Counterexamples for w

Stochastic Model ChecKINg sortware engineering

[A [

Husain Aljazzar

Chair for Software Engineering
University of Constance

E:"‘?ﬂl

==
}

Joint work with i

Software Engineering

0 Holger Hermanns, University of Saarland
0 Stefan Leue, University of Constance

,,counterexamples for Timed Probabilistic
Reachability“

FORMATS 2005

Overview i

Software Engineering

Introduction

(Directed) Explicit-State Reachability Analysis
Directed Probabilistic Reachability Analysis
Case Study and Experimental Results

Future Work & Conclusion

O O O 0O O

Overview

1
= = - |

Software Engineering

O

O O O 0O

Introduction

Motivation B

Software Engineering

O

O

O

Stochastic models, e.g. DTMC and CTMC: performance and
dependability analysis.

A few model checking approaches for stochastic models have
been presented.

Common weakness: Inability to give detailed debugging
Information (Counterexamples).

Approach: Use (Directed) Explicit-State Model Checking
(ESMC/DESMC) In the reachability analysis of stochastic
models to deliver counterexamples.

Stochastic Models -

Software Engineering

0 A DTMC is aquadruple (S, s,, P, L), where
= Sis a finite set of states, and
= S, €Sisan initial state
= P:S xS — R is the transition 0

probability matrix, eQ
= L:S —2% islabeling function. i e

O An finite/ infinite run:

SQ—S1—82—> ... —>Snp,

SQ—S1—82— ...,

Overview S

Software Engineering

(Directed) Explicit-State Reachability Analysis

O O O 0O O

Explicit-State Model Checking (ESMC) --

Transition Systems

Software Engineering

Explicit-State model checking (ESMC): exploring
the state space using graph search algorithms like
DFS and BFS.

If an error is found, an offending system run is
returned (Counterexample)

What constitutes a good counterexample?

In typical non-stochastic transition systems:
good = short

How to obtain good (short) counterexamples?
—> Optimizing Search (Best First)

Directed Explicit-State Model Checking (DESMC),
l.e., Heuristic Search, e.g. Greedy Best First
(GBestFS) or A*

Directed Explicit-State Model-Checking e

(DESMC) -- Transition Systems it

Software Engineering

0 Directed search algorithms use knowledge about
= the state space or/and
= the specification of the goal state

O A heuristic function h Is used In the state evaluation.

0 Advantages of DESMC: Improving the performance
= Memory effort
= Runtime

Overview S

Software Engineering

O O O 0O O

Directed Probabilistic Reachability Analysis

10

:_';ﬂ

Counterexamples for Stochastic e

Models NI

Software Engineering

Use ESMC or DESMC on stochastic
models

What Is a good counterexample In

stochastic models?

= A counterexample which carries a high probability mass
(more informative).

= The length of a run is not indicative of | =@
Its probability mass.
= -2 Timed run probability

11

Timed Run Probability ¥ o

Software Engineering

o Letr=s, —+s, —+S, —... —=S,bearun.

0 The timed run probability of r, A/r, k), is the probability to
execute r within at most k time units.

k—1
v(r,k) = P(sp—1,5n) - Z m(5p—1,1)
1=0

Note: For CTMCs it is more complicated
The determination of the timed run probability is computationally
Very expensive.
- An approximation based on Uniformisation of the model.

12

:_qﬂ

ESMC and DESMC for Stochastic e
Models -

Software Engineering

Idea: Use of optimizing algorithms with the
timed run probability as optimization
criterion!

0 Dijkstra, (ESMC)
0 GBestFS (DESMC)
o Z* (DESMC)

13

Overview

1
= = - |

Software Engineering

O O O O O 0O

Case Study and Experimental Results

14

Case-Study: SCSI-2-Protocol

Software Engineering

In our experiments:
= One Controller

= One main disk (frequently
used)

= Two backup disks (rarely
used)

O The system was modeled

In LOTOS and
transformed Into an
Interactive Markov chain
(IMC) by the CADP
toolbox.

CONTROLLER

g

SCSI-2-Protocol: A Timed Reachability e

1
= = - |

P ro pe rty Software Engineering

0 Main disk overload (MDOL): The main disk is
overloaded while the backup disks are not accessed.

O The probability to reach a MDOL state within t time
units does not exceed 0.3.

16

SCSI-2-Protocol: Counterexample ol

Software Engineering

0 The counterexample delivered by Z*

LAMBDA 0 ()ARB (::CMD!D

LAMBDA 1
LAMEDA™M LAMBDA 12
LAMEDA™ MU0

g ;DTHERS

CMD m GOAL

17

SCSI-Protocol: Experimental Results

o

Software Engineering

o Forted{l,?2, ... 10}

Time bound 1 2 3 4 i) G T 5 i 10

Madel 0.235 | 0.312 | 0.327 0.329 | 0.329 | 0.329 | 0.330 | 0.330 | 0.330 | 0.330
DFs - - - - - - 0.000 - - 0.000
BFs 0161 | 0161 | 0161 | 0161 | 0161 [0.161 | 0161 | 0161 | 0.161
Dijkstra - 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | 0.161 | O.161 | 0.161
GBestFS - 0.012 | 0.012 | 0,012 | D.012 | 0.012 | 0.012 | 0,012 | 0.012 | D.O12
/e 0.161 | 0.161 | 0.161 | 0.161 [0161 | 0.161 | 0.161 | 0.161 | 0.161

18

SCSI-Protocol: Experimental Results

Software Engineering

O Runtime

BFS and DFS do not
scale to large models.

Good runtime behavior
of Dijkstra, GBestFS,
Z*

Directed algorithms
GBestFS and Z* have
the best runtime
performance.

45

40

¥
|
x
|
b4
|
%
|
*
s
¥
s
%

19

SCSI-Protocol: Experimental Results L

Hy

Software Engineering

O Memory effort 450000

= The behavior of DFS 400000

and BFS is 150000
unacceptable.

300000
= Dijkstra does not scale ¢ _
to large models :
= Z*and GBestFSbring 2

significant 150000
Improvement 100000
= GBestFS has the best 50000
behavior. .

i v

I I
DFS —+—
BFS ——%—-
Dijksira -- % -- |
GBestFS -3
7* —m—

S B T thvet _ b .::""E‘""ﬂ"”':#

o e

’ : ° " 7 s 10
Time hound

20

Overview

1
= = - |

Software Engineering

O
O
O
O
O

Future Work & Conclusion

21

Future Work e

Software Engineering

O More case studies

0 Finding more than one path (counterexample =
offending tree)

0 Visualization of counterexamples
O General heuristics
O Non-Determinism (CT Markov Decision Processes)

22

Conclusion i

Software Engineering

0 Novel approach to generate counterexamples for
timed probabilistic reachability analysis.

0O Heuristic guided
0 Good experimental results
O A good step In the right direction

23

1
= = - |

Software Engineering

Thanks for your attention!

24

