilistic causality checking approach.

8.6.2 Airbag System

The event order logic formula, characterizing the causal events for the inadvertent

deployment of the airbag, computed by the combined approach is equal to the EOL

formula qualitative and probabilistic causality checking approach. Furthermore, the

probability values computed for the causality classes and the hazard are equal to

the values computed with the probabilistic causality checking approach.

8.6.3 Embedded Control System

The combined approach computes the same event order logic characterizing the

causal events for a shutdown of the embedded system as the qualitative and proba-

bilistic causality checking approach. Furthermore, the probability values computed

for the causality classes and the hazard are equal to the values computed with the

probabilistic causality checking approach.

8.6.4 Train Odometer Controller

The event order logic formula returned by the combined approach is

Ψ = (Start W Fail S . Wait W Fail S) ∧ (¬failureDeteted .] Wait Mon Fail) ∨
(Start W Fail F . Wait W Fail F) ∧ (¬failureDeteted .] Wait Mon Fail) ∨
Wait R Fail ∧ (¬failureDeteted .] Wait Mon Fail, which is equal to the EOL

formula computed by the qualitative causality checking approach.

The total probability is 2.8232 ⋅ 10−2 which can be broken down into:

• ((Start W Fail S.Wait W Fail S)∧(¬failureDeteted.]Wait Mon Fail)) with

a total probability of 1.5540 ⋅10−2 and an exclusive probability of 8.0313 ⋅10−3,

• ((Start W Fail F . Wait W Fail F) ∧ (¬failureDeteted .] Wait Mon Fail))
with a total probability of 3.1482 ⋅ 10−3 and an exclusive probability of

5.5040 ⋅ 10−4, and
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• (Wait R Fail∧ (¬failureDeteted.] Wait Mon Fail) with a total probability of

1.9650 ⋅ 10−2 and an exclusive probability of 9.5438 ⋅ 10−3.

The probabilistic causality checking approach added two causality classes to the

result, that combine the first and the third and the second and the third causality

class. The exclusive probabilities of the causality classes computed by the combined

approach are equal to the probabilities computed for the same causality classes by

the probabilistic causality checking approach.

8.6.5 Airport Surveillance Radar

For both variants of the airport surveillance radar (ASR) the event order logic

formula returned by the combined approach, characterizing the causal informa-

tion for loosing the flight path information of an aircraft, is Ψ = (dot sighted .
plot detected . initTrack .PSR only . coastTrack) ∨ (dot sighted . plot detected .
initTrack.SSR only. coastTrack). This EOL formula is equal to the EOL formula

computed by the qualitative causality checking approach. Since the probabilistic

causality checking approach was not able to produce a result for the ASR case study,

we have no result of the probabilistic causality checking approach with which we

could compare this result. The redundancy in the 2 channel variant of the ASR does

not have an impact on the probability of the case where the position information

of an aircraft is lost, since the redundant channel is only added in order to increase

the availability. Note that the used probability values are mock numbers, since the

real values are intellectual property of our industrial partner. The total probability

for loosing the position information of an aircraft within one hour is 8.9246 ⋅ 10−10

which can be broken down into:

• (dot sighted.plot detected. initTrack.PSR only. coastTrack) with a total

and exclusive probability of 8.8550 ⋅ 10−10 and

• (dot sighted. plot detected. initTrack. SSR only. coastTrack) with a total

and exclusive probability of 6.9625 ⋅ 10−12.

8.6.6 Discussion

Combined Approach Probabilistic Causality Checking

Runtime (sec.) Memory (MB) Runtime (sec.) Memory (MB)

Railroad 0.80 18.11 2.00 10.00

Airbag 2.08 18.86 609.00 389.00

Embedded 0.91 18.75 1,936.00 383.00

Train Odometer 5.88 19.53 17,154.00 1,739.00

ASR 1 Channel 106.40 238.97 out of mem. out of mem.

ASR 2 Channel 38,605.02 7,728.63 out of mem. out of mem.

Table 8.1: Runtime and memory consumption of the combined approach and the

probabilistic causality checking approach.
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Figure 8.1: Runtime needed for the combined approach and the probabilistic causal-

ity checking approach (logarithmic scale).

As we would expect, for all case studies the total probability returned by the

combined approach is equal to the probability returned for the respective proba-

bilistic property by PRISM after a probabilistic model checking run. If we sum

up the probabilities of the traces computed by DiPro for each causality class and

only consider traces that belong to exactly one causality class, then the sum of the

probability of each causality class is equal to the corresponding exclusive probability

(pψ excl) value of that causality class computed by the combined approach. If, on

the other hand, we sum up the probabilities of the traces computed by DiPro for

each causality class and also consider the probability mass of traces that belong to

more than one causality class, the probability sum of each causality class is equal

to the corresponding total probability (pψ) value of that causality class computed

by the combined approach.

Table 8.1 shows the runtime and memory consumption of the combined approach

and the probabilistic causality checking approach for each of the case studies. The

different runtime values are visualized in Figure 8.1 and the memory consumption is

visualized in Figure 8.2. The runtime and memory values for the combined approach

include the runtime and memory needed for all steps of the approach, namely trans-

lation from PRISM to Promela, causality checking, alternating automata derivation

and mapping to PRISM, and the PRISM model checking.

The combined approach consumes significantly less run time and memory than

the probabilistic causality checking approach. This difference can be explained

by the fact that for the probabilistic causality approach the probability of each

trace in the counterexample needs to be computed individually, which requires a

probabilistic model checking of a part of the model for each trace. The combined

approach reduces the number of probabilistic model checking runs to the number

of the computed causality classes. The relatively low runtime that is needed by
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Figure 8.2: Runtime consumption of the combined approach and the probabilistic

causality checking approach (logarithmic scale).

the combined approach for the embedded case study as compared to the other case

studies can be explained by the relatively short length of the traces in the causality

classes of the embedded case study.

8.6.7 Summary

We have evaluated the usefulness and performance of the proposed combined causal-

ity checking approaches on 5 case studies. Two of the case studies are taken from in-

dustrial projects. The experiments clearly show that the combined causality check-

ing approach significantly consumes less runtime and memory as the probabilistic

causality checking approach. With the combined causality checking approach it is

possible to analyze the ASR case study and to compute the probabilities of the

causality classes which was not possible with the probabilistic causality checking

approach.
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9.1 Introduction

The causality checking approaches described in Chapter 6, Chapter 7 and Chapter 8

are based on an exhaustive exploration of the state-space. One major limitation of

all methods using state-space exploration techniques, including explicit state model-

checking, is that the runtime and memory consumption of these methods is mainly

influenced by the number of states in the model. It can be the case that the number

of states in a model is extremely large and thus the state-space exploration either

runs out of available memory or the required runtime is too high to be acceptable.

In literature this problem is referred to as the state-space explosion problem [8].

With the approaches described in Chapter 6 and Chapter 8 it is possible to

perform qualitative and probabilistic causality checking for all of the case studies

that we have presented in this thesis. Nevertheless, we discuss the implications of

an incomplete state-space exploration on the completeness and soundness of the

causality checking results in Section 9.2. Furthermore, we discuss in Section 9.2.3

how partial order reduction [8], a technique used in explicit state-model checking

to reduce the number of possible event orderings that have to be analyzed, affects

the causality checking results. In Section 9.3 we propose strategies to increase the

scalability for practical application scenarios.
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9.2 Causality Checking and Incomplete State-Space

Exploration

In the experiments described in Chapter 6 and Chapter 8 we were able to fully

explore the state-space of the model and, therefore, obtained a complete and sound

causality checking result. In this section we discuss the implications if an exhaustive

state-space exploration is no longer possible.

9.2.1 Completeness

In case the state-space of a model is infinite or has not been fully explored, for

example due to an out of memory error, we have no guarantee that all bad traces

have been found, since there always might be a trace leading to a bad state in the

part of the state-space that we have not yet explored. Theorem 43 in Section 5.3

requires that all bad execution traces are found in order for the causality checking

result to be complete. Consequently, if no full state-space exploration was performed

the result of the causality checking is potentially incomplete.

It remains to be discussed whether although no complete state-space exploration

was performed we can make any assumption on the result generated by the causality

checker. Since the traces found during an incomplete state-space exploration depend

on whether BFS or DFS is used, we need to discuss both cases separately.

BFS explores the state-space in an exploration order that leads to a monoton-

ically increasing length of the execution traces. Consequently, if BFS is used we

know that all traces with length n up to the current search depth d have been

found.

Theorem 59. If BFS explored the state-space up to search depth d all causality

classes with the length of n events and n ≤ d have been found and all possible event

orderings have been computed for these causality classes.

Proof. Assume that there exists a causality class with the length of n events and

n ≤ d, where d is the current search depth of BFS, that was not yet found. By

definition of the causality class there exists at least one trace with length n which

would be represented by this causality class. Due to the minimality constraint no

bad trace with length n′ < n exists. For the causality class not to be found it

would be required that the trace with length n, which would be represented by the

causality class, was not found by BFS. Since n ≤ d holds the trace is found by BFS

and, consequently, all causality classes with the length of n events and n ≤ d are

found.

The literature on bounded model checking [19, 20] shows that an upper bound

for the search depth that is needed in order to guarantee the completeness of the

bounded model checking can be given. This upper bound is also called completeness

threshold. The upper bound for non-reachability properties is the diameter or radius

r, which is the minimal number of steps required for reaching all states.
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Definition 40. Radius (r). The radius of some transition system T is defined as:

r(T ) = min{i ∣ ∀t ∈ S. ∃j ∶ j ≤ i. R(t) → R(t, j)}, where R(t) is true whenever

t is reachable from the initial state s0 and R(t, j) is true whenever the state t is

reachable from the initial state s0 within j steps.

If the state-space of the model is fully explored with BFS up to the search

depth that is specified by the radius, it can be guaranteed that for each possible

bad state the shortest trace leading into this bad state has been found. This is

not sufficient in order to guarantee the completeness of the result of the causality

checker, since we have not found all bad traces. Consider the following example,

assume there are only two traces in the transition system T, namely, σ = s0 a s1 b s2

and σ′ = s0 a s1 c s3 d s2. Since s2 is reachable from s0 via s1 within 2 steps and

s3 is reachable from s0 via s1 within 2 steps, the radius of T is r = 2. If now the

search depth would be limited to d = 2 the trace σ′ = s0 a s1 c s3 d s2 would never

be found and we would potentially miss a causality class if σ′ is a bad trace.

Another upper bound that is used in the literature on bounded model check-

ing [19, 20] to guarantee the completeness of the bounded model checking is the

recurrence diameter, which is the longest loop-free path between two states.

Definition 41. Recurrence Diameter (rd). The recurrence diameter (rd) of some

transition system T is defined as the minimal number rd with the following property.

For every sequence of states s0, ..., srd+1 starting from the initial state s0 with si
αi+1ÐÐ→

si+1 for i ≤ rd, there exists j ≤ rd such that srd+1 = sj.

If BFS is used to explore the state-space up to search depth d = rd we know

that we have found the longest loop-free traces to all bad states and according to

Theorem 59 we know that we have found all causality classes with the length of n

events and n ≤ d. We also know that each bad trace σ that we have not yet found

contains a loop and, consequently, we know that we already have found a trace σ′

for which σ′ ⊂ σ holds.

Theorem 60. The recurrence diameter rd of a transition system is a completeness

threshold for causality checking with BFS.

Proof. Assume that there exists a causality class ψ with the length of n events and

n > rd that was not found. By definition of the causality class there exists at least

one trace σ with length n which would be represented by this causality class. For

a trace σ to be longer than the recurrence diameter, it has to be longer than the

longest loop-free trace and, consequently, contains a loop. For the trace σ leading

to some bad state sj there has to exist at least one loop-free trace σ′ leading to

sj . Since σ contains a loop and σ′ does not contain this loop σ′ ⊂ σ holds and

since the trace σ′ exists there also exists a causality class ψ′ for which σ′ ⊧e ψ′ and

σ ⊧ ψ′ holds. This would violate the AC3 condition for ψ since ψ′ is a subset of ψ.

Consequently, no causality class with the length of n events and n > rd can exist

and the recurrence diameter is a completeness threshold for causality checking.
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In practice BFS does not explore a trace further if a loop was detected, since

the state that where the loop is closed, already has been explored and is stored

in the state-space V. This means that with BFS no trace that is longer than the

recurrence diameter of the transition system will be found. Consequently, exploring

the state-space to a search depth that is equal to the recurrence diameter is equal to

performing a full state-space exploration with BFS. Nevertheless, it is possible that

traces that are longer than the recurrence diameter are generated by the duplicate

state matching method. These traces can be safely ignored without having an

impact on the completeness of the causality checking result.

If DFS is used no assumptions on the length of the unknown traces can be made

and, consequently, we can not make any assumptions on the length of the causality

classes found during an incomplete state-space exploration with DFS.

9.2.2 Soundness

While an incomplete state-space exploration does not have an effect on the sound-

ness of the counterexamples that are returned by DFS and BFS, it does have some

effects on the soundness of the causality classes. Theorem 44 in Section 5.3 requires

that all good and bad execution traces are found in order for the causality classes

computed by the causality checker to be sound.

For a causality class not to be sound, there has to exist a good trace σ satisfying

the causality class ψ which is a disjunct of the EOL formula Ψ returned by the

causality checker. In the proof of Theorem 44 we showed that this can not happen

if all bad and good traces are found, if this assumption no longer holds this has

the following impact. ψ is added to Ψ because AC1-AC3 are satisfied for ψ. If

σ ⊧ ψ is true, the event combination specified by ψ occurs on σ. For σ being a good

trace, this would require that the property violation is prevented by some event on

σ which is not constrained by ψ. If such an event exists, and the good trace is found

during the state-space exploration the AC2(2) test fails and ψ is not added to Ψ, but

instead an altered version of ψ ensuring the non-occurrence of the event preventing

the property violation is added to Ψ. Since on σ at least one event preventing

the property violation occurs, n < n′ holds where n is the number of events in the

causality class and n′ is the number of events occurring on σ. Consequently, it is

possible that the causal non-occurrence of events is not detected if the causality

class is found but the trace σ required to detect the causal non-occurrence is not

found due to the incomplete state-space exploration.

The detection of the causal non-occurrence of events can not be guaranteed if

the state-space exploration is incomplete, regardless of whether DFS or BFS is used,

since it can always be the case that there exists a good trace that is not found due

to the incomplete state-space exploration and that violates the AC2(2) condition

for some causality class.

If BFS is used it is guaranteed that all traces with a length up to d−1, where d is

the current search depth, have been found. Consequently, we can guarantee that for

a causality class with length of n events and the current search depth d, the causality
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class is sound, taking into account that there might exist a combination of at least

k = (d+ 1)−n events which can prevent the property violation. With an increasing

k the likelihood of the existence of such an event combination is decreasing.

Theorem 61. If BFS explored the state-space up to search depth d all causality

classes that have been found are sound, taking into account that an event combi-

nation with at least k = (d + 1) − n events, where n is the number of events in the

causality class, voiding the soundness of the causality class could exist.

Proof. If BFS is used it is guaranteed that all traces with a length of up to d − 1,

where d is the current search depth, have been found. According to Theorem 59 all

causality classes with the length of n events and n ≤ d − 1 have been found. Since

all good traces up to length d − 1 are found, the causal non-occurrence of event

combinations with length up to k = (d − 1) − n can be detected for each causality

class with length n of events. Since there potentially exists a good trace with

length n′ ≥ d− 1, which is not found due to the incomplete state-space exploration,

there potentially exists an event combination with at least k = (d + 1) − n events

for which the non-occurrence is causal and that is not detected by the algorithm.

Consequently, if BFS explored the state-space up to search depth d all causality

classes that have been found are sound taken into account that an event combination

with at least k = (d+1)−n events, where n is the number of events in the causality

class, voiding the soundness of the causality class could exist.

In Section 9.2.1 we have shown that the recurrence diameter of the transition

system is a completeness threshold for causality checking. This completeness thresh-

old ensures that all loop-free traces that exist in the transition system are found.

The recurrence diameter can also be used to compute an upper bound of the events

that can potentially void the soundness of a causality class.

Theorem 62. The maximal number of events k in an event combination that can

potentially void the soundness of a causality class is k = rd − n, where rd is the

recurrence distance and n is the length of the causality class.

Proof. For a combination of events to void the soundness of a causality class ψ with

the length n of events, there has to exists a good trace σ′ with length n′ > n and

σ′ ⊧e ψ. Suppose that the length of σ′ is n′ > rd, which means that sigma contains

a loop. Then there exists another good trace σ′′ with length n′′ = rd and n′′ < n′
for which σ′′ ⊂ σ′ holds. Since σ′′ is a good trace and σ′′ ⊂ σ′ holds, σ′′ already

contains all events that are responsible for the prevention of the property violation

and thus need to be considered by the causal non-occurrence test. Consequently,

the maximal number of events that can potentially void the soundness of a causality

class is k = rd − n, where rd is the recurrence distance and n is the length of the

causality class.

From Theorem 62 it follows that if we have explored the state-space with BFS

up to the search depth d = rd we are able to detect all events for which their
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non-occurrence is causal. This means that the recurrence diameter is a soundness

threshold for causality checking with BFS.

Theorem 63. The recurrence diameter rd of a transition system is a soundness

threshold for causality checking with BFS.

Proof. According to Theorem 62 the maximal number of events k in a event com-

bination that can potentially void the soundness of a causality class is k = rd − n,

where rd is the recurrence distance and n is the length of the causality class. If the

state-space is explored with BFS up to the search depth d = rd we know that all

traces with a length up to rd are found. Consequently, we are able to detect all

events for which their non-occurrence is causal and the recurrence diameter rd of a

transition system is a soundness threshold for causality checking with BFS.

Exploring the state-space to a search depth that is equal to the recurrence

diameter is equal to performing a full state-space exploration with BFS, as we have

argued in the previous Section. Nevertheless, it is possible that traces that are longer

than the recurrence diameter are generated by the duplicate state matching method.

These traces can be safely ignored without having an impact on the soundness of

the causality checking result.

For an incomplete state-space exploration with DFS no assumption on the length

of the traces that are not found can be made. Consequently, the soundness of the

causality classes computed using an incomplete state-space exploration with DFS

can not be guaranteed.

9.2.3 Causality Checking and Partial Order Reduction

Partial order reduction [8] is a technique used in explicit state-model checking to

reduce the number of possible event orderings that have to be analyzed. Partial

order reduction leverages the fact that under some circumstances not all possible

interleavings of concurrently executed processes need to be explored, since it might

be sufficient to explore one interleaving if the order of the events does not have an

effect on the analyzed property. The order of two events does not have an effect

on the analyzed property, if regardless of the order in which they are executed, the

same state is reached. Obviously, if the number of interleavings to be analyzed can

be reduced to one or a few representatives, this reduces the state-space significantly.

The question is whether partial order reduction has an effect on the results

generated by the causality checker. For the causality checking to provide a complete

and sound result, it is required that all possible good and bad traces are identified.

Partial order reduction represents a number of interleavings with one or a few

representatives. Therefore, not all traces are identified if partial order reduction is

used. Since at least one representative of the equivalence of interleavings is found,

all possible event combinations are found, but since not all possible interleavings

are identified the causality checker is not able to correctly identify the causal event

orderings. Consequently, if partial order reduction is used during causality checking,
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the returned causality classes might not cover all possible orderings and thus might

not cover all bad execution traces. As a result, the causality checking result is not

complete if partial order reduction is used. The soundness of the causality checking

result is not affected by the causality checking result. The reason for that is that for

each representative of a bad trace we also find at least one representative of a good

super trace, if such a good super trace exists. Therefore, the causal non-occurrence

of events will be detected correctly if partial order reduction is used.

Nevertheless, it is possible to use partial order reduction during the first iteration

of the iterative causality checking approaches proposed in Chapter 6, since the first

iteration aims at identifying the causality classes without identifying the causal

event orderings.

The partial order reduction implemented in the SpinJa model checker [33] did

not lead to a reduction of the state-space for the models we have analyzed. The

reason for this is that the partial order implementation in SpinJa requires for inter-

leavings to be pruned that they only access local variables of a process, but since the

case studies used in this paper only use globally defined variables no interleaving

meets this requirement.

In future work we will investigate whether the information obtained by the static

analysis performed in order to do partial order reduction can be used to identify all

causal event orders even if partial order reduction is used.

9.2.4 Summary and Implications for Practical Usage Scenarios

In conclusion, if DFS, BFS or one of the iterative causality checking approaches is

used and the state-space is not fully explored by the causality checker it is possible

that not all causality classes are found and that the found causality classes do not

take all possible causal non-occurrences of events into account. For the algorithms

based on BFS we can guarantee the completeness and soundness with respect to

the current search depth d.

We have shown that the recurrence diameter of a transition system can be

used as a completeness and soundness threshold for causality checking and it was

shown in [58] that the recurrence diameter can be efficiently computed. But even

if the completeness and soundness of the causality checking results can not be

guaranteed in the event of an incomplete state-space exploration, we believe that

the information obtained by an incomplete state-space exploration is still valuable

for the debugging of the system, since the causality classes provide information

about the event combinations that are involved in violating a property. The results

obtained by causality checking using an incomplete state-space exploration with

BFS can, due to Theorem 59 and Theorem 61 be used in the safety analysis of a

system. The longer a causality class is, the more events have to jointly occur in order

for the property violation to occur. In practical use-case scenarios the interesting

causality classes are the short causality classes because this means that a low number

of events, e.g., hardware failures, suffice to violate the property. For this reason

engineers only consider a limited number of failure events that can jointly cause
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a property violation during the safety analysis. Such a failure of the system, that

requires more than one failure event, is also called multiple-point failure [55]. The

ISO 26262 [55] safety standard for automotive systems, for instance, restricts the

analysis in most cases to dual-point failures, which are multiple-point failures caused

by two failure events. Consequently, limiting the completeness of the causality class

to some search depth d is acceptable in practical use case scenarios. The limitation

of the soundness of the causality checking results to some search depth d might

lead to causality classes where the causal non-occurrence of some events was not

detected. In practical use case scenarios the events, where the non-occurrence is

causal, are recovery and repair-mechanisms. Since the main objective of the safety

analysis is to detect event combinations that can lead to a property violation, the

information that there exists a combination of events, described by a causality

class, that can lead to a property violation is helpful for the engineer, even if there

might be additional events that if they occur jointly with the events described by the

causality class can prevent the property violation. Consequently, limiting soundness

of the causality checking results to some search depth d is acceptable in practical

use case scenarios.

In Section 9.3 we discuss strategies that can be applied in order to increase the

scalability of the causality checking approach. The proposed strategies leverage the

fact that in practical use case scenarios it is acceptable that when the state-space is

not fully explored by BFS we can guarantee the completeness and soundness with

respect to the current search depth d.

9.3 Strategies to Increase Scalability

In this section we discuss strategies that can be applied if the causality checker runs

out of memory during a full state-space exploration. Since the iterative approach

using parallel BFS offers the best scalability of all approaches discussed in Chapter 6

we base our strategies to increase the scalability on this variant. In theory the

proposed strategies can be applied to all BFS based approaches.

9.3.1 Strategy 1: Limiting the Search Depth

The first strategy allows to specify an upper bound k for the number of events in

a causality class. The state-space exploration is aborted after the maximal search

depth k has been fully explored. Obviously aborting the search at depth k is an

incomplete exploration of the state-space and the completeness and soundness of

the causality checking result can only be guaranteed with respect to the search

depth k.

We use the case studies from Section 6.6 to evaluate how the runtime and

memory of the iterative causality checking approach using parallel BFS (with 10

threads) changes if we limit the maximum number k of events in a causality class

to 15 and 20 events, respectively. The following experiments were performed on a

PC with two Intel Xeon Processors (4 cores with 3.60 Ghz) and 144 GBs of RAM.
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Iterative Approach

with Parallel BFS

(k = 15)

Iterative Approach

with Parallel BFS

(k = 20)

Iterative Approach

with Parallel BFS

(complete exploration)

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

Railroad 0.74 17.92 0.74 17.92 0.74 17.92

Airbag 1.59 18.51 1.59 18.51 1.59 18.51

Embedded 0.75 17.99 0.75 17.99 0.75 17.99

Train Odometer 1.44 19.11 1.44 19.11 1.44 19.11

ASR 1 Channel 8.61 37.31 10.10 50.76 50.37 195.51

ASR 2 Channel 51.91 458.15 94.80 826.73 1,101.99 6,967.00

Table 9.1: Runtime and memory needed for the iterative causality checking with

parallel BFS for k = 15, k = 20 and a complete exploration.

Figure 9.1: Runtime needed for the iterative causality checking with parallel BFS

for k = 15, k = 20 and a complete exploration (logarithmic scale).

Table 9.1 shows the runtime and memory needed for the iterative causality

checking with parallel BFS for k = 15, k = 20 and a complete exploration. The

different runtime values are visualized in Figure 9.1 and the memory consumption

is visualized in Figure 9.2.

The EOL formulas returned by the causality checking runs with limited depth

are in all cases equal to the EOL formulas that were generated by a complete

exploration. This means that no causality class is missing and the events for which

their non-occurrence is causal have been found.

For the railroad, airbag, embedded, and train odometer case studies the depth

limit does not have an effect on the runtime or memory consumption, since the

maximal reachable depth of a complete exploration is less than the depth limit

k. For the ASR 1 channel and ASR 2 channel variant the depth limit leads to a

decrease in both runtime and memory, while providing the same results. The reason
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Figure 9.2: Memory needed for the iterative causality checking with parallel BFS

for k = 15, k = 20 and a complete exploration (logarithmic scale).

for the reduction of runtime and memory is that not the full state-space has to be

explored and, consequently, less traces have to be processed.

The disadvantage of this approach is that we can only guarantee the complete-

ness and soundness of the causality classes with respect to the search depth k. If, for

instance, a very small value for k is selected it is possible that no causality classes

can be computed or that some causality classes are missed since the state-space is

not fully explored. The strategy presented in the next Section extends this strategy

by providing an estimate of the probability sum of all missed causality classes.

9.3.2 Strategy 2: Estimation of the Residual Probability

If the causality checking is aborted at search depth k, it is possible that some

causality classes are missed, since not the full state-space is explored. In order to

get an estimate whether any meaningful information is missing, we can compute an

estimate of the probability sum of all missing causality classes.

In order to compute the estimate we perform the following steps:

• We compute the causality classes up to search depth k with the strategy

proposed in Section 9.3.1 and use the combined approach proposed in Section 8

in order to compute the probabilities for the causality classes.

• We compute the total probability ptotal for the property violation with PRISM.

• We compute the probability of the causality classes of the computed EOL

formula Ψ = ψ1 ∨ ... ∨ ψn by computing the probability presult for the CSL

formula P=?[(true)U(acc ψ1∣...∣acc ψn)] with PRISM.

• The probability pmissing = ptotal−presult is the probability of the missing causal-

ity classes.
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Combined Approach

(k = 15)

Combined Approach

(k = 20)

Combined Approach

(complete exploration)

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

RT

(sec.)

Mem

(MB)

ASR 1 Channel 82.61 37.88 84.94 51.34 106.40 238.97

ASR 2 Channel 37,768.02 458.67 37,956.00 1,913.23 38,605.02 7,728.63

Table 9.2: Runtime and memory needed for the combined approach for k = 15, k

= 20 and a complete exploration.

Figure 9.3: Runtime needed for the combined approach with k = 15, k = 20 and a

complete exploration (logarithmic scale).

Table 9.2 shows the runtime and memory needed for the combined approach

with k = 15, k = 20 and a complete exploration. The different runtime values are

visualized in Figure 9.3 and the memory consumption is visualized in Figure 9.4.

Since we have already seen in Section 9.3.1 that for the railroad crossing example,

the airbag system, the embedded control system, and the train odometer case stud-

ies the depth limit does not have an effect on the runtime or memory consumption,

since the maximal reachable depth of a complete exploration is less than the depth

limit, we only show the experimental results for the ASR case studies. For both the

1 channel variant and the 2 channel variant of the ASR and k = 15 and k = 20 the

probability of potentially missed causality classes is zero, consequently, all causality

classes have been computed. For both variants the consumed runtime and memory

of the combined approach with k = 15 and k = 20 is less than the runtime and

memory consumed by the combined approach with a full exploration.

9.3.3 Summary

The experiments we have performed in Section 9.3.1 and Section 9.3.2 show that by

limiting the analysis depth the runtime and memory that is needed for the causality
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Figure 9.4: Memory needed for the combined approach with k = 15, k = 20 and a

complete exploration (logarithmic scale).

checking of large models can be reduced. We have argued in Section 9.2.4 that in

practical use case scenarios it is acceptable that the completeness and soundness of

the causality checking can only be guaranteed with respect to the current search

depth d, if the state-space can not be fully explored with BFS. For the experiments

in Section 9.3.1 and Section 9.3.2 we obtained the same causality classes as we

have obtained using a full exploration, consequently, no information was lost by

limiting the search depth. Even if one or more causality classes would be missed

by limiting the analysis depth, the strategy described in Section 9.3.2 allows for the

computation of the probability of the unknown causality classes. In practical use

case scenarios this can be used to incrementally increase the search depth k until

either all causality classes are found and the probability of the potentially missed

causality classes is zero, or until the probability of the potentially missed causality

classes is below some predefined threshold.
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10.1 Introduction

In order to aid the adoption of causality checking in industrial use case scenarios

it is a necessity to represent the causality checking results in a concise and easy to

understand form. Furthermore, it is necessary to discuss how the results obtained

with causality checking compare with the results obtained by traditional safety

analysis methods.

In Section 10.2 we show how event order logic formulas that have been gener-

ated by the causality checker can be represented by fault trees [97], a method used

in industry to reason about causal relationships between property violations and

events. Since fault trees are not expressive enough to represent all the order con-

straints that can be specified using the event order logic, we propose an additional

graphical representation of the event order logic order constraints in Section 10.3.

The relationship of causality classes generated by causality checking and the min-

imal cut sets used in manual fault tree analysis is discussed in Section 10.4. In

Section 10.5 we discuss how root-causes can be identified using causality checking.

10.2 Mapping of Event Order Logic Formulas to Fault

Trees

The event order logic formula returned by the causality checker is a concise and

compact representation of the causal event combinations. Nevertheless the inter-
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pretation of an event order logic formula requires knowledge about the syntax and

semantics of the event order logic. In this section we show how the event order logic

formulas generated by the causality checker can be graphically represented by fault

trees, a representation that engineers are commonly familiar with. The algorithm

that translates EOL formulas to fault trees is given in Listing 10.1 and implements

the following graphical representation of EOL formulas to fault trees.

Definition 42. Graphical Representation of EOL formulas with Fault Trees. Let Ψ

an event order logic formula returned by the causality checker. Ψ can be represented

as a fault tree by applying the following mapping:

• An intermediate event is used in order to represent the top-level event repre-

senting the property violation. (Listing 10.1, line 4)

• If there is only one causality class in Ψ, the fault tree mapping for this causality

class is directly connected to the top-level event (Listing 10.1, lines 6-9). If

there is more than one one causality class in Ψ, the top-level event is connected

to an OR-gate which connects the different causality classes of the event order

logic formula Ψ (Listing 10.1, lines 10-18).

• Each causality class is connected to the OR-gate by an intermediate event,

which is then connected to an AND- or PAND-gate connecting the events in

that causality class (Listing 10.1, lines 22-54).

– If a causality class consists of only one event the AND-gate is omitted and

the event is directly connected to the intermediate event (Listing 10.1,

lines 25-28).

– If a causality class contains at least one ordered EOL-operator it is repre-

sented using an PAND-gate, else with an AND-gate (Listing 10.1, lines

31-42).

– Since the PAND-gate is not expressive enough to express the event or-

derings that can be expressed with the event order logic, a constraint

containing the event order logic formula of the causality class is added to

the PAND-gate (Listing 10.1, line 40).

– The events of the causality classes are represented by basic events that are

connected to the PAND-gate or AND-gate (Listing 10.1, lines 43-51).

1 function EOL2FT(Ψ)

2 {

3 FaulTree ft;

4 ft.TLE = new IntermediateEvent(’ϕ’);

5

6 IF( Number of ψ in Ψ == 1)

7 {

8 ft.TLE.add(SUB_FT_FOR_CC(ψ));



10.2. Mapping of Event Order Logic Formulas to Fault Trees 153

9 }

10 ELSE

11 {

12 ORGate or;

13 FOR EACH Causality Class ψ in Ψ

14 {

15 or.add(SUB_FT_FOR_CC(ψ));

16 }

17 ft.TLE.add(or);

18 }

19 return ft;

20 }

21

22 function SUB_FT_FOR_CC(ψ)

23 {

24 IntermediateEvent ie;

25 IF( Number of Events a in ψ == 1)

26 {

27 ie.add(a);

28 }

29 ELSE

30 {

31 IF( ψ contains . OR

32 ψ contains .] OR

33 (ψ contains .< AND ψ contains .>))
34 {

35 PANDGate pand;

36 FOR EACH Event a in ψ

37 {

38 pand.add(a);

39 }

40 pand.OC = ψ;

41 ie.add(pand);

42 }

43 ELSE

44 {

45 ANDGate and;

46 FOR EACH Event a in ψ

47 {

48 and.add(a);

49 }

50 ie.add(and);

51 }

52 }

53 return ie;

54 }

Listing 10.1: Pseudocode of the EOL formula to fault tree translation algo-

rithm
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Example 4. Figure 10.1 shows how the EOL formulas a ∧ b and a . b can be

represented by fault trees.

a ∧ b a . b

Figure 10.1: Example mappings of EOL formula to fault trees.

In the following Sections we show the fault trees for the case studies presented in

Section 6.6. The fault trees are annotated with the probabilities computed with the

combined approach presented in Chapter 8. Since the mapping from EOL formulas

to fault trees is a mere rewriting step, the runtime and memory consumption intro-

duced by this step is constant and can be neglected, in fact the additional runtime

and memory needed is so small that it was not possible to measure the runtime and

memory that was added by the fault tree mapping in our experiments.

10.2.1 Railroad Crossing

Figure 10.2 shows the fault tree of the railroad crossing running example described

in Section 3.2. For better readability we have replaced the order constraints of the

PAND-gates by the identifiers OC1 and OC2, where

• OC1 = Gf ∧ ((Ta ∧ (Ca .Cc)) .< ¬Cl .> Tc) and

• OC2 = (Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc).

10.2.2 Airbag System

The fault tree for the airbag system described in Section 6.6.2 is shown in Figure

10.3. For better readability we have replaced the order constraints of the PAND-

gates by the identifiers OC1, OC2, OC3 and OC4, where

• OC1 = (FETStuckHigh . FASICStuckHigh),

• OC2 = (MicroControllerFailure . enableFET . FASICStuckHigh),

• OC3 = (FETStuckHigh . MicroControllerFailure . armFASIC . fireFASIC),
and

• OC4 = (MicroControllerFailure . enableFET . armFASIC . fireFASIC).
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Figure 10.2: Fault tree of the railroad crossing running example.

10.2.3 Embedded Control System

Figure 10.4 shows the fault tree of the embedded control system presented in Sec-

tion 6.6.3. For better readability we have replaced the order constraints of the

PAND-gates by the identifiers OC1 and OC2, where

• OC1 = (SensorFailure ∧ SensorFailure) and

• OC2 = (ActuatorFailure ∧ ActuatorFailure).

10.2.4 Train Odometer Controller

The fault tree of the train odometer controller introduced in Section 6.6.4 is shown

in Figure 10.5. For better readability we have replaced the order constraints of the

PAND-gates by the identifiers OC1, OC2, and OC3 where

• OC1 = (Start W Fail S . Wait W Fail S) ∧ (¬failureDeteted .]

Wait Mon Fail),
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Figure 10.3: Fault tree of the airbag system.
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Figure 10.4: Fault tree of the embedded control system.



158 Chapter 10. Causality Checking and Fault Trees

• OC2 = (Start W Fail F.Wait W Fail F)∧(¬failureDeteted.]Wait Mon Fail)
and

• OC3 = Wait R Fail ∧ (¬failureDeteted .] Wait Mon Fail).

Figure 10.5: Fault tree of the train odometer controller (created with the combined

approach).

10.2.5 Airport Surveillance Radar

Figure 10.6 shows the fault tree of the ASR system described in Section 6.6.5. The

redundancy in the 2 channel variant of the ASR does not have an impact on the

probability of the case where the position information of an aircraft is lost, since the

redundant channel is only added in order to increase the availability. Consequently,

the fault trees of the 1 channel and 2 channel variant of the ASR are equal. For

better readability we have replaced the order constraints of the PAND-gates by the

identifiers OC1 and OC2, where
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• OC1 = (dot sighted . plot detected . initTrack .PSR only . coastTrack) and

• OC2 = (dot sighted . plot detected . initTrack . SSR only . coastTrack).

Figure 10.6: Fault tree of the airport surveillance radar system.

10.3 Graphical Representation of Event Orders in Fault

Trees

In the fault trees generated by the event order logic to fault tree mapping described

in Section 10.2, the causal event orders are captured by adding the event order logic
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formula as an order constraint to the PAND-gate representing this causality class.

This is necessary since the PAND-gate is not expressive enough to express the event

orderings that can be expressed with the event order logic. While this mapping gives

all information on the causal event orderings to the user, a graphical representation

of the causal event orderings is desirable, since a graphical representation might be

easier to interpret for the user.

Common graphical representations for partial orderings are Petri nets[89], event

structures [102] and directed acyclic graphs. We are interested in finding a graphical

representation that is easy to understand for the engineers that have to interpret the

representation. This graphical representation shall then be used in order to specify

the order constraints of the PAND-gates of the fault tree. We base our graphical

representation on directed acyclic graphs. It is not possible to directly use a directed

acyclic graph as a graphical representation of EOL formulas, since it is not possible

to capture the interval operators ., .], .[, .<, and .> with a directed acyclic graph.

We define the following mapping of EOL operators to graphical representations.

Definition 43. Graphical Representation of Event Order Logic Operators. Let

ψ1 and ψ2 complex EOL formulas and φ a simple EOL formula. The graphical

representations of an EOL formula is obtained by recursively applying the following

mappings to the parse tree of an EOL formula.

ψ1 ∧ ψ2: ψ1 ∨ ψ2: ψ1 . ψ2: φ .] ψ1: ψ1 .[ φ: ψ1 .< φ .> ψ2:

ψ1 ψ2 ψ1 ∣ ψ2 ψ1

↓
ψ2

⇓ φ
ψ1

ψ1

⇓ φ
ψ1

⇓
φ

⇓
ψ2

If two events are not connected by an arrow there is no order constraint for those

two events specified, if they are connected by an arrow the order is read from top

to bottom, which means that the event on the top happens before the event on the

bottom.

The fault tree of the railroad crossing running example described in Section 3.2

is shown in Figure 10.2. Figure 10.7 show the graphical representation of the EOL

formula Gf∧ ((Ta∧ (Ca.Cc)).< ¬Cl.> Tc representing one of the causality classes

of the railroad crossing example.

The graphical representation of the EOL formula can then be used in order to

specify the order constraints of the PAND-gate.

10.3.1 Railroad Crossing

Figure 10.7 shows the graphical representation of the causality class represented

by the EOL formula Gf ∧ ((Ta ∧ (Ca . Cc)) .< ¬Cl .> Tc) and Figure 10.8 shows

the graphical representation of the causality class represented by the EOL formula

(Ta ∧ (Ca .Cc)) .< ¬Cl .> (Gc ∧Tc).
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Gf Ta Ca

↓
Cc

⇓
¬Cl

⇓
Tc

Figure 10.7: Graphical representation of the EOL formula Gf∧((Ta∧(Ca.Cc)).<
¬Cl .> Tc.

Ta Ca

↓
Cc

⇓
¬Cl

⇓
Gc Tc

Figure 10.8: Graphical representation of the EOL formula (Ta∧(Ca.Cc)).<¬Cl.>
(Gc ∧Tc).

10.3.2 Airbag System

The fault tree for the airbag system described in Section 6.6.2 is shown in Figure

10.3. The order constraints of the PAND-gates identified by the identifiers OC1,

OC2, OC3 and OC4 can be graphically represented as follows.

• OC1 = (FETStuckHigh . FASICStuckHigh) is represented by Figure 10.9,

• OC2 = (MicroControllerFailure.enableFET.FASICStuckHigh) is represented

by Figure 10.10,

• OC3 = (FETStuckHigh .MicroControllerFailure . armFASIC . fireFASIC) is

represented by Figure 10.11, and

• OC4 = (MicroControllerFailure. enableFET. armFASIC. fireFASIC) is rep-

resented by Figure 10.12.

FETStuckHigh

↓
FASICStuckHigh

Figure 10.9: Graphical representation of the EOL formula FETStuckHigh .
FASICStuckHigh.
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MicroControllerFailure

↓
enableFET

↓
FASICStuckHigh

Figure 10.10: Graphical representation of the EOL formula MicroControllerFailure.
enableFET . FASICStuckHigh.

FETStuckHigh

↓
MicroControllerFailure

↓
armFASIC

↓
fireFASIC

Figure 10.11: Graphical representation of the EOL formula FETStuckHigh .
MicroControllerFailure . armFASIC . fireFASIC.

MicroControllerFailure

↓
enableFET

↓
armFASIC

↓
fireFASIC

Figure 10.12: Graphical representation of the EOL formula MicroControllerFailure.
enableFET . armFASIC . fireFASIC.

10.3.3 Embedded Control System

Figure 10.4 shows the fault tree of the embedded control system presented in Sec-

tion 6.6.3. The order constraints of the PAND-gates OC1 and OC2 are

• OC1 = (SensorFailure ∧ SensorFailure) which is visualized in Figure 10.13

and

• OC2 = (ActuatorFailure ∧ ActuatorFailure) which is visualized in Fig-

ure 10.14.



10.3. Graphical Representation of Event Orders in Fault Trees 163

SensorFailure SensorFailure

Figure 10.13: Graphical representation of the EOL formula SensorFailure ∧
SensorFailure.

ActuatorFailure ActuatorFailure

Figure 10.14: Graphical representation of the EOL formula ActuatorFailure ∧
ActuatorFailure.

10.3.4 Train Odometer Controller

The fault tree of the train odometer controller introduced in Section 6.6.4 is shown

in Figure 10.5. The order constraints of the PAND-gates OC1, OC2, and OC3 are

• OC1 = (Start W Fail S.Wait W Fail S)∧(¬failureDeteted.]Wait Mon Fail)
which is graphically represented in Figure 10.15,

• OC2 = (Start W Fail F.Wait W Fail F)∧(¬failureDeteted.]Wait Mon Fail)
which is graphically represented in Figure 10.16, and

• OC3 = Wait R Fail∧ (¬failureDeteted.] Wait Mon Fail) which is graphically

represented in Figure 10.17.

Start W Fail S ⇓ ¬failureDeteted

↓ Wait Mon Fail

Wait W Fail S

Figure 10.15: Graphical representation of the EOL formula (Start W Fail S .
Wait W Fail S) ∧ (¬failureDeteted .] Wait Mon Fail).

Start W Fail F ⇓ ¬failureDeteted

↓ Wait Mon Fail

Wait W Fail F

Figure 10.16: Graphical representation of the EOL formula (Start W Fail F .
Wait W Fail F) ∧ (¬failureDeteted .] Wait Mon Fail).

Start R Fail ⇓ ¬failureDeteted

Wait Mon Fail

Figure 10.17: Graphical representation of the EOL formula Wait R Fail ∧
(¬failureDeteted .] Wait Mon Fail).
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10.3.5 Airport Surveillance Radar

Figure 10.6 shows the fault tree of the ASR system described in Section 6.6.5. The

order constraints of the PAND-gates OC1 and OC2 are

• OC1 = (dot sighted.plot detected. initTrack.PSR only.coastTrack) which

is represented by Figure 10.18 and

• OC2 = (dot sighted.plot detected. initTrack.SSR only.coastTrack) which

is represented by Figure 10.19.

dot sighted

↓
plot detected

↓
initTrack

↓
PSR only

↓
coastTrack

Figure 10.18: Graphical representation of the EOL formula dot sighted .
plot detected . initTrack .PSR only . coastTrack.

dot sighted

↓
plot detected

↓
initTrack

↓
SSR only

↓
coastTrack

Figure 10.19: Graphical representation of the EOL formula dot sighted .
plot detected . initTrack . SSR only . coastTrack.

10.4 Relationship to Minimal Cut Set Analysis

In fault tree analysis a minimal cut set (MCS) [97] is defined as the minimal boolean

combination of basic events that can cause the top level event. This means that no

true subset of the events in a minimal cut set can cause the top level event. Each of

the causality classes returned by the causality checker corresponds to a minimal cut



10.5. Root-Cause Identification 165

set, since it represents a minimal boolean combination of basic events that cause

the property violation represented by the top level event.

Theorem 64. Each causality class corresponds to a minimal cut set causing the

property violation.

Proof. For a causality class not to be a minimal cut set of a property violation there

would have to exist a subset of the events that also causes the property violation.

Due to the minimality constraint that is imposed by the actual causality conditions,

no such subset exists for a causality class. Consequently, each causality class that is

returned by the causality checker corresponds to a minimal cut set of the property

violation.

10.5 Root-Cause Identification

Causality checking identifies the causal event combinations for an effect or hazard.

In the safety analysis of systems one is also interested in identifying the root-cause

for a hazard. According to Ladkin [68] a root-cause is a necessary causal factor which

has no causal predecessor. Intuitively, a root-cause is an event that is considered to

be responsible for the hazard to occur. The other events that are being considered

as causes, but which are not root-causes, are either necessary in order to enable the

root-cause event or are necessary to propagate the failure caused by the root-cause

through the system until a hazard occurs. The events train approaching and car

approaching in the railroad example, for instance, are events that are identified as

being causal by the causality checker, since they are essential for both the car and

the train being on the crossing at the same time, but are not considered to be root-

causes, since they also happen on good traces. It is not possible for the causality

checking approach to distinguish between events that represent root-causes and

events that enable the root-causes or mediate between the root-causes and the

hazard. The reason for this is that if an event enabling the root-cause or mediating

between the root-cause and the hazard is removed from a trace, then the property

is not violated any more and the trace does not satisfy the AC1-AC3 conditions.

The identification of root-causes is left for future research, nevertheless we pro-

pose a potential approach that allows for the identification of root-causes. It is not

possible to automatically discriminate between root-cause events and other causal

events. Consequently, we envision a interactive approach where the user indicates

events that she suspects to be root-causes or suspects to be non-root-cause events.

The approach shall be implemented as an interactive user guided refinement step of

the causality checking result. For the causality class specified by the EOL formula

Gf ∧ ((Ta ∧ (Ca .Cc)) .< ¬Cl .> Tc of the railroad crossing example the suspected

root-causes could, for instance, be the events Gf and ¬Cl. For these events it is then

checked whether there exists a causal predecessor. This is achieved by computing

the causal events for the suspected root-cause. The computation of the causal pre-

decessor is limited on the set of traces that belong to the causality class specified by
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the EOL formula. If no causal predecessor for a suspected root-cause can be found,

it is indeed a root-cause. If a causal predecessor is found, this causal predecessor is

treated as a suspected root-cause and the test is repeated. In our example both the

event Gf and the event ¬Cl are identified as root-causes. Obviously, the result of the

proposed root-cause computation relies heavily on the subjective identification of

potential root-causes by the user and it needs to be investigated in future research

whether the proposed approach provides valuable results.
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11.1 Introduction

Tool support and a seamless integration into the industrial development processes

and the industrial tool landscape are key factors for the success of a method in an

industrial setting. For causality checking to be applicable a PRISM or Promela

analysis model of the system to be analyzed is necessary. While it is possible for

engineers to construct the analysis models manually, this is a time consuming task.

We integrate causality checking into the QuantUM framework [72], a method allow-

ing for the generation of analysis models from higher-level architectural description

languages such as the unified modeling language (UML) [86] or the systems model-

ing language (SysML) [52]. In Section 11.2 we discuss how causality checking can

be integrated into the QuantUM tool and in Section 11.3 we give examples how the

resulting model-based safety analysis method can be used in an industrial engineer-

ing process and within the context of the ISO 26262 [55] standard for functional

safety in the automotive domain.

11.2 Embedding Causality Checking in QuantUM

The QuantUM tool automatically generates a PRISM model and corresponding

properties from the annotated UML or SysML model. The PRISM model and

properties are taken as an input for the causality checking. The causality checker

then performs the causality analysis and the results are represented by a fault

tree visualization using the event order logic to fault tree mapping proposed in

Chapter 10. Individual traces represented by the causality classes can be displayed

in UML by UML sequence diagrams.
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Figure 11.1: Causality Checking integration into the QuantUM tool chain.

Figure 11.1 shows the QuantUM toolchain and the integration of the causality

checker. The causality checker is encapsulated by the QuantUM tool. This means

that the engineers using QuantUM will not need to have an in-depth understanding

of causality checking or the formal methods involved.

11.3 Causality Checking in Model-Based Safety Anal-

ysis

In this section we will discuss how the causality checking method integrated into

the QuantUM approach can be used in an engineering process based on the V-

model [26]. Figure 11.2 depicts the different stages of the V-model. The stages

where QuantUM and causality checking can be applied are colored in dark blue

and marked with the QuantUM logo.

Figure 11.2: V-model for systems engineering.

At all stages of the V-model QuantUM can be used to perform fast checks

whether certain unsafe system sates are reachable and what the probability of

reaching such an unsafe system state is. These checks allow to demonstrate the
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effectiveness of introduced fault tolerance and safety mechanisms. In case an unsafe

system state is reachable a fault tree documenting the causal events for reaching

the unsafe state will be generated and presented to the user.

Furthermore, QuantUM can be used to do a fast evaluation of different archi-

tecture alternatives during the high-level system design stage and the component

design stage. The probabilities for the property violations computed by QuantUM

and the generated fault trees can be used in order to compare the safety of different

architectural variants. When considering, for instance, the airbag system intro-

duced in Section 6.6.2, QuantUM can answer the question whether an extended

variant with two redundant crash evaluation paths is safer than the described vari-

ant with only one crash evaluation path. Additionally, it is possible to determine

whether the second decision path can be bypassed by design faults. Note that the

above described use cases were previously preformed manually by highly trained

domain experts and can now be automatically executed by the QuantUM tool with

the integrated causality checker.

During the verification stages the effectiveness of the implemented fault tol-

erance and safety mechanisms can be analyzed, by computing the fault trees for

safety-critical property violations. In addition, it is possible to compare the fault

trees that were automatically generated by QuantUM with fault trees that where

manually created by engineers. This allows to check whether the engineer made cor-

rect assumptions when creating the manual fault tree or whether there is a deviation

from the manual fault tree and the behavior of the system model.

11.3.1 QuantUM and Causality Checking in the Context of the
ISO 26262

The airbag case study described in Section 6.6.2 falls within the scope of the ISO

26262 [55] standard that defines processes and techniques in support of a safe design

and implementation of passenger automobile systems containing safety relevant or

safety-critical programmable electronic components. In this section we will discuss

how QuantUM and causality checking can be used in order to support the activities

recommended by the ISO 26262 standard. The ISO 26262 can be viewed as an

application domain specific specialization of the IEC 61508 [54] standard applicable

to general programmable, safety-critical electronic systems. The ISO 26262 is con-

sidered to represent the state of the art with respect to functional safety processes

and techniques in the automotive system engineering area, and is hence likely to

become a point of reference for litigation in this domain. In the ISO 26262 a process

model as well as different methods and work products are defined. The standard is

structured into nine parts that address different stages of the system design process.

• Part 26262-1 presents a definition of terms used in the standard.

• Part 26262-2 defines requirements on the management of functional safety.

The standard defines different confirmation measures to be performed in-

cluding confirmation reviews, functional safety audits and functional safety
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assessments. These process steps are designed to compile a safety case. A

safety case is defined to be an argument that the safety goals for an item are

satisfied based on the functional safety assurance measures carried out. In the

ISO 26262 an item denotes a system, a collection of systems or a function to

which ISO 26262 is applied. In this part a life-cycle model is proposed which

includes all necessary processes that have to be applied to the new system.

• Part 26262-3 is devoted to the concept phase of the system development life

cycle. This stage is pivotal for the functional safety of the system since it

involves the planning of all safety assurance activities. In particular, it com-

prises the definition of the different system aspects that are safety relevant,

the initiation of the safety process, a hazard analysis and a risk assessment.

In this part a qualitative method is defined, which helps to determine the

Automotive Safety Integrity Level (ASIL) of a system aspect. The different

ASIL levels range from QM (not safety-critical), A (lowest safety-criticality)

to D (highest safety-criticality). The goals of the concept phase include the

derivation of a functional safety concept and to derive functional safety goals.

• Part 26262-4 is concerned with the system design and with ensuring that the

system design satisfies the technical safety requirements defined in the concept

phase. The use of deductive analysis techniques, such as Fault Tree Analysis

(FTA), is proposed in this part and they are highly recommended for ASIL

level C and D. Inductive analysis techniques, such as Failure Mode and Effect

Analysis (FMEA) [53], Event Tree Analysis (ETA) and Markov modeling are

highly recommended for all ASIL levels. For every aspect which is integrated

into the new system an integration and testing strategy has to be defined

based on the system design specification.

• Part 26262-5 is devoted to hardware design and to ensuring the compliance

with the former defined safety goals of the system. The analysis techniques to

verify the hardware components are also FTA, FMEA and others depending

on the ASIL levels. An important part of the hardware verification is the

evaluation of the probability of safety goal violations due to random hardware

failures. Depending on the assigned ASIL level concrete probability limits for

safety goal violations are specified by the ISO 26262 standard.

• Part 26262-6 defines the software development process including the definition

of software safety requirements and their verification. In this part the V-

model is proposed as the applicable software process and life-cycle model.

Software safety requirements are derived from the technical safety concept

and the system design. Further objectives of this stage are a refinement of the

software-hardware interface, and an assurance mechanism showing that the

software safety requirements are consistent with the technical safety concept

and the system design specification.

• Part 26262-7 addresses safety relevant issues in the production, operation and
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maintenance of automotive systems and is not directly relevant in the context

of this thesis.

• Part 26262-8 describes supporting processes like requirements management,

configuration management, verification, documentation and the qualification

of software tools, software and hardware.

• Part 26262-9 addresses ASIL oriented and safety-oriented analysis techniques.

Qualitative FMEA as well as qualitative FTA and Event Tree Analysis (ETA)

are listed as qualitative analysis techniques. As quantitative analysis tech-

niques, quantitative FMEA, quantitative FTA, ETA and Markov models are

recommended, amongst others.

We will now discuss how QuantUM and causality checking can be used in order

to support the different activities recommended by the different parts of the ISO

26262 standard.

• Regarding part 26262-1 it is most interesting how terms related to formal

methods are defined. A formal notation is defined as a description technique

that possesses completely defined syntax and semantics. A notation is defined

to be semi-formal if only its syntax is precisely defined. The UML and SysML

would hence qualify as a semi-formal notation. Formal verification is defined

as a method that allows one to prove correctness of a system against its spec-

ification. A verification method is semi-formal if it is based on specification

given in a semi-formal notation. Following this terminology, the QuantUM

approach uses both semi-formal notations, like UML and the QuantUM ex-

tension, as well as a formal notation using the Promela and PRISM language.

Causality checking as well as model checking classify as formal verification

methods according to the ISO 26262.

• Amongst others, part 26262-2 requires confirmation reviews using Fault Tree

Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) to be per-

formed. For ASIL A and ASIL B this is merely required, for ASIL C this

analysis shall be performed by a person not belonging to the development

team, and for ASIL D by a person not belonging to the same organization

or department within an organization. QuantUM allows for an automated

FMEA and with the causality checking integration for an automated FTA.

• The main activities described in part 26262-3 are the item definition, the

hazard analysis and risk assessment, and the specification of the functional

safety concept.

– In the item definition all relevant aspects of the system are defined. A

description of the functionality of the item has to be given. The depen-

dencies and interaction to other items and the environment are specified

in order to give a contextual view of the item. The description of the
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Figure 11.3: A contextual view of the airbag control unit.

item supports an adequate understanding of the item so that the activ-

ities in subsequent phases can be performed. We propose that a high

level UML / SysML diagram is generated by the user which relates the

item with its environment and other items in order to give an overview.

A coarse description of the item and its environment is given using a

high level UML Statechart for the different items in the context. In Fig-

ure 11.3 an exemplary context view of the airbag system, described in

detail in Section 6.6.2, is given relating the airbag electrical control unit

(AirbagECU) to its neighboring components, for instance the passenger

airbag deactivation switch.

– In the hazard analysis and risk assessment (HARA) the hazards of the

item are identified. A categorization of the malfunctions that can trigger

the hazards has to be given and safety goals related to the prevention or

mitigation of the hazardous events have to be formulated. Given a use

case diagram depicting the system functionality, hazardous malfunctions

can be identified. An example of such a use case diagram showing the

malfunctions that can be derived from the use case “deploy airbag in

crash situation” is shown in Figure 11.4.

– In the functional safety concept phase safety requirements have to be

derived from the former defined safety goals. The requirements are

allocated to the preliminary architectural elements, items or external

objects. We propose that the preliminary architecture is modeled in

UML / SysML using structural and behavioral diagrams to describe the
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Figure 11.4: Safety goals generated in the Hazard Analysis and Risk Assessment.

static and dynamic aspects of the system. The requirements can then

be directly allocated to architectural elements in UML or SysML. The

QuantUM approach and causality checking can then be used in order

to analyze the preliminary architecture. The preliminary architectural

elements of the airbag system are shown in Figure 11.5.

• Part 26262-4 is concerned with the system design and with ensuring that the

system design satisfies the safety requirements. In this step a refinement of

the functional safety concept is performed. In order to do so the preliminary

architecture model created in the functional safety concept phase is refined.

The requirements gained from this step are again allocated to the UML /

SysML elements as done in the previous step. In order to demonstrate the

effectiveness of the proposed fault tolerance and safety mechanisms, that are

introduced into the model in this phase, a proof of concept analysis using the

QuantUM tool can be conducted. The use of deductive analysis techniques,

such as FTA, are proposed and highly recommended for the ASIL levels C

and D. Inductive Analysis techniques, such as FMEA, Event Tree Analysis

(ETA) and Markov modeling are endorsed for all ASIL levels. The causality

checking integration in QuantUM allows for the automatic generation of fault

trees from design models, furthermore QuantUM provides support for carrying

out a probabilistic FMEA.

• Part 26262-5 is devoted to hardware design. While we note that hardware

analysis can be carried out by model checking [8], the QuantUM approach is

not really suitable to describe pure hardware architectures. With the Quan-

tUM approach it is, nonetheless, possible to analyze hardware on a system

level. Part 26262-5 requires an evaluation of safety goal violations caused by

random hardware failures. Using the QuantUM UML/SysML profile it is pos-

sible to attach failure rates and probabilities directly to component failures in

the UML / SysML model. The QuantUM tool can then be used to automat-

ically check whether safety goals are violated by random hardware failures

and what the probability of such a violation is. In addition the causes of a

safety goal violation are computed by the causality checker integrated in the
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Figure 11.5: The structural overview diagram of the functional safety concept.

QuantUM tool and together with their corresponding probability depicted in

a fault tree. The fault tree of the airbag example is depicted in Figure 11.6.

• In part 26262-6 a formal verification for ASIL levels C and D is recommended.

The use of formal notations for software unit design is recommended for all

ASIL levels. The QuantUM approach uses a semi-formal notation and syn-

thesizes a formal model of individual subsystems, which fits the former two

requirements. Semantic code analysis is one of the methods that are specified

in this part of the standard and is recommended for all ASIL levels. Such an

analysis can be accomplished by model checking, and, consequently also by

causality checking. In [15] the consistency of the translation semantics from

high level UML / SysML models to the model checking code QuantUM is

generating with code generation semantics for a widely used industrial CASE

tool is shown.

• Part 26262-7 addresses safety relevant issues in the production, operation and

maintenance and is not directly relevant in the context of this thesis.

• In Part 26262-8 supporting processes are discussed and hence there is no direct

application scenario for QuantUM or causality checking within this part.

• A major concern of Part 26262-9 is the tailoring of the Automotive Safety In-

tegrity Level (ASIL) during the refinement of the system architecture which

is described as follows. The ASIL of the safety goals of an item under devel-
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Figure 11.6: Fault tree for an inadvertent deployment of the airbag example.
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opment is propagated throughout the item’s development process. Starting

from safety goals, the safety requirements are derived and refined during the

development phases. The ASIL, as an attribute of the safety goal, is inherited

by each subsequent safety requirement. The functional and technical safety

requirements are allocated to architectural elements, starting with prelimi-

nary architectural assumptions and ending with the hardware and software

elements. The method of ASIL tailoring during the design process is called

“ASIL decomposition”. If an architectural element is derived into two architec-

tural elements that are sufficiently independent with respect to the violation

of safety goals the ASIL can be decomposed on the lower level. This offers

the opportunity

1. to implement safety requirements redundantly by independent architec-

tural elements, and

2. to assign a potentially lower ASIL to these decomposed safety require-

ments.

If the architectural elements are not sufficiently independent, then the re-

dundant requirements and the architectural elements inherit the initial ASIL.

This means that if it is possible to prove a sufficient independence in the func-

tionality of redundant components a possibly lower ASIL can be attached to

the component and, thus, the cost of developing the redundant components

is decreased. The ISO 26262 standard imposes the following requirements on

the independence of architectural elements:

– The elements are sufficiently independent if the analysis of dependent

failures does not find a cause of dependent failures that can lead to the

violation of a safety requirement before decomposition,

– or if each identified cause of dependent failures is controlled by an ade-

quate safety measure according to the ASIL of the safety goal.

In other words, if both architectural elements have to fail independently from

each other to cause a violation of the top-level safety requirement they are

sufficiently independent.

In terms of causality relationships this means that:

– Both architectural elements have to fail in order to violate the top-level

safety requirement. This is the case if they are connected by an AND-

gate in the fault tree that is generated for the violation of the safety

requirement.

– There is no relative causal ordering between the failures of the two ar-

chitectural elements.

The above mentioned causality relationships can be computed by the causality

checker integrated in the QuantUM tool, thus it is possible to automatically
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detect whether two architectural elements are sufficiently independent with

respect to the violation of safety goals and hence ASIL decomposition can

be applied. The fault tree returned by the causality checker for the airbag

system, for instance, clearly indicates that no ASIL decomposition for the

components FASIC, FET and microcontroller is possible.

11.3.2 Summary

We have shown that QuantUM and causality checking can be used in order to sup-

port the activities in an engineering process. Some of the activities that previously

were executed manually, like fault tree analysis, can be automated using the causal-

ity checking approach. Consequently, both the QuantUM approach and causality

checking provide the potential to reduce the development costs of safety-critical

systems.





Chapter 12

Conclusion

Conclusion

In this thesis we have proposed the causality checking method for automated causal-

ity reasoning in system models. The method can be used to compute the causal

event combinations for the violation of a non-reachability property in a system

model.

We introduced the event order logic, which is a temporal logic that allows to

formally capture the occurrence and order of events and is used to represent the

results of the causality checking method.

We have shown how causal relationships can be inferred in system models based

on an adapted version of the actual cause definition by Halpern and Pearl and

how the order of the events can be taken into account as a causal factor. We

proposed an on-the-fly algorithm for causality checking and showed how it can be

integrated into the state-space exploration algorithms used in qualitative model

checking. Furthermore, we extended the causality checking method in order to

be applicable to probabilistic system models. Since a pure probabilistic causality

checking method entails a high performance penalty for the necessary probability

computation, as became clear in this thesis, we showed how this bottleneck can be

mitigated by a combination of qualitative and probabilistic causality checking. We

demonstrated the applicability and usefulness of causality checking on several case

studies from industry and academia.

The proposed causality checking method enables an automated causal analysis

of concurrent systems including hardware and software. The results generated by

the causality checker provide valuable insight as to why the hazard or property vi-

olation occurred, which is very tedious or even impossible to determine if standard

model checking and manual counterexample analysis is used, due to the amount of

counterexamples generated. The adapted causality notion that we use and more

specifically, considering the event ordering as a causal factor, makes causality check-

ing more suitable for the analysis of concurrent systems than the existing causal

reasoning approaches based on the counterfactual argument or the original Halpern

and Pearl actual cause definition. Furthermore, causality checking, in contrast to

the existing causality reasoning approaches, focuses on identifying all possible causal

event combinations instead of focusing on the identification of a single causal event

in a single counterexample trace.

Even though the causality checking method scaled well for the case studies
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presented in this thesis, we discussed how the scalability of causality checking can

be further increased.

In order to make the results of causality checking easy to interpret for engineers,

we proposed a mapping of event order logic formulas to fault trees, a method used

in industry to reason about the relationships between a property violation and

the corresponding causal events. In addition, we discussed how causality checking

can be integrated into the QuantUM method, a framework for the automated safety

analysis of system and software architectures and gave example application scenarios

for the QuantUM method including causality checking in an industrial engineering

process.

The mapping of the causality checking results to fault trees and the integra-

tion of the causality checking approach into the QuantUM framework facilitates

the usage of causality checking in an industrial safety-engineering process. With

the combination of QuantUM and causality checking, some of the activities that

previously had to be executed manually, like fault tree analysis, can be automated.

Consequently, both the QuantUM approach and causality checking provide the po-

tential to reduce the development costs of safety-critical systems.

Future Work

For the time being the causality checking is limited to non-reachability properties.

In future work the causality reasoning could be extended in order to also support

causality checking for liveness properties. In contrast to non-reachability properties

where a counterexample consists of a finite trace, the counterexample for a liveness

property consists of an infinite trace. The extension would require to define the

notion of causality for the violation of a liveness property on an infinite trace and

furthermore the extension of the proposed algorithms.

In order to further increase the scalability of the qualitative causality checking

approach, in future work it could be investigated whether the information obtained

by the static analysis performed for partial order reduction can be used to identify

all causal event orders even if partial order reduction is enabled during the state-

space exploration. The key idea is to store the information about the event orderings

that have been pruned by the partial order reduction, instead of enumerating all

possible event orderings through state-space exploration.

The root-cause computation proposed in Chapter 10 needs to be implemented

as an interactive user guided refinement step of the causality checking results and

it needs to be evaluated whether the approach provides valuable results.
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