## Counterexamples for Stochastic Model Checking Software Engineering



Husain Aljazzar

Chair for Software Engineering University of Constance





- □ Holger Hermanns, University of Saarland
- □ Stefan Leue, University of Constance

"Counterexamples for Timed Probabilistic Reachability" FORMATS 2005



#### □ Introduction

- □ (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- □ Case Study and Experimental Results
- □ Future Work & Conclusion



#### □ Introduction

- □ (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- □ Case Study and Experimental Results
- □ Future Work & Conclusion

# Software Engineering

## Motivation

- □ Stochastic models, e.g. *DTMC* and *CTMC*: performance and dependability analysis.
- □ A few model checking approaches for stochastic models have been presented.
- □ Common weakness: Inability to give detailed debugging information (Counterexamples).
- Approach: Use (Directed) Explicit-State Model Checking (ESMC/DESMC) in the reachability analysis of stochastic models to deliver counterexamples.

#### Stochastic Models



#### $\square$ A DTMC is a quadruple (*S*, $s_0$ , *P*, *L*), where

- S is a finite set of states, and
- $s_0 \in S$  is an initial state
- $P: S \times S \rightarrow \mathbb{R}$  is the transition probability matrix,
- $L: S \rightarrow 2^{AP}$  is labeling function.

□ An *finite/ infinite run*:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots \rightarrow s_n,$$
  
 $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots,$ 





#### □ Introduction

- □ (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- □ Case Study and Experimental Results
- □ Future Work & Conclusion

#### Explicit-State Model Checking (ESMC) --Transition Systems



Software Engineering

- Explicit-State model checking (ESMC): exploring the state space using graph search algorithms like DFS and BFS.
- □ If an error is found, an offending system run is returned (Counterexample)
- □ What constitutes a *good* counterexample?
  - In typical non-stochastic transition systems: good = short
- $\Box \quad \text{How to obtain good (short) counterexamples?}$ 
  - → Optimizing Search (Best First)
  - BFS
  - Directed Explicit-State Model Checking (DESMC),
    i.e., Heuristic Search, e.g. Greedy Best First (GBestFS) or A\*



#### Directed Explicit-State Model-Checking (DESMC) -- Transition Systems



- □ Directed search algorithms use knowledge about
  - the state space or/and
  - the specification of the goal state
- $\square$  A heuristic function h is used in the state evaluation.
- □ Advantages of DESMC: Improving the performance
  - Memory effort
  - Runtime



#### □ Introduction

- □ (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- □ Case Study and Experimental Results
- □ Future Work & Conclusion

## Counterexamples for Stochastic Models



- Use ESMC or DESMC on stochastic models
- What is a good counterexample in stochastic models?
  - A counterexample which carries a high probability mass (more informative).
  - The length of a run is not indicative of its probability mass.
  - → Timed run probability



Timed Run Probability 
$$\gamma$$



- $\square \quad \text{Let } r = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots \rightarrow s_n \text{ be a run.}$
- □ The timed run probability of r,  $\gamma(r, k)$ , is the probability to execute r within at most k time units.

$$\gamma(r,k) = P(s_{n-1},s_n) \cdot \sum_{i=0}^{k-1} \pi(s_{n-1},i)$$

Note: For CTMCs it is more complicated

The determination of the timed run probability is computationally very expensive.

 $\rightarrow$  An approximation based on Uniformisation of the model.

## ESMC and DESMC for Stochastic Models



Software Engineering



Idea: Use of optimizing algorithms with the<br/>timed run probability as optimization<br/>criterion!Dijkstra,(ESMC)GBestFS(DESMC)

 $\Box Z^*$  (DESMC)

П



#### □ Introduction

- □ (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- □ Case Study and Experimental Results
- □ Future Work

#### □ Conclusion

### Case-Study: SCSI-2-Protocol



Software Engineering

#### □ In our experiments:

- One Controller
- One main disk (frequently used)
- Two backup disks (rarely used)
- The system was modeled in LOTOS and transformed into an interactive Markov chain (IMC) by the CADP toolbox.



## SCSI-2-Protocol: A Timed Reachability Property



- □ <u>Main disk overload</u> (MDOL): The main disk is overloaded while the backup disks are not accessed.
- □ The probability to reach a MDOL state within t time units does not exceed 0.3.





#### SCSI-Protocol: Experimental Results

Software Engineering

#### $\Box$ For $t \in \{1, 2, ..., 10\}$

| Time bound | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Model      | 0.235 | 0.312 | 0.327 | 0.329 | 0.329 | 0.329 | 0.330 | 0.330 | 0.330 | 0.330 |
| DFS        | -     | -     | -     | -     | -     | -     | 0.000 | -     | -     | 0.000 |
| BFS        | -     | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 |
| Dijkstra   | -     | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 |
| GBestFS    | -     | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 |
| Z*         | -     | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 |



## SCSI-Protocol: Experimental Results

#### □ Runtime

- BFS and DFS do not scale to large models.
- Good runtime behavior of Dijkstra, GBestFS, Z\*
- Directed algorithms GBestFS and Z\* have the best runtime performance.



Software Engineering



## SCSI-Protocol: Experimental Results

Software Engineering

- □ Memory effort
  - The behavior of DFS and BFS is unacceptable.
  - Dijkstra does not scale to large models
  - Z\* and GBestFS bring significant improvement
  - GBestFS has the best behavior.





- □ Introduction
- □ (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- □ Case Study and Experimental Results
- □ Future Work & Conclusion



#### Future Work

- □ More case studies
- Finding more than one path (counterexample = offending tree)
- □ Visualization of counterexamples
- □ General heuristics
- Non-Determinism (CT Markov Decision Processes)

## Conclusion



- Novel approach to generate counterexamples for timed probabilistic reachability analysis.
- □ Heuristic guided
- □ Good experimental results
- $\square$  A good step in the right direction



Software Engineering

## Thanks for your attention!