Counterexample-Based Refinement for a Boundedness Test for CFSM Languages

Wei Wei

Chair for Software Engineering Department of Computer and Information Science University of Konstanz Germany • It is a joint work with

Stefan Leue.

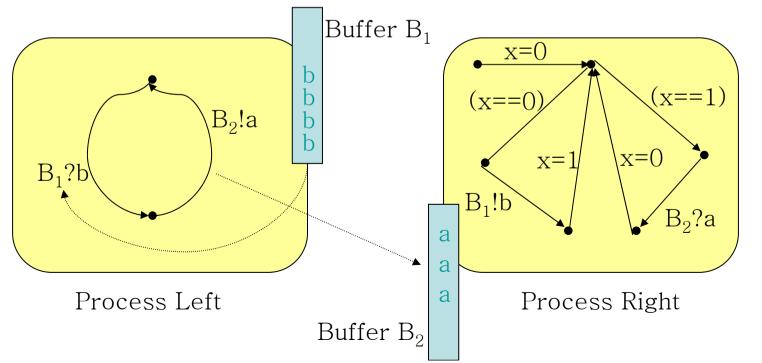
- University of Konstanz
- Email: *Stefan.Leue@inf.uni-konstanz.de*

Outline

- CFSMs and Buffer Boundedness
- Boundedness Test and Counterexamples
- Sources of Imprecision
- Cycle Code Analysis
- Graph Structure Analysis
- Complexity
- Experimental Results
- Conclusion and Future Work

Communicating Finite State Machines

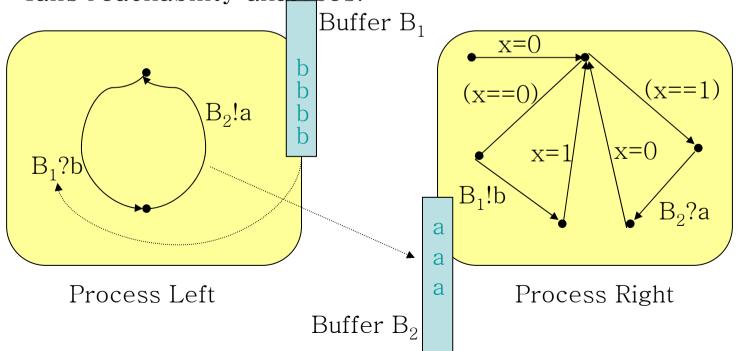
- CFSMs are to model discrete-state systems consisting of a number of processes that
 - execute concurrently,
 - and communicate with each other via asynchronous message exchanges.



4

Buffer Boundedness

- Buffers are assumed to have unbounded capacities.
 - the number of messages in a buffer may grow unboundedly.
- Unboundedness is not desired.
 - limited resources available.
 - fails reachability analyses.



5

- Buffer boundedness for CFSMs is undecidable.
- We developed an abstraction-based test.

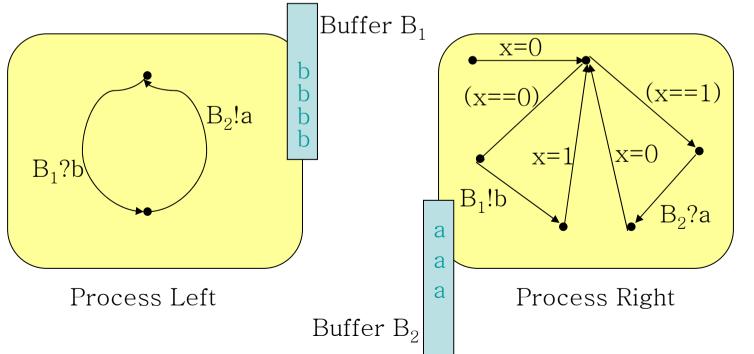
Stefan Leue, Richard Mayr, and Wei Wei: *A Scalable Incomplete Test for the Boundedness of UML RT Models*, Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS 2004.

Stefan Leue, Richard Mayr, and Wei Wei: *A Scalable Incomplete Test for Message Buffer Overflow in Promela Models*, Proceedings of the 11th International SPIN Workshop on Model Checking Software SPIN 2004.

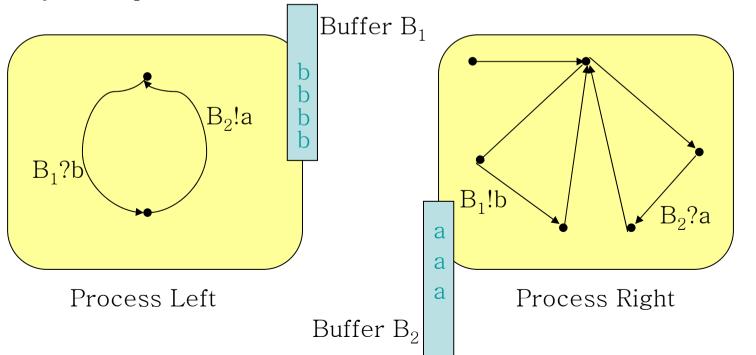
- The idea behind: only cyclic behavior may cause unboundedness.
 - concentrate on control flow cycles of state machines.

- What we abstract from:
 - program code
 - message orders
 - activation conditions of cycles
 - cycle dependencies

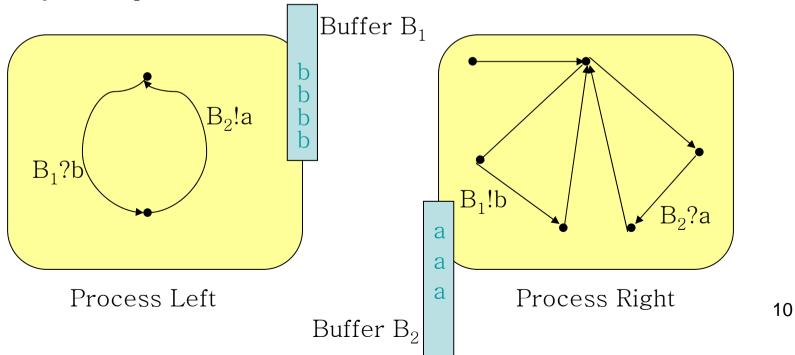
- What we abstract from:
 - program code
 - message orders
 - activation conditions of cycles
 - cycle dependencies



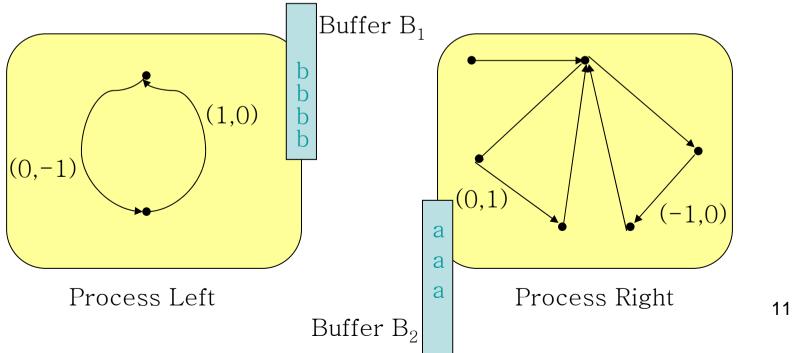
- What we abstract from:
 - program code \rightarrow sequences of send or receive statements
 - message orders
 - activation conditions of cycles
 - cycle dependencies



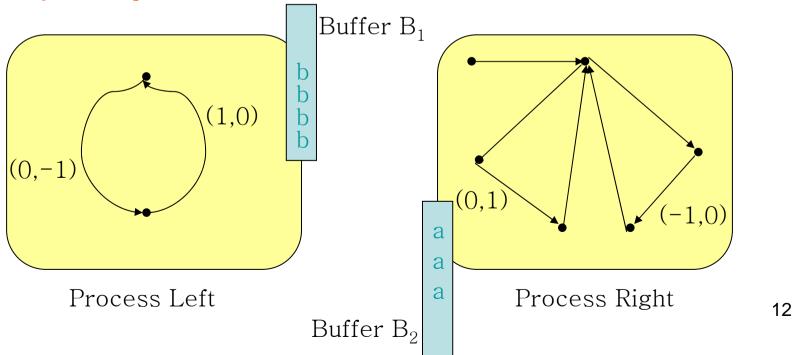
- What we abstract from:
 - program code
 - message orders (a,b,b,a) \rightarrow (2,2)
 - activation conditions of cycles
 - cycle dependencies



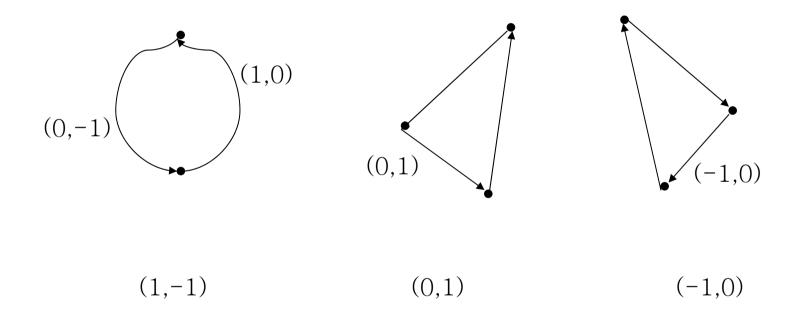
- What we abstract from:
 - program code
 - message orders: effect vector
 - activation conditions of cycles
 - cycle dependencies



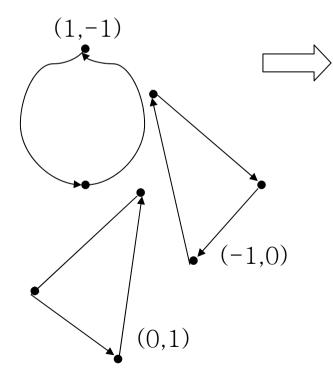
- What we abstract from:
 - program code
 - message orders
 - activation conditions of cycles
 - cycle dependencies



• The abstract model



• Use an integer linear programming (ILP) problem to check all the combinatory effects of cycles.



 $x_{1}\begin{pmatrix}1\\-1\end{pmatrix}+x_{2}\begin{pmatrix}0\\1\end{pmatrix}+x_{3}\begin{pmatrix}-1\\0\end{pmatrix}>\begin{pmatrix}0\\0\end{pmatrix}$

• Any particular linear combination, whose combinatory effect has only nonnegative components and at least one positive component, indicates unboundedness of the abstract model.

• No such combination proves boundedness (of the concrete model.) 14

• Any particular linear combination, whose combinatory effect has only nonnegative components and at least one positive component, indicates unboundedness of the abstract model.

$$x_{1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + x_{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + x_{3} \begin{pmatrix} -1 \\ 0 \end{pmatrix} > \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

A solution: $x_1 = 0$; $x_2 = 1$; $x_3 = 0$

Counterexamples

- Counterexamples are sets of cycles.
 - only cycles in a counterexample are executed an infinite number of times.
- A counterexample is constructed from a particular solution to the boundedness determining ILP problem.
 - consists of all the cycles whose corresponding variable receives a non-zero value in the solution.

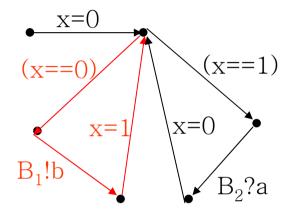
Counterexamples

- A counterexample is constructed from a particular solution to the boundedness determining ILP problem.
 - consists of all the cycles whose corresponding variable receives non-zero value in the solution.

A solution:
$$x_1 = 0$$
; $x_2 = 1$; $x_3 = 0$ (0,1)

17

Counterexample Spuriousness



- The left cycle cannot be repeated without executions of the right cycle.
- The counterexample constructed from the solution $x_1 = 0$; $x_2 = 1$; $x_3 = 0$ is spurious.

Sources of Imprecision

- What we have abstracted from:
 - program code
 - cycle conditions on variables are abstracted away.
 - message orders
 - not all the messages in a buffer may be available for trigger a transition.
 - activation conditions of cycles
 - a cycle may not be reachable from the initial configuration of the concrete model (no enough messages).
 - cycle dependencies
 - executions of cycles may depend on each other.

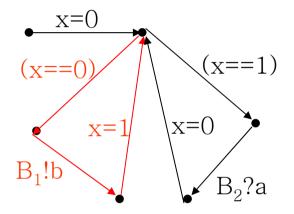
Sources of Imprecision

- What we have abstracted from:
 - program code
 - loop conditions on variables are abstracted away.
 - message orders
 - not all the messages in a buffer may be available for trigger a transition.
 - activation conditions of cycles
 - a cycle may not be reachable from the initial configuration of the concrete model (no enough messages).
 - cycle dependencies
 - executions of cycles may depend on each other.

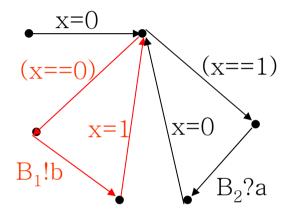
Sources of Imprecision

- We consider the following types of missing detail of concrete models:
 - cycle dependencies imposed by cycle conditions on variables.
 - locally modified variables \rightarrow local dependencies.
 - integer variables.
 - linear conditions and linear assignments.
 - cycle dependencies imposed by control flow graph structures.
- We determine these two types of cycle dependencies.
 - used to determine spuriousness for counterexamples.
 - used to refine abstract models.

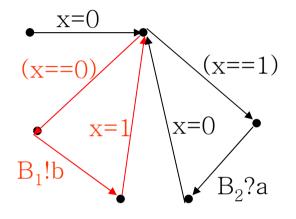
- The executability of a cycle is determined by all the condition statements in the cycle code.
- We check, for each individual condition statement (B), the constraint that it addes on cycle executions.
 - the maximal number of times max_B that (B) can be executed while the variables in the condition B are modified only within the cycle.
 - the cycle can be repeated without interruption no more than max_B times.
 - every max_B times that the cycle is repeated, some other cycles have to be executed at least once.



• Neighboring cycles.



- Neighboring cycles.
- Supplementary cycles with respect to the condition *B*.
 modify some variables in *B* to render *B* to be satisfied again.



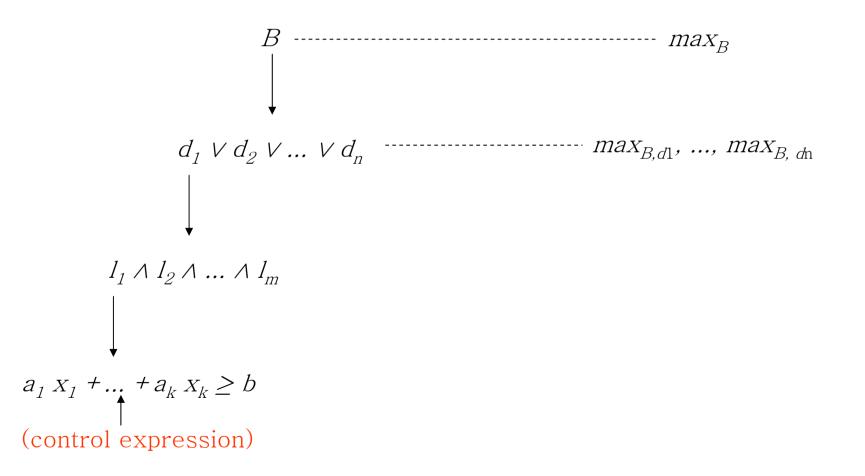
- Neighboring cycles.
- Supplementary cycles with respect to the condition *B*.
 modify some variables in *B* to render *B* to be satisfied again.
- The right cycle is both a neighboring cycle and a supplementary cycle with respect to x==0.

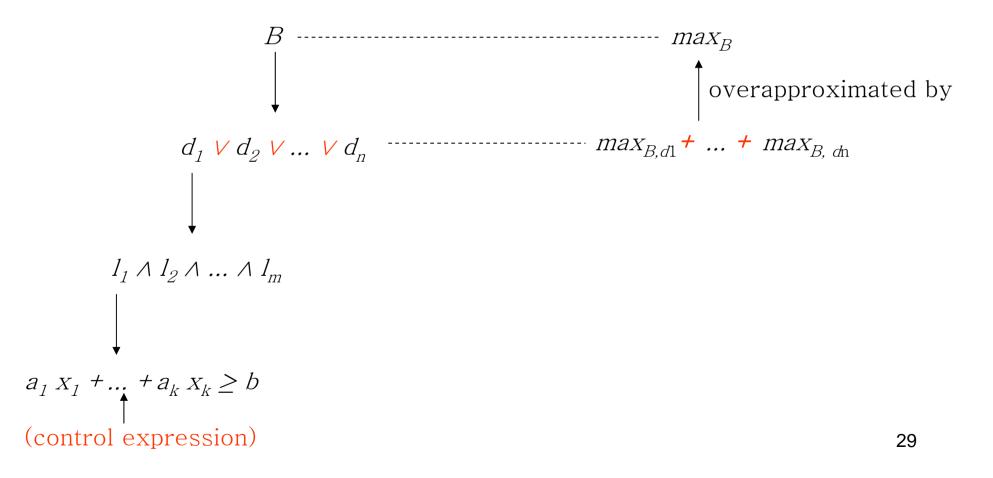
• It is generally impossible to determine max_B .

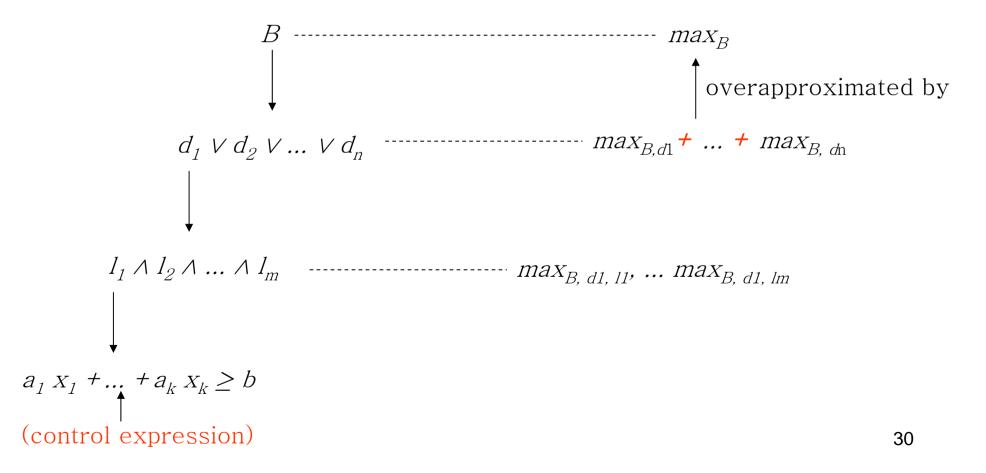
B ------ max_B

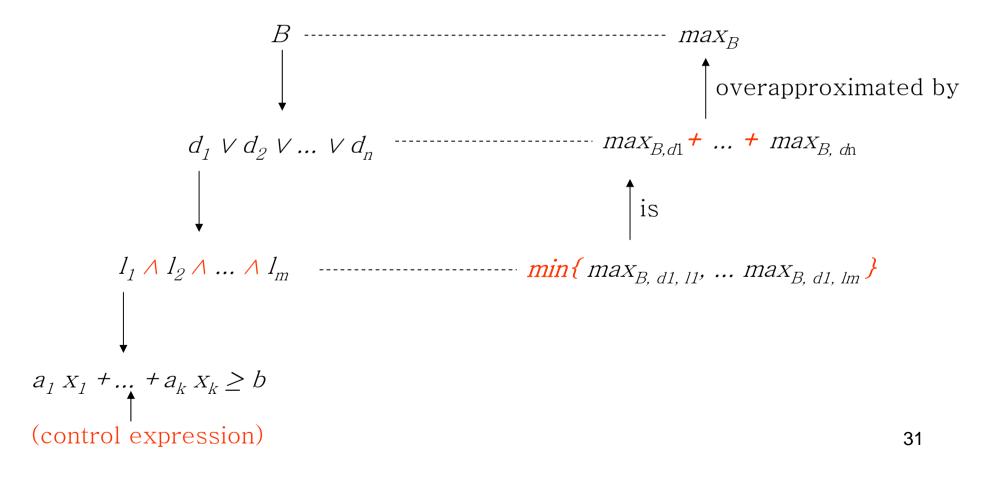
• It is generally impossible to determine max_B .

----- max_B $d_1 \lor d_2 \lor \ldots \lor d_n$ $l_1 \wedge l_2 \wedge \dots \wedge l_m$ $a_1 x_1 + \dots + a_k x_k \ge b$ (control expression)









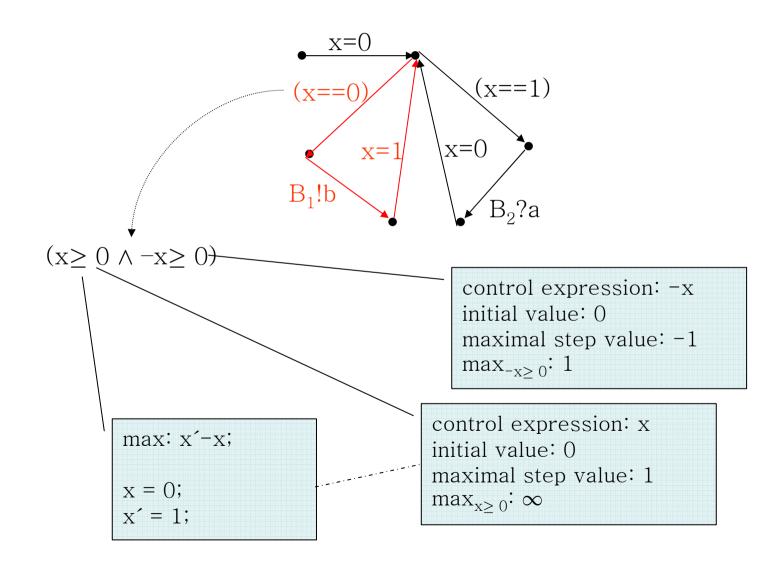
• Compute *max_{B, d1, 11}*

 $a_1 X_1 + \dots + a_k X_k \ge b$

- We can only determine $max_{B, d1, 11}$ if the value of the control expression $a_1 x_1 + ... + a_k x_k$ is always decreased.
 - step values of the control expression are always negative.
 - determine the initial values of the control expression.
 - determine the maximal step value of the control expression.
 - $max_{B. d1. 11}$ is bounded by

max{ 1, 「(maximal_initial_value - b) / - maximal_step_value - }

- Otherwise, we set $ma_{B, d1, l1}$ to be ∞ .



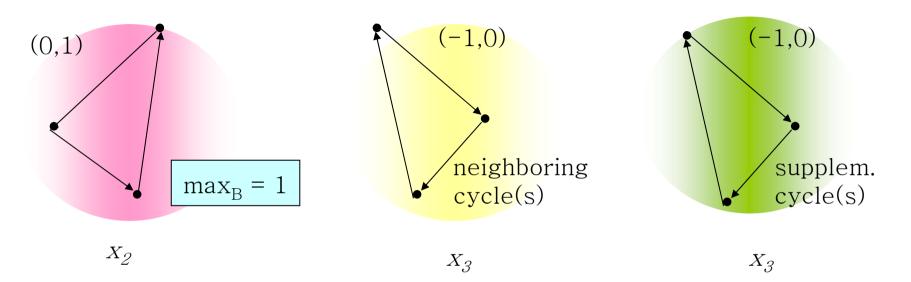
Determining Neighboring and Supplementary Cycles

- Neighboring cycles are easy to collect.
- It is generally impossible to determine the exact set of supplementary cycles.
 - overapproximation: a cycle is regarded as supplementary if it modifies some variables in the considered condition.
 - a finer approach: exclude all the cycles whose executions increase the value of each control expression in the condition.
 - much more expensive, involving code analysis of all the cycles that modify some variables in the condition.

Determining Spuriousness

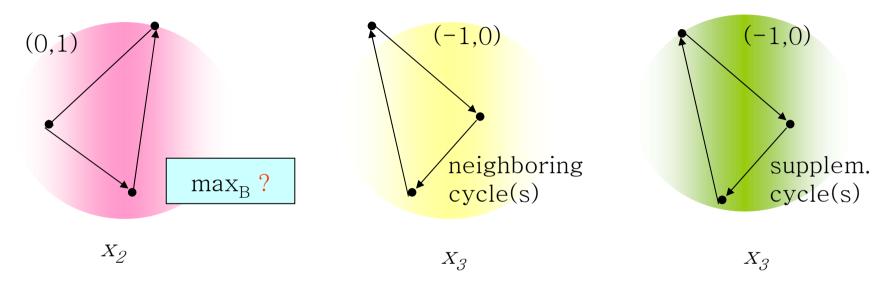
- Every \max_{B} times that the cycle is executed,
 - at least one neighboring cycle must be executed.
 - at least one supplementary cycle with respect to *B* must be executed.
- A counterexample is spurious if one of its member cycle violates the above property.

Refinement



- Every \max_{B} times that the left cycle is executed,
 - at least one neighboring cycle must be executed $x_2 \le \max_B x_3 \rightarrow x_2 \le x_3$
 - at least one supplementary cycle must be executed $x_2 \le \max_B x_3 \Rightarrow x_2 \le x_3$

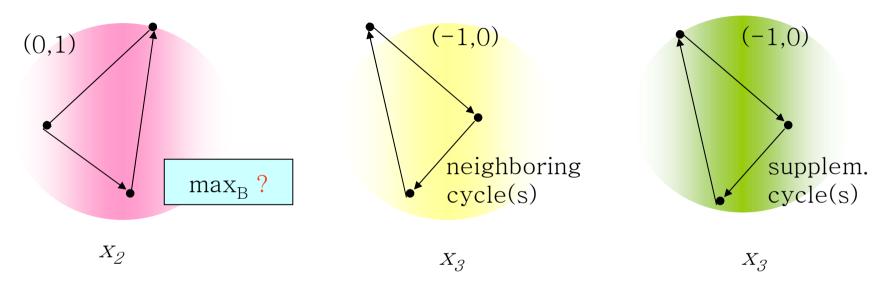
Refinement without max_B



- Two alternatives:
 - the left cycle is not executed infinitely often.

$$x_2 = 0$$

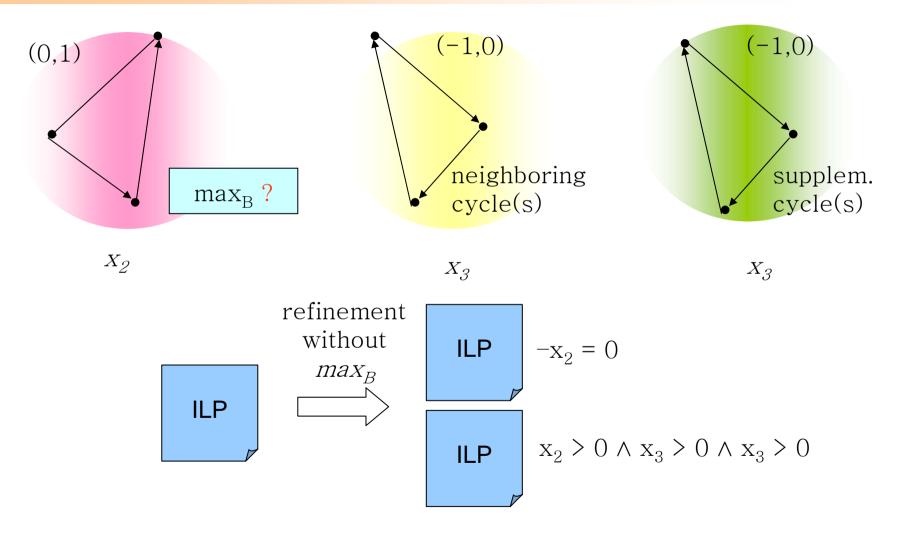
Refinement without max_B



- Two alternatives:
 - the left cycle is executed infinitely often, then at least one of the neighboring cycles and at least one of the supplementary cycles must be also executed infinitely often.

 $\mathbf{x}_2 \ge \mathbf{0} \land \mathbf{x}_3 \ge \mathbf{0} \land \mathbf{x}_3 \ge \mathbf{0}$

Refinement without max_B

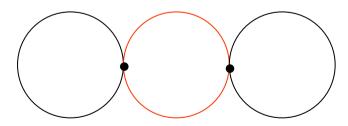


39

Graph Structure Analysis

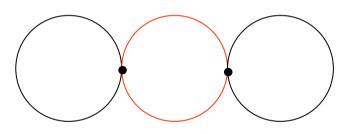
- Strongly connected components (SCCs)
 - cycles in different SCCs are "repelling" each other.

• Cycles that do not share common states need others to bridge them.

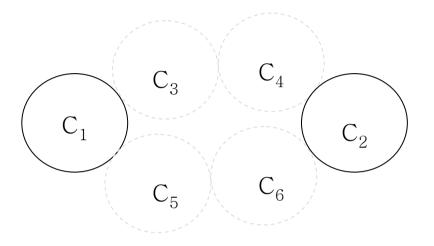


Self-Connected Cycle Set

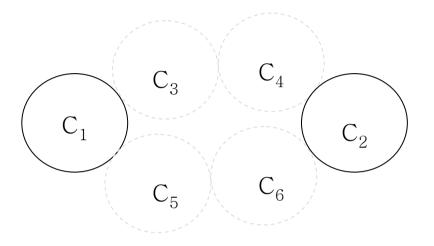
• A set of cycles in the same process is selfconnected if any two cycles in the set are reachable from each other by traversing through only the cycles in the set.



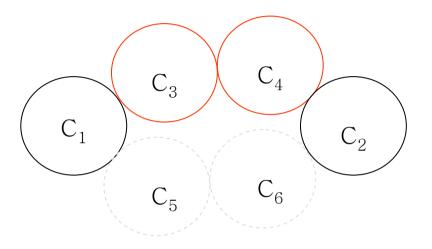
• A counterexample is spurious if, for some process, the set of all member cycles in that process is not self-connected.



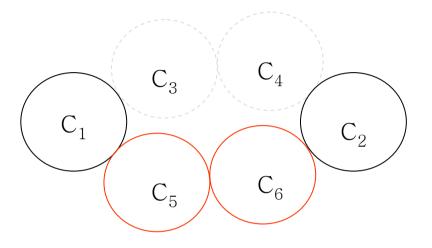
- Consider a counterexample that contains \mbox{C}_1 and \mbox{C}_2 only.



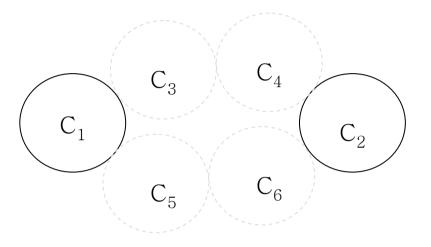
- Consider a counterexample that contains \mbox{C}_1 and \mbox{C}_2 only.
 - determine all the self-connected sets that contain C_1 and $C_2. \label{eq:constant}$



- Consider a counterexample that contains \mbox{C}_1 and \mbox{C}_2 only.
 - determine all the self-connected sets that contain C_1 and $C_2. \label{eq:constant}$

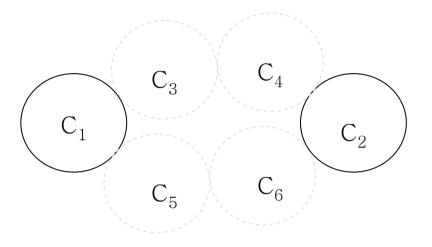


- Consider a counterexample that contains \mbox{C}_1 and \mbox{C}_2 only.
 - determine all the self-connected sets that contain C_1 and C_2 .
 - if there is no such set, then C_1 and C_2 belong to differenct SCCs.



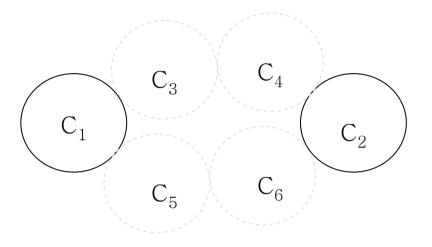
- Several alternatives:
 - C_1 and C_2 are not executed infinitely often.

 $\mathbf{x}_1 = \mathbf{0} \land \mathbf{x}_2 = \mathbf{0}$



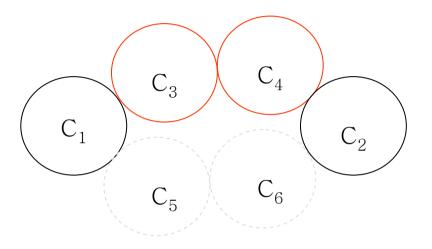
- Several alternatives:
 - C_1 is not executed infinitely often while C_2 is.

 $\mathbf{x}_1 = \mathbf{0} \land \mathbf{x}_2 > \mathbf{0}$



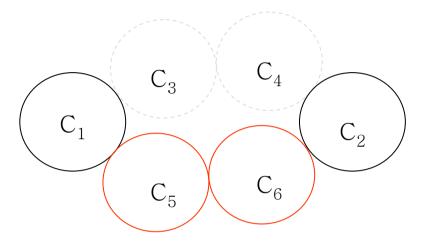
- Several alternatives:
 - C_2 is not executed infinitely often while C_1 is.

 $\mathbf{x}_1 > \mathbf{0} \land \mathbf{x}_2 = \mathbf{0}$



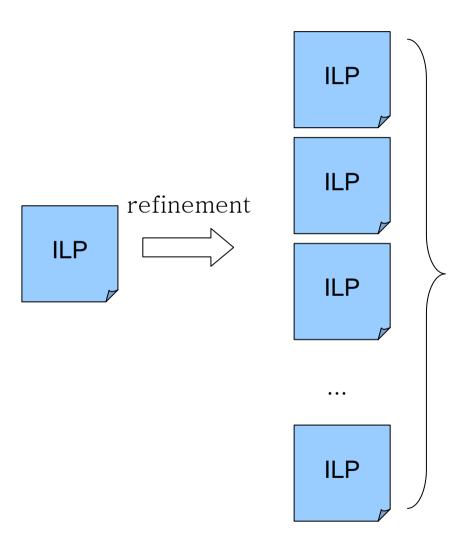
- Several alternatives:
 - C_1 and C_2 are both executed infinitely often, C_3 and C_4 are also executed infinitely often.

 $x_1 \ge 0 \land x_2 \ge 0 \land x_3 \ge 0 \land x_4 \ge 0$



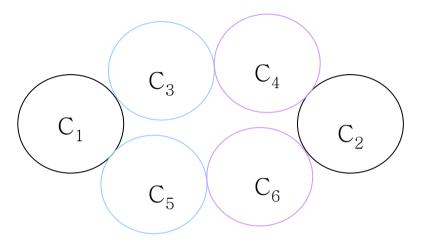
- Several alternatives:
 - C_1 and C_2 are both executed infinitely often, C_5 and C_6 are also executed infinitely often.

 $x_1 \ge 0 \land x_2 \ge 0 \land x_5 \ge 0 \land x_6 \ge 0$



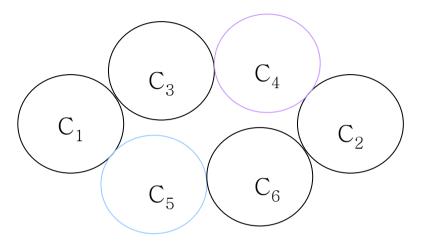
n + 3 new ILP
problems where n
is the number of
self-connected
cycle sets, which
could be
exponential in the
number of cycles.

Coarser Refinement



- $x_1 = 0 \land x_2 = 0$
- $x_1 = 0 \land x_2 > 0$
- $x_1 > 0 \land x_2 = 0$
- $x_1 > 0 \land x_2 > 0 \land x_3 + x_5 > 0 \land x_4 + x_6 > 0$

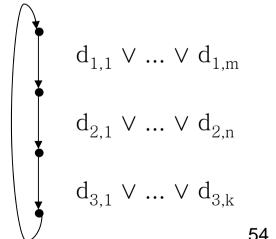
Coarser Refinement



- $x_1 = 0 \wedge x_2 = 0$
- $x_1 = 0 \land x_2 > 0$
- $x_1 > 0 \land x_2 = 0$
- $x_1 > 0 \land x_2 > 0 \land x_3 + x_5 > 0 \land x_4 + x_6 > 0$

Complexity

- Counterexample spuriousness is undecidable.
- High complexity in theory. ullet
 - The number of ILP-problems to determine the maximal step value of a control expression is exponential both in the number of condition statements and in the size of each condition statement.
- Efficient in practice.



Experimental Results

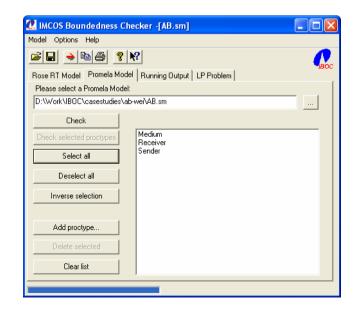
• IBOC (IMCOS Boundedness Checker)

http://www.inf.uni-konstanz.de/soft/tools_en.php?sys=3

- Tests on 31 models:
 - 8 of 31 are proved bounded without counterexamples reported.
 - 2 of 31 are proved bounded after refinement.
 - IBOC returned "UNKNOWN" for 21 of 31.
 - 12 of 21 are truly unbounded.
- On the model of the MVCC protocol, IBOC found 4 counterexamples and determined 3 of them as spurious.

Conclusion

- Determine spuriousness for counterexamples by analyzing cycle code and control flow graph structures.
- Refine abstract models by use of cycle dependency information obtained from counterexample analyses.
- We have implemented the method in IBOC.



Future Work

- Study of global cycle dependencies.
- Application of the method to UML RealTime models.

Thank you!

