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Stochastic models, e.g. DTMC and CTMC: performance and
dependability analysis.

A few model checking approaches for stochastic models have
been presented.

Common weakness: Inability to give detailed debugging
Information (Counterexamples).

Approach: Use (Directed) Explicit-State Model Checking
(ESMC/DESMC) In the reachability analysis of stochastic
models to deliver counterexamples.




Stochastic Models -
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0 A DTMC is aquadruple (S, s,, P, L), where
= Sis a finite set of states, and
= S, €Sisan initial state
= P:S xS — R is the transition 0

probability matrix, eQ
= L:S —2% islabeling function. i e

O An finite/ infinite run:

SQ—S1—82—> ... —>Snp,

SQ—S1—82— ...,
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Explicit-State Model Checking (ESMC) --
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Explicit-State model checking (ESMC): exploring
the state space using graph search algorithms like
DFS and BFS.

If an error is found, an offending system run is
returned (Counterexample)

What constitutes a good counterexample?

In typical non-stochastic transition systems:
good = short

How to obtain good (short) counterexamples?
—> Optimizing Search (Best First)

Directed Explicit-State Model Checking (DESMC),
l.e., Heuristic Search, e.g. Greedy Best First
(GBestFS) or A*



Directed Explicit-State Model-Checking e

(DESMC) -- Transition Systems it
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0 Directed search algorithms use knowledge about
= the state space or/and
= the specification of the goal state

O A heuristic function h Is used In the state evaluation.

0 Advantages of DESMC: Improving the performance
= Memory effort
= Runtime
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Use ESMC or DESMC on stochastic
models

What Is a good counterexample In

stochastic models?

= A counterexample which carries a high probability mass
(more informative).

= The length of a run is not indicative of | =@
Its probability mass.
= -2 Timed run probability
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Timed Run Probability ¥ o
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o Letr=s, —+s, —+S, —... —=S,bearun.

0 The timed run probability of r, A/r, k), is the probability to
execute r within at most k time units.

k—1
v(r,k) = P(sp—1,5n) - Z m(5p—1,1)
1=0

Note: For CTMCs it is more complicated
The determination of the timed run probability is computationally
Very expensive.
- An approximation based on Uniformisation of the model.
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Idea: Use of optimizing algorithms with the
timed run probability as optimization
criterion!

0 Dijkstra, (ESMC)
0 GBestFS (DESMC)
o Z* (DESMC)
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In our experiments:
= One Controller

= One main disk (frequently
used)

= Two backup disks (rarely
used)

O The system was modeled

In LOTOS and
transformed Into an
Interactive Markov chain
(IMC) by the CADP
toolbox.

CONTROLLER
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SCSI-2-Protocol: A Timed Reachability e

1
= = - |

P ro pe rty Software Engineering

0 Main disk overload (MDOL): The main disk is
overloaded while the backup disks are not accessed.

O The probability to reach a MDOL state within t time
units does not exceed 0.3.
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0 The counterexample delivered by Z*

LAMBDA 0 ( )ARB ( ::CMD!D

LAMBDA 1
LAMEDA™M LAMBDA 12
LAMEDA™ MU0

g ;DTHERS

CMD m GOAL
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o Forted{l,?2, ... 10}

Time bound 1 2 3 4 i) G T 5 i 10

Madel 0.235 | 0.312 | 0.327 0.329 | 0.329 | 0.329 | 0.330 | 0.330 | 0.330 | 0.330
DFs - - - - - - 0.000 - - 0.000
BFs 0161 | 0161 | 0161 | 0161 | 0161 [ 0.161 | 0161 | 0161 | 0.161
Dijkstra - 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | O.161 | 0.161
GBestFS - 0.012 | 0.012 | 0,012 | D.012 | 0.012 | 0.012 | 0,012 | 0.012 | D.O12
/e 0.161 | 0.161 | 0.161 | 0.161 [ 0161 | 0.161 | 0.161 | 0.161 | 0.161

18



SCSI-Protocol: Experimental Results
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O Runtime

BFS and DFS do not
scale to large models.

Good runtime behavior
of Dijkstra, GBestFS,
Z*

Directed algorithms
GBestFS and Z* have
the best runtime
performance.
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O Memory effort 450000

=  The behavior of DFS 400000

and BFS is 150000
unacceptable.

300000
= Dijkstra does not scale ¢ _
to large models :
= Z*and GBestFSbring 2

significant 150000
Improvement 100000
=  GBestFS has the best 50000
behavior. .
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Future Work e
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O More case studies

0 Finding more than one path (counterexample =
offending tree)

0 Visualization of counterexamples
O General heuristics
O Non-Determinism (CT Markov Decision Processes)
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0 Novel approach to generate counterexamples for
timed probabilistic reachability analysis.

0O Heuristic guided
0 Good experimental results
O A good step In the right direction
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Thanks for your attention!
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