Counterexample-Based Refinement for a Boundedness Test for CFSM Languages

Wei Wei

Chair for Software Engineering
Department of Computer and Information Science
University of Konstanz
Germany

- It is a joint work with

Stefan Leue.

- University of Konstanz
- Email: Stefan.Leue@inf.uni-konstanz.de

Outline

- CFSMs and Buffer Boundedness
- Boundedness Test and Counterexamples
- Sources of Imprecision
- Cycle Code Analysis
- Graph Structure Analysis
- Complexity
- Experimental Results
- Conclusion and Future Work

Communicating Finite State Machines

- CFSMs are to model discrete-state systems consisting of a number of processes that
- execute concurrently,
- and communicate with each other via asynchronous message exchanges.

Buffer Boundedness

- Buffers are assumed to have unbounded capacities.
- the number of messages in a buffer may grow unboundedly.
- Unboundedness is not desired.
- limited resources available.
- fails reachability analvses.

An Incomplete Boundedness Test

- Buffer boundedness for CFSMs is undecidable.
- We developed an abstraction-based test.

Stefan Leue, Richard Mayr, and Wei Wei: A Scalable Incomplete Test for the Boundedness of UML RT Models, Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS 2004.

Stefan Leue, Richard Mayr, and Wei Wei: A Scalable Incomplete Test for Message Buffer Overflow in Promela Models, Proceedings of the 11th International SPIN Workshop on Model Checking Software SPIN 2004.

- The idea behind: only cyclic behavior may cause unboundedness.
- concentrate on control flow cycles of state machines.

An Incomplete Boundedness Test

- What we abstract from:
- program code
- message orders
- activation conditions of cycles
- cycle dependencies

An Incomplete Boundedness

 Test- What we abstract from:
- program code
- message orders
- activation conditions of cycles
- cycle dependencies

An Incomplete Boundedness Test

- What we abstract from:
- program code \rightarrow sequences of send or receive statements
- message orders
- activation conditions of cycles
- cycle dependencies

An Incomplete Boundedness Test

- What we abstract from:
- program code
- message orders (a,b,b,a) $\rightarrow(2,2)$
- activation conditions of cycles
- cycle dependencies

An Incomplete Boundedness Test

- What we abstract from:
- program code
- message orders: effect vector
- activation conditions of cycles
- cycle dependencies

An Incomplete Boundedness

 Test- What we abstract from:
- program code
- message orders
- activation conditions of cycles
- cycle dependencies

An Incomplete Boundedness Test

- The abstract model

(1,-1)

$(0,1)$

$(-1,0)$

An Incomplete Boundedness Test

- Use an integer linear programming (ILP) problem to check all the combinatory effects of cycles.

$$
x_{1}\binom{1}{-1}+x_{2}\binom{0}{1}+x_{3}\binom{-1}{0}>\binom{0}{0}
$$

- Any particular linear combination, whose combinatory effect has only nonnegative components and at least one positive component, indicates unboundedness of the abstract model.
- No such combination proves
boundedness (of the concrete model.)

An Incomplete Boundedness Test

- Any particular linear combination, whose combinatory effect has only nonnegative components and at least one positive component, indicates unboundedness of the abstract model.

$$
\begin{gathered}
x_{1}\binom{1}{-1}+x_{2}\binom{0}{1}+x_{3}\binom{-1}{0}>\binom{0}{0} \\
\text { A solution: } \mathrm{x}_{1}=0 ; \mathrm{x}_{2}=1 ; \mathrm{x}_{3}=0
\end{gathered}
$$

Counterexamples

- Counterexamples are sets of cycles.
- only cycles in a counterexample are executed an infinite number of times.
- A counterexample is constructed from a particular solution to the boundedness determining ILP problem.
- consists of all the cycles whose corresponding variable receives a non-zero value in the solution.

Counterexamples

- A counterexample is constructed from a particular solution to the boundedness determining ILP problem.
- consists of all the cycles whose corresponding variable receives non-zero value in the solution.

A solution: $\mathrm{x}_{1}=0 ; \mathrm{x}_{2}=1 ; \mathrm{x}_{3}=0$

$(0,1)$

Counterexample Spuriousness

- The left cycle cannot be repeated without executions of the right cycle.
- The counterexample constructed from the solution x_{1}
$=0 ; x_{2}=1 ; x_{3}=0$ is spurious.

Sources of Imprecision

- What we have abstracted from:
- program code
- cycle conditions on variables are abstracted away.
- message orders
- not all the messages in a buffer may be available for trigger a transition.
- activation conditions of cycles
- a cycle may not be reachable from the initial configuration of the concrete model (no enough messages).
- cycle dependencies
- executions of cycles may depend on each other.

Sources of Imprecision

- What we have abstracted from:
- program code
- loop conditions on variables are abstracted away.
- not all the messages in a buffer may be available for trigger a
transition.
- activation conditions of cycles
- a cycle may not be reachable from the initial configuration of
- the concrete model (no enough messages).
- executions of cycles may depend on each other.

Sources of Imprecision

- We consider the following types of missing detail of concrete models:
- cycle dependencies imposed by cycle conditions on variables.
- locally modified variables \rightarrow local dependencies.
- integer variables.
- linear conditions and linear assignments.
- cycle dependencies imposed by control flow graph structures.
- We determine these two types of cycle dependencies.
- used to determine spuriousness for counterexamples.
- used to refine abstract models.

Cycle Code Analysis

- The executability of a cycle is determined by all the condition statements in the cycle code.
- We check, for each individual condition statement (B), the constraint that it addes on cycle executions.
- the maximal number of times max $_{B}$ that (B) can be executed while the variables in the condition B are modified only within the cycle.
- the cycle can be repeated without interruption no more than $m^{2} x_{B}$ times.
- every max ${ }_{B}$ times that the cycle is repeated, some other cycles have to be executed at least once.

Cycle Code Analysis

- Neighboring cycles.

Cycle Code Analysis

- Neighboring cycles.
- Supplementary cycles with respect to the condition B.
- modify some variables in B to render B to be satisfied again.

Cycle Code Analysis

- Neighboring cycles.
- Supplementary cycles with respect to the condition B.
- modify some variables in B to render B to be satisfied again.
- The right cycle is both a neighboring cycle and a supplementary cycle with respect to $x==0$.

Determining $\max _{B}$

- It is generally impossible to determine $\max _{B}$.

$$
B \text {--1 } \max _{B}
$$

Determining $\max _{B}$

- It is generally impossible to determine $\max _{B}$.

Determining $\max _{B}$

- It is generally impossible to determine $\max _{B}$.

Determining $\max _{B}$

- It is generally impossible to determine $\max _{B}$.

Determining $\max _{B}$

- It is generally impossible to determine $\max _{B}$.

Determining $\max _{B}$

- It is generally impossible to determine $\max _{B}$.

Determining $\max _{B}$

- Compute max $_{B, d 1,11}$
$a_{1} x_{1}+\ldots+a_{k} x_{\mathrm{k}} \geq b$
- We can only determine $\max _{B, d 1,, l 1}$ if the value of the control expression $a_{1} x_{1}+\ldots+a_{k} x_{\mathrm{k}}$ is always decreased.
- step values of the control expression are always negative.
- determine the initial values of the control expression.
- determine the maximal step value of the control expression.
- $\max _{B, d 1, I l}$ is bounded by $\max \{1,\ulcorner($ maximal_initial_value $-b) /-$ maximal_step_value 7$\}$
- Otherwise, we set $\max _{B, d 1, I 1}$ to be ∞.

Determining $\max _{B}$

Determining Neighboring and Supplementary Cycles

- Neighboring cycles are easy to collect.
- It is generally impossible to determine the exact set of supplementary cycles.
- overapproximation: a cycle is regarded as supplementary if it modifies some variables in the considered condition.
- a finer approach: exclude all the cycles whose executions increase the value of each control expression in the condition.
- much more expensive, involving code analysis of all the cycles that modify some variables in the condition.

Determining Spuriousness

- Every $\max _{\mathrm{B}}$ times that the cycle is executed,
- at least one neighboring cycle must be executed.
- at least one supplementary cycle with respect to B must be executed.
- A counterexample is spurious if one of its member cycle violates the above property.

Refinement

X_{2}

X_{3}

X_{3}

- Every $\max _{\mathrm{B}}$ times that the left cycle is executed,
- at least one neighboring cycle must be executed $\mathrm{x}_{2} \leq \max _{\mathrm{B}} \mathrm{x}_{3} \rightarrow \mathrm{x}_{2} \leq \mathrm{x}_{3}$
- at least one supplementary cycle must be executed $\mathrm{x}_{2} \leq \max _{\mathrm{B}} \mathrm{x}_{3} \rightarrow \mathrm{x}_{2} \leq \mathrm{x}_{3}$

Refinement without $\max _{B}$

X_{3}

- Two alternatives:
- the left cycle is not executed infinitely often.

$$
\mathrm{x}_{2}=0
$$

Refinement without $\max _{B}$

- Two alternatives:
- the left cycle is executed infinitely often, then at least one of the neighboring cycles and at least one of the supplementary cycles must be also executed infinitely often.
$x_{2}>0 \wedge x_{3}>0 \wedge x_{3}>0$

Refinement without $\max _{B}$

x_{3}

Graph Structure Analysis

- Strongly connected components (SCCs)
- cycles in different SCCs are „repelling" each other.

- Cycles that do not share common states need others to bridge them.

Self-Connected Cycle Set

- A set of cycles in the same process is selfconnected if any two cycles in the set are reachable from each other by traversing through only the cycles in the set.

- A counterexample is spurious if, for some process, the set of all member cycles in that process is not self-connected.

Refinement

- Consider a counterexample that contains C_{1} and C_{2} only.

Refinement

- Consider a counterexample that contains C_{1} and C_{2} only.
- determine all the self-connected sets that contain C_{1} and C_{2}.

Refinement

- Consider a counterexample that contains C_{1} and C_{2} only.
- determine all the self-connected sets that contain C_{1} and C_{2}.

Refinement

- Consider a counterexample that contains C_{1} and C_{2} only.
- determine all the self-connected sets that contain C_{1} and C_{2}.
- if there is no such set, then C_{1} and C_{2} belong to differenct SCCs.

Refinement

- Several alternatives:
$-\mathrm{C}_{1}$ and C_{2} are not executed infinitely often.

$$
x_{1}=0 \wedge x_{2}=0
$$

Refinement

- Several alternatives:
$-C_{1}$ is not executed infinitely often while C_{2} is.

$$
\mathrm{x}_{1}=0 \wedge \mathrm{x}_{2}>0
$$

Refinement

- Several alternatives:
$-C_{2}$ is not executed infinitely often while C_{1} is.

$$
x_{1}>0 \wedge x_{2}=0
$$

Refinement

- Several alternatives:
$-C_{1}$ and C_{2} are both executed infinitely often, C_{3} and C_{4} are also executed infinitely often.

$$
\mathrm{x}_{1}>0 \wedge \mathrm{x}_{2}>0 \wedge \mathrm{x}_{3}>0 \wedge \mathrm{x}_{4}>0
$$

Refinement

- Several alternatives:
$-\mathrm{C}_{1}$ and C_{2} are both executed infinitely often, C_{5} and C_{6} are also executed infinitely often.

$$
x_{1}>0 \wedge x_{2}>0 \wedge x_{5}>0 \wedge x_{6}>0
$$

Refinement

Coarser Refinement

- $\mathrm{x}_{1}=0 \wedge \mathrm{x}_{2}=0$
- $\mathrm{x}_{1}=0 \wedge \mathrm{x}_{2}>0$
- $\mathrm{x}_{1}>0 \wedge \mathrm{x}_{2}=0$
- $\mathrm{x}_{1}>0 \wedge \mathrm{x}_{2}>0 \wedge \mathrm{x}_{3}+\mathrm{x}_{5}>0 \wedge \mathrm{x}_{4}+\mathrm{x}_{6}>0$

Coarser Refinement

- $\mathrm{x}_{1}=0 \wedge \mathrm{x}_{2}=0$
- $\mathrm{x}_{1}=0 \wedge \mathrm{x}_{2}>0$
- $\mathrm{x}_{1}>0 \wedge \mathrm{x}_{2}=0$
- $\mathrm{x}_{1}>0 \wedge \mathrm{x}_{2}>0 \wedge \mathrm{x}_{3}+\mathrm{x}_{5}>0 \wedge \mathrm{x}_{4}+\mathrm{x}_{6}>0$

Complexity

- Counterexample spuriousness is undecidable.
- High complexity in theory.
- The number of ILP-problems to determine the maximal step value of a control expression is exponential both in the number of condition statements and in the size of each condition statement.
- Efficient in practice.

Experimental Results

- IBOC (IMCOS Boundedness Checker)
http://www.inf.uni-konstanz.de/soft/tools_en.php?sys=3
- Tests on 31 models:
- 8 of 31 are proved bounded without counterexamples reported.
- 2 of 31 are proved bounded after refinement.
- IBOC returned „UNKNOWN" for 21 of 31.
- 12 of 21 are truly unbounded.
- On the model of the MVCC protocol, IBOC found 4 counterexamples and determined 3 of them as spurious.

Conclusion

- Determine spuriousness for counterexamples by analyzing cycle code and control flow graph structures.
- Refine abstract models by use of cycle dependency information obtained from counterexample analyses.
- We have implemented the method in IBOC.

Future Work

- Study of global cycle dependencies.
- Application of the method to UML RealTime models.

Thank you!

Welcome to visit Konstanz and the beautiful Bodensee.

