Counterexamples for Stochastic Model Checking

Husain Aljazzar

Chair for Software Engineering
University of Constance
Joint work with

- Holger Hermanns, University of Saarland
- Stefan Leue, University of Constance

„Counterexamples for Timed Probabilistic Reachability“

FORMATS 2005
Overview

- Introduction
- (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- Case Study and Experimental Results
- Future Work & Conclusion
Overview

- Introduction
- (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- Case Study and Experimental Results
- Future Work & Conclusion
Motivation

- Stochastic models, e.g. *DTMC* and *CTMC*: performance and dependability analysis.

- A few model checking approaches for stochastic models have been presented.

- **Common weakness**: Inability to give detailed debugging information (Counterexamples).

- **Approach**: Use (Directed) Explicit-State Model Checking (ESMC/DESMC) in the reachability analysis of stochastic models to deliver counterexamples.
A DTMC is a quadruple \((S, s_0, P, L)\), where

- \(S\) is a finite set of states, and
- \(s_0 \in S\) is an initial state
- \(P : S \times S \to \mathbb{R}\) is the transition probability matrix,
- \(L : S \to 2^{AP}\) is labeling function.

An finite/ infinite run:

\[
s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots \rightarrow s_n, \\
\]

\[
s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots ,
\]
Explicit-State Model Checking (ESMC) -- Transition Systems

- Explicit-State model checking (ESMC): exploring the state space using graph search algorithms like DFS and BFS.
- If an error is found, an offending system run is returned (Counterexample)
- What constitutes a good counterexample?
 - In typical non-stochastic transition systems: good = short
- How to obtain good (short) counterexamples?
 - Optimizing Search (Best First)
 - BFS
 - Directed Explicit-State Model Checking (DESMC), i.e., Heuristic Search, e.g. Greedy Best First (GBestFS) or A*
Directed Explicit-State Model-Checking (DESMC) -- Transition Systems

- Directed search algorithms use knowledge about
 - the state space or/and
 - the specification of the goal state

- A heuristic function h is used in the state evaluation.

- Advantages of DESMC: Improving the performance
 - Memory effort
 - Runtime
Overview

- Introduction
- (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- Case Study and Experimental Results
- Future Work & Conclusion

Software Engineering
Counterexamples for Stochastic Models

- Use ESMC or DESMC on stochastic models

- What is a good counterexample in stochastic models?
 - A counterexample which carries a high probability mass (more informative).
 - The length of a run is not indicative of its probability mass.
 - Timed run probability
Timed Run Probability γ

- Let $r = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ... \rightarrow s_n$ be a run.

- The timed run probability of r, $\gamma(r, k)$, is the probability to execute r within at most k time units.

$\gamma(r, k) = P(s_{n-1}, s_n) \cdot \sum_{i=0}^{k-1} \pi(s_{n-1}, i)$

Note: For CTMCs it is more complicated
 The determination of the timed run probability is computationally very expensive.
 \rightarrow An approximation based on Uniformisation of the model.
ESMC and DESMC for Stochastic Models

Idea: Use of optimizing algorithms with the timed run probability as optimization criterion!

- Dijkstra, (ESMC)
- GBestFS (DESMC)
- Z* (DESMC)
Overview

- Introduction
- (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- Case Study and Experimental Results
- Future Work
- Conclusion
Case-Study: SCSI-2-Protocol

In our experiments:
- One Controller
- One main disk (frequently used)
- Two backup disks (rarely used)

The system was modeled in LOTOS and transformed into an interactive Markov chain (IMC) by the CADP toolbox.
SCSI-2-Protocol: A Timed Reachability Property

- **Main disk overload (MDOL):** The main disk is overloaded while the backup disks are not accessed.

- The probability to reach a MDOL state within t time units does not exceed 0.3.
SCSI-2-Protocol: Counterexample

- The counterexample delivered by Z^*
SCSI-Protocol: Experimental Results

- For \(t \in \{1, 2, \ldots, 10\} \)

<table>
<thead>
<tr>
<th>Time bound</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>0.235</td>
<td>0.312</td>
<td>0.327</td>
<td>0.329</td>
<td>0.329</td>
<td>0.329</td>
<td>0.330</td>
<td>0.330</td>
<td>0.330</td>
<td>0.330</td>
</tr>
<tr>
<td>DFS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
<td>-</td>
<td>-</td>
<td>0.000</td>
</tr>
<tr>
<td>BFS</td>
<td>-</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>-</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
</tr>
<tr>
<td>GBestFS</td>
<td>-</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Z*</td>
<td>-</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
<td>0.161</td>
</tr>
</tbody>
</table>
SCSI-Protocol: Experimental Results

Runtime

- BFS and DFS do not scale to large models.
- Good runtime behavior of Dijkstra, GBestFS, Z*
- Directed algorithms GBestFS and Z* have the best runtime performance.
Memory effort

- The behavior of DFS and BFS is unacceptable.
- Dijkstra does not scale to large models
- Z* and GBestFS bring significant improvement
- GBestFS has the best behavior.
Overview

- Introduction
- (Directed) Explicit-State Reachability Analysis
- Directed Probabilistic Reachability Analysis
- Case Study and Experimental Results
- Future Work & Conclusion
Future Work

- More case studies
- Finding more than one path (counterexample = offending tree)
- Visualization of counterexamples
- General heuristics
- Non-Determinism (CT Markov Decision Processes)
Conclusion

- Novel approach to generate counterexamples for timed probabilistic reachability analysis.
- Heuristic guided
- Good experimental results
- A good step in the right direction
Thanks for your attention!